1
|
Xu L, Peng B, Wu H, Zheng Y, Yu Q, Fang S. METTL7B contributes to the malignant progression of glioblastoma by inhibiting EGR1 expression. Metab Brain Dis 2022; 37:1133-1143. [PMID: 35254598 DOI: 10.1007/s11011-022-00925-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
Glioblastoma (GBM), a predominant central nervous system (CNS) malignancy, is correlated with high mortality and severe morbidity. Mammalian methyltransferase-like 7B (METTL7B) as a methyltransferase has been identified to participate in cancer progression. However, its function in GBM is elusive. Accordingly, we aimed to explore the effect of METTL7B on GBM. The expression of METTL7B and EGR2 in GBM patients and GBM cells were detected by qPCR, western blots and immunohistochemical staining. Cell viability was assessed by CCK-8 assays. Cell proliferation was determined by EdU, colony formation, and tumor sphere formation assays. METTL7B shRNA was injected into the Balb/c nude mice. The size and weight of isolated tumor was measured. And the expression levels of Ki67, METTL7B and EGR1 were examined by immunohistochemical staining. METTL7B was significantly elevated, while EGR1 was downregulated in clinical GBM tissues. METTL7B upregulation was associated with the low overall survival of GBM patients. Moreover, METTL7B depletion remarkably attenuated GBM cell proliferation. Mechanistically, METTL7B overexpression inhibited EGR1 expression in GBM cells. EGR1 knockdown rescued the inhibitory effect of METTL7B depletion on GBM cell proliferation. Meanwhile, METTL7B depletion arrested more GBM cells at the G0/G1, but fewer cells at the S phase, which EGR1 knockdown reversed these effects. Furthermore, tumorigenicity analysis revealed that METTL7B promotes tumor growth of GBM cells in vivo. METTL7B contributes to the malignant progression of GBM by inhibiting EGR1 expression. METTL7B and EGR1 may be utilized as the treatment targets for GBM therapy.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China.
| | - Biao Peng
- Deparment of Neurosurgery, the Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510080, People's Republic of China
| | - Haiqiang Wu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Yike Zheng
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Qingwen Yu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Shuiqiao Fang
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| |
Collapse
|
2
|
Shi Q, Sutariya V, Varghese Gupta S, Bhatia D. GADD45α-targeted suicide gene therapy driven by synthetic CArG promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation regardless of p53 status. Onco Targets Ther 2019; 12:3161-3170. [PMID: 31114253 PMCID: PMC6497884 DOI: 10.2147/ott.s192061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background: GADD45α is a tumor suppressor protein often upregulated by environmental stresses and DNA-damage agents to cause growth arrest, apoptosis, tumor growth inhibition, and anti-angiogenesis. A novel suicide gene therapy vector pE9NS.G45α was engineered by cloning GADD45α opening reading frame downstream to the synthetic CArG promoter E9NS, which contains nine repeats of CArG element with modified core A/T sequence and functions as a molecular switch to drive the expression of GADD45α. The current study aims to determine the efficacy of this suicide gene therapy vector in combination with cisplatin, resveratrol, and radiation in NSCLC cell lines with various p53 statuses. Methods: Three NSCLC cell lines, H1299 (deleted p53), A549 (wild-type p53), and H23 (mutated p53), were examined in the present investigation to represent NSCLC with different p53 functions. MTT assay was conducted to select suitable doses of cisplatin, resveratrol, and radiation for gene therapy, and dual luciferase assay was performed to validate the activation of promoter E9NS. The efficacy of gene therapy combinations was evaluated by the amount of GADD45α expression, cell survival, and apoptosis. Results: All the combinations successfully activated promoter E9NS to elevate intracellular GADD45α protein levels and subsequently enhanced cell viability reduction and apoptosis induction regardless of p53 status. Conclusion: Our study demonstrates that GADD45α-targeted suicide gene therapy controlled by synthetic promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation and is effective against NSCLC at least in vitro.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | | | | | - Deepak Bhatia
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, VA, USA
| |
Collapse
|
3
|
CArG-driven GADD45α activated by resveratrol inhibits lung cancer cells. Genes Cancer 2015; 6:220-30. [PMID: 26124921 PMCID: PMC4482243 DOI: 10.18632/genesandcancer.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
We report anticarcinogenic effects of suicide gene therapy that relies on the use of resveratrol-responsive CArG elements from the Egr-1 promoter to induce GADD45α. In A549 lung cancer cells, endogenous GADD45α was not induced upon resveratrol treatment. Therefore, induction of exogenous GADD45α resulted in growth inhibition. Resveratrol transiently induced Egr-1 through ERK/JNK-ElK-1. Hence, we cloned natural or synthetic Egr-1 promoter upstream of GADD45α cDNA to create a suicide gene therapy vector. Since natural promoter may have antagonized effects, we tested synthetic promoter that contains either five, six or nine repeats of CArG elements essential in the Egr-1 promoter to drive the expression of GADD45α upon resveratrol treatment. Further analysis confirmed that both synthetic promoter and natural Egr-1 promoter were able to “turn on” the expression of GADD45α when combined with resveratrol, and subsequently led to suppression of cell proliferation and apoptosis.
Collapse
|
4
|
Greife A, Tukova J, Steinhoff C, Scott SD, Schulz WA, Hatina J. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumour Biol 2015; 36:3293-300. [DOI: 10.1007/s13277-014-2959-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
|
5
|
Abstract
Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy combinatorial approaches has been achieved to overcome resistance of tumor cells to radiation. In this review, we summarize the results from experimental cancer therapy studies on the combination of radiation therapy and gene therapy.
Collapse
|
6
|
An artificially constructed radiation-responsive promoter is activated by doxorubicin. Cancer Gene Ther 2012; 19:345-51. [DOI: 10.1038/cgt.2012.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Yu DS, Zhao W, Huang HZ, Hu XW, Liu XQ, Tang HK. Synthetic radiation-inducible promoters mediated HSV-TK/GCV gene therapy in the treatment of oral squamous cell carcinoma. Oral Dis 2010; 16:445-52. [PMID: 20412454 DOI: 10.1111/j.1601-0825.2010.01655.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the therapeutic effect of herpes simplex virus thymidine kinase (HSV-TK) gene mediated by synthetic radiation-inducible promoters in the treatment of oral squamous cell carcinoma (OSCC) in vitro and in vivo. METHODS The plasmids pcDNA3.1(+)E6-HSV-TK were constructed, in which the HSV-TK genes were mediated by synthetic radiation-inducible promoters. The recombined plasmids were transfected into the Tca8113 cells and golden hamster buccal carcinoma, respectively. Low-dose radiotherapy was used to upregulate the HSV-TK genes expression. HSV-TK mRNA was assayed by RT-PCR. Apoptosis and proliferating cell nuclear antigen were detected respectively by in situ end-labeling and immunohistochemical method. RESULTS Compared with control group, the comparative survival rate of Tca8113 cells in HSV-TK/GCV/IR group was markedly decreased and the golden hamster buccal carcinoma in HSV-TK/GCV/IR group was obviously suppressed. Up-regulation of HSV-TK gene expression was found in the Tca8113 cells and in the golden hamster buccal carcinoma resulting from exposure to low-dose irradiation. The apoptosis indexes in Tca8113 cells or golden hamster buccal carcinoma with irradiation were markedly higher than those without irradiation. At the same time, the proliferation indexes in Tca8113 cells or golden hamster buccal carcinoma with irradiation were markedly lower than those without irradiation. CONCLUSION The results indicate that the synthetic radiation-inducible promoters can serve as a molecular switch to adjust the expression of HSV-TK gene in the treatment of OSCC, and low-dose induction radiation can significantly improve therapeutic efficiency.
Collapse
Affiliation(s)
- D-S Yu
- Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
8
|
Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther 2009; 16:609-19. [PMID: 19444302 DOI: 10.1038/cgt.2009.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiotherapy is a widely used treatment for localized malignancies that is often delivered in combination with cytotoxic chemotherapeutic agents. The concept that treatment of localized tumors can be improved with a radio- and chemo-inducible gene therapy strategy has been investigated in the laboratory and now translated to the clinic. The TNFerade (Ad.Egr-TNF11D) adenoviral vector was engineered by inserting radio- and chemo-inducible elements from the Egr-1 promoter upstream to a cDNA encoding tumor necrosis factor-alpha (TNF-alpha). Transduction of tumor cells with TNFerade and then treatment with radiation or chemotherapy is associated with spatial and temporal control of TNF-alpha secretion and enhanced antitumor activity. TNFerade has been evaluated in trials for patients with sarcomas, melanomas and cancers of the pancreas, esophagus, rectum and head and neck. If the ongoing phase III trial for pancreatic cancer is successful, TNFerade will likely become the first gene therapy approved for cancer in the United States.
Collapse
|
9
|
PET imaging of heat-inducible suicide gene expression in mice bearing head and neck squamous cell carcinoma xenografts. Cancer Gene Ther 2008; 16:161-70. [PMID: 18758434 DOI: 10.1038/cgt.2008.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to achieve tumor selective expression of therapeutic genes is an area that needs improvement for cancer gene therapy to be successful. One approach to address this is through the use of promoters that can be controlled by external means, such as hyperthermia. In this regard, we constructed a replication-deficient adenovirus that consists of a mutated herpes simplex virus 1 thymidine kinase (mTK) fused to enhanced green fluorescent protein (EGFP) under the control of the full-length human heat shock (HS) 70b promoter. The virus (AdHSmTK-EGFP) was evaluated both in vitro and in vivo in oral squamous cell carcinoma SCC-9 cells for expression of both mTK and EGFP. The in vitro expression of mTK-EGFP was validated using both (3)H-penciclovir and fluorescence-activated cell sorting assays. These studies show that specific expression could be achieved by heating the cells at 41 degrees C for 1 h, whereas little expression was observed using high doses of virus without hyperthermia. The vector was also evaluated in vivo by direct intratumoral injection into mice bearing SCC-9 xenografts. These studies demonstrated tumor expression of mTK-EGFP after ultrasound heating of the tumors by radioactive biodistribution assays, histology and microPET imaging. These in vivo results, which demonstrate HS-inducible transgene expression using PET imaging, provide a means for noninvasive monitoring of heat-induced gene therapy in local tumors, such as oral squamous cell carcinomas.
Collapse
|
10
|
Combined effects of radiotherapy and endostatin gene therapy in melanoma tumor model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 47:285-91. [PMID: 18060421 DOI: 10.1007/s00411-007-0144-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/19/2007] [Indexed: 02/05/2023]
Abstract
PEgr-Endostatin-EGFP plasmid was constructed to investigate its expression properties induced by ionizing irradiation and the effect of pEgr-Endostatin-EGFP gene-radiotherapy on melanoma tumor-bearing mice. The pEgr-Endostatin-EGFP plasmid was transfected into B16 cell line with liposome. The expression property of endostatin was investigated by RT-PCR and that of EGFP was detected by flow cytometry. Tumor-bearing mice were treated by the plasmid injection and 2 Gy X-irradiation of three fractions. Tumor growth was observed for 18 days after treatment. Change of tumor capillary formation was measured with histochemistry assay at the end of the experiment. The expression of GFP in B16 melanoma cells was detected after X-irradiation with 0.05-20 Gy. Time-course studies showed that the expression of GFP in B16 cells reached its peak at 8 h after irradiation with 2 Gy. The injection of pEgr-Endostatin-EGFP recombinant plasmid into the implanted B16 melanoma in C57BL/6J mice followed by local X-irradiation could significantly inhibit tumor growth with inhibition of intratumor micro-vessel density. The inhibitory effect of pEgr-Endostatin-EGFP gene-radiotherapy on the growth of B16 melanoma is correlated with the marked decrease of intratumoral vascularization. The present data point to the potential of an anti-angiogenic approach in gene-radiotherapy of cancer.
Collapse
|
11
|
Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 2006; 13:115-24. [PMID: 16138117 PMCID: PMC2455793 DOI: 10.1038/sj.cgt.7700896] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies are reviewed indicating that the transcription factor early growth response-1 (Egr1) is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. The downstream pathways of these factors display multiple nodes of interaction with each other, suggesting the existence of a functional network of suppressor factors that serve to maintain normal growth regulation and resist the emergence of transformed variants. Paradoxically, Egr1 is oncogenic in prostate cancer. In the majority of these cancers, PTEN or p53 is inactive. It is suggested that these defects in the suppressor network allow for the unopposed induction of TGFbeta1 and fibronectin, which favor transformation and survival of prostate tumor epithelial cells, and explain the role of Egr1 in prostate cancer. Egr1 is a novel and logical target for intervention by gene therapy methods, and targeting methods are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Dan Mercola
- The Burnham Institute, La Jolla, CA 92037
- The Rebecca and John Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093
- The Department of Pathology, University of California at Irvine, Irvine, CA 92697
| |
Collapse
|