1
|
Guo YX, Xu YH, Zheng GH, Jin XQ. The novel gene HA117 promotes in vitro and in vivo drug resistance in mouse colon tumor cells. Cancer Gene Ther 2017; 24:304-308. [DOI: 10.1038/cgt.2017.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 01/14/2023]
|
2
|
Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer. PLoS One 2017; 12:e0181318. [PMID: 28727740 PMCID: PMC5519161 DOI: 10.1371/journal.pone.0181318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive malignancy of the thyroid, during which undifferentiated tumors arise from the thyroid follicular epithelium. ATC has a very poor prognosis due to its aggressive behavior and poor response to conventional therapies. Gene-directed enzyme/prodrug therapy using genetically engineered mesenchymal stromal cells (MSC) is a promising therapeutic strategy. The doxycycline (DOX)-controlled Tet inducible system is the most widely utilized regulatory system and could be a useful tool for therapeutic gene-based therapies. For example, use a synthetic "tetracycline-on" switch system to control the expression of the therapeutic gene thymidine kinase, which converts prodrugs to active drugs. The aim of this study was to develop therapeutic MSCs, harboring an inducible suicide gene, and to validate therapeutic gene expression using optical molecular imaging of ATC. We designed the Tet-On system using a retroviral vector expressing herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Mouse bone marrow-derived mesenchymal stromal cells (BM-MSC) were transduced using this system with (MSC-Tet-TK/Fluc2) or without (MSC-TK/Fluc) the Tet-On system. Transduced cells were screened and characterized. Engineered MSCs were co-cultured with ATC (CAL62/Rluc) cells in the presence of the prodrug ganciclovir (GCV) and stimulated with DOX. The efficiency of cell killing monitored by assessing Rluc (CAL62/Rluc) and Fluc (MSC-Tet-TK/Fluc and MSC-TK/Fluc) activities using IVIS imaging. Fluc activity increased in MSC-Tet-TK/Fluc cells in a dose dependent manner following DOX treatment (R2 = 0.95), whereas no signal was observed in untreated cells. eGFP could also be visualized after induction with DOX, and the HSV1-TK protein could be detected by western blotting. In MSC-TK/Fluc cells, the Fluc activity increased with increasing cell number (R2 = 0.98), and eGFP could be visualized by fluorescence microscopy. The Fluc activity and cell viability of MSC-Tet-TK/Fluc and MSC-TK/Fluc cells decreased significantly following GCV treatment. A bystander effect of the therapeutic cells confirmed in co-cultures of CAL62 cells, an anaplastic thyroid cancer cell line, with either MSC-Tet-TK/Fluc cells or MSC-TK/Fluc cells. The Rluc activity in MSC-Tet-TK/Fluc co-cultures, derived from the CAL62/Rluc cells, decreased significantly with GCV treatment of DOX treated cultures, whereas no significant changes were observed in untreated cultures. In addition, the Fluc activity of MSC-Tet-TK/Fluc cells also decreased significantly with DOX treatment whereas no signal was present in untreated cultures. A bystander effect also be demonstrated in co-cultures with MSC-TK/Fluc cells and CAL62/Rluc; both the Rluc activity and the Fluc activity were significantly decreased following GCV treatment. We have successfully developed a Tet-On system of gene-directed enzyme/prodrug delivery using MSCs. We confirmed the therapeutic bystander effect in CAL62/Rluc cells with respect to MSC-Tet-TK/Fluc and MSC-TK/Fluc cells after GCV treatment with and without DOX. Our results confirm the therapeutic efficiency of a suicide gene, with or without the Tet-On system, for ATC therapy. In addition, our findings provide an innovative therapeutic approach for using the Tet-On system to eradicate tumors by simple, repeated administration of MSC-Tet-TK/Fluc cells with DOX and GCV.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| |
Collapse
|
3
|
Zeng ZJ, Xiang SG, Xue WW, Li HD, Ma N, Ren ZJ, Xu ZJ, Jiao CH, Wang CY, Hu WX. The cell death and DNA damages caused by the Tet-On regulating HSV-tk/GCV suicide gene system in MCF-7 cells. Biomed Pharmacother 2014; 68:887-92. [PMID: 25217394 DOI: 10.1016/j.biopha.2014.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/20/2014] [Indexed: 10/25/2022] Open
Abstract
Ganciclovir (GCV) affects the molecular mechanism of cell death and DNA damage by the rAAV (recombinant adeno-associated virus)-mediated Tet-On/HSV-tk/GCV suicide gene system in human breast cancer cell line MCF-7. A rAAV/TRE/Tet-On/HSV-tk combining a Tet-On regulating system and a suicide gene HSV-tk was used to transfect human breast cancer cell line MCF-7, and therapeutic effects on this system were studied. Afterwards, we used RT-PCR, western blotting, and a modified comet-assay to explore the potential mechanism of the HSV-tk/GCV suicide gene system in breast cancer treatments. MTT assay has shown that the cell number of GCV+rAAV+Dox group was significantly decreased compared with that of other groups after treatment and flow cytometric analysis detected that there was a substantial increase of S phase cells in this group, which means the HSV-tk/GCV suicide gene system probably works on the cell cycle. RT-PCR detected the expression level of p21 increased and PCNA had an opposite trend. Western blotting detected the protein expression of p21 and p53 increased and PCNA, CDK1, cyclin B decreased in GCV+rAAV+Dox group. The modified comet-assay shown that the very small extra fragments generated by the GCV+rAAV+Dox group treatment are visible as a small cloud extending from the comet in the direction of electrophoresis. The therapeutic mechanism of the HSV-tk/GCV suicide gene system on human breast cancer cell line MCF-7 is probably by upregulating the expression of p21 through a p53-dependent DNA damage signalling pathway, leading the decrease of protein expression of PCNA, cyclin B, CDK1 in MCF-7 cells and promoting the cell cycle arrest at G1/S phase. In summary, the HSV-tk/GCV suicide gene system arouses the death of MCF-7 cells from blocking the cell cycle and DNA damage.
Collapse
Affiliation(s)
- Zhao-Jun Zeng
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China; State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Sheng-Guang Xiang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Wei-Wen Xue
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China; State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Hong-De Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Nan Ma
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Zi-Jing Ren
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Zhu-Jun Xu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Chun-Hong Jiao
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Cui-Yun Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China
| | - Wei-Xin Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078, PR China.
| |
Collapse
|
4
|
Boulaiz H, Aránega A, Blanca C, Pablo A, Fernando RS, Esmeralda C, Consolación M, Jose P. A Novel Double-Enhanced Suicide Gene Therapy in a Colon Cancer Cell Line Mediated by Gef and Apoptin. BioDrugs 2013; 28:63-74. [DOI: 10.1007/s40259-013-0055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
|
6
|
Qiu QC, Hu B, He XP, Luo Q, Tang GH, Long ZF, Chen ZC, He XS. STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis. Genet Mol Biol 2012; 35:18-26. [PMID: 22481869 PMCID: PMC3313509 DOI: 10.1590/s1415-47572012005000009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
STGC3 is a potential tumor suppressor that inhibits the growth of the nasopharyngeal carcinoma cell line CNE2; the expression of this protein is reduced in nasopharyngeal carcinoma compared with normal nasopharyngeal tissue. In this study, we investigated the tumor-suppressing activity of STGC3 in nude mice injected subcutaneously with Tet/pTRE-STGC3/CNE2 cells. STGC3 expression was induced by the intraperitoneal injection of doxycycline (Dox). The volume mean of Tet/pTRE-STGC3/CNE2+Dox xenografts was smaller than that of Tet/pTRE/CNE2+Dox xenografts. In addition, Tet/pTRE-STGC3/CNE2+Dox xenografts showed an increase in the percentage of apoptotic cells, a decrease in Bcl-2 protein expression and an increase in Bax protein expression. A proteomic approach was used to assess the protein expression profile associated with STGC3-mediated apoptosis. Western blotting confirmed the differential up-regulation of prohibitin seen in proteomic analysis. These results indicate that overexpression of STGC3 inhibits xenograft growth in nude mice by enhancing apoptotic cell death through altered expression of apoptosis-related proteins such as Bcl-2, Bax and prohibitin. These data contribute to our understanding of the function of STGC3 in human nasopharyngeal carcinoma and provide new clues for investigating other STGC3-associated tumors.
Collapse
Affiliation(s)
- Qing-Chao Qiu
- Cancer Research Institute, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cheng G, Gong Q, Gai N, Xiong DH, Yu YJ, Zeng QR, Hu WX. Karyopherin alpha 2 (KPNA2) is associated with the natural resistance to Schistosoma japanicum infection in Microtus fortis. Biomed Pharmacother 2011; 65:230-7. [PMID: 21658898 DOI: 10.1016/j.biopha.2011.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022] Open
Abstract
Microtus fortis is a naturally vertebrate host resistant to Schistosoma japonicum infection. In order to understand the molecular mechanism and identify the molecules related to the natural resistance to S. japanicum infection of M. fortis, we screened a gene pool named gE76 by expression cloning and proved it to have high anti-schistosomula effects in our previous work. In this study we identified a clone named gE76.44. We found that the conditioned medium of pcDNA1.1-gE76.44 caused 14.0% schistosomula death rate in 96 h, which was significantly higher than that of negative control (P<0.05). The gE76.44 was sequenced and the full-length cDNA was 2008 bp with ORF of 1590bp encoding a polypeptide of 529 amino acid residues. Bioinformatics analysis indicated it was the homologue of karyopherin alpha 2 (KPNA2). To further confirm its anti-schistosome activity, we inserted full length of Mf-KPNA2 (KPNA2 of M. fortis) gene into a retroviral expression vector pLXSN and packaged the recombinant virus with PA317 cells. Mice infected with S. japanicum cercariae were administrated by intravenous injection through tail vein and treated with pLXSN-KPNA2. Adult worms and egg reduction were counted after heart perfusion of mice 42 d after infection. We found that compared with the control, mice injected with Mf-KPNA2 had 39.42% worm burden reduction and 76.50% reduction in LEPG (liver eggs per gram) (P<0.01), indicating its anti-schistosome effect of Mf-KPNA2 in vivo. Taken together, the results suggested Mf-KPNA2 as a novel anti-schistosome molecule in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Cheng
- Molecular biology research center, school of Biological Science and Technology, Central South university, Changsha, Hunan 410078, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Teimoori-Toolabi L, Azadmanesh K, Zeinali S. Selective suicide gene therapy of colon cancer cell lines exploiting fibroblast growth factor 18 promoter. Cancer Biother Radiopharm 2010; 25:105-16. [PMID: 20187803 DOI: 10.1089/cbr.2009.0643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor 18 (FGF18) is one of the genes downstream of Wnt, one of the most important signaling pathways activated in colon cancer. An FGF18 promoter containing a single T-cell factor/lymphocyte enhancing factor 1 (TCF/LEF1) binding site was inserted upstream of a thymidine kinase (TK) suicide gene module, while a bacterial beta-Gal (LacZ) element served as the reporter gene. Following transient transfection with pUCFGF18LacZ, beta-Gal staining showed that 5% of SW480, 10% of HCT116, 0% of human umbilical vein endothelial cells (HUVECs) and 0% of normal colon cells (NCCs) had expressed LacZ. beta-Gal enzyme-linked immunosorbent assay revealed that the ratio of pUCFGF18LacZ activity to that of positive control was 0.09 and 0.25 in SW480 and HCT116, respectively (significantly higher than mock plasmid), while there were no significant changes in the beta-Gal expression in HUVEC and NCC cells transfected with pUCFGF18LacZ or mock plasmid. Following transfection with pUCFGF18TK and pUCCMVTK (positive control), cytotoxicity analysis of transfected cells showed that treatment with ganciclovir (GCV) significantly decreased SW480 and HCT116 cell survival at GCV concentrations above 20 microg/mL. An inverse correlation between GCV concentration and cell viability was evident in both colon cancer cell lines following transfection with these suicide plasmids. pUCFGF18TK and pUCCMVTK induced apoptosis after the administration of GCV in HCT116, but not in SW480, as demonstrated by M30 cytodeath antibody. This discrepancy may stem from differences in the mechanisms of TK/GCV-induced apoptosis in p53-proficient (HCT116) and -deficient (SW480) cells. The specific activity of the FGF18 promoter in HCT116 and SW480 may reflect the advantage of this promoter over artificial promoters containing artificial TCF/LEF binding sites.
Collapse
Affiliation(s)
- Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
9
|
Gong Q, Cheng G, Qin ZQ, Xiong DH, Yu YJ, Zeng QR, Hu WX. Identification of the resistance of a novel molecule heat shock protein 90alpha (HSP90alpha) in Microtus fortis to Schistosoma japonicum infection. Acta Trop 2010; 115:220-6. [PMID: 20347650 DOI: 10.1016/j.actatropica.2010.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/14/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Microtus fortis is a naturally resistant vertebrate host of Schistosoma japonicum by preventing completion of parasite's life cycle. Sera of M. fortis were found to have anti-schistosome effect in vitro and in vivo. In order to identify genes associated with the anti-schistosome effect of M. fortis, we screened a M. fortis marrow cDNA expression library by expression cloning and identified a 331-bp clone gC14.75. It was the homologue of heat shock protein 90alpha (HSP90alpha). Full-length of M. fortis HSP90alpha gene, Mf-HSP90alpha, was amplified according to gC14.75 and Cricetulus griseus HSP90alpha. To test the potential anti-schistosome function of Mf-HSP90alpha, we prepared conditioned medium of Mf-HSP90alpha and added it to schistosomula cultured in vitro. It caused 27.0% schistosomula death rate in 96h, which was considerably higher than that of negative control. We transferred Mf-HSP90alpha by retroviral expression vector pLXSN into mice to investigate its anti-schistosome effect in vivo. Compared with those of DMEM injection control, mice injected with Mf-HSP90alpha recombinant retrovirus had 40.8% worm burden reduction and 57.9% reduction in liver eggs per gram (LEPG) indicating its anti-schistosome effect in vivo. Taken together, our results suggested Mf-HSP90alpha as a novel anti-schistosome molecule in vitro and in vivo.
Collapse
|
10
|
Teimoori-Toolabi L, Azadmanesh K, Amanzadeh A, Zeinali S. Selective suicide gene therapy of colon cancer exploiting the urokinase plasminogen activator receptor promoter. BioDrugs 2010; 24:131-46. [PMID: 20199127 DOI: 10.2165/11530840-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Colon cancer is the third and fourth most prevalent cancer among Iranian men and women, respectively. Suicide gene therapy is one of the alternative therapeutic modalities for cancer. The application of specific promoters for therapeutic genes should decrease the adverse effects of this modality. The combined aims of this study were to design a specific suicide gene therapy construct for colon cancer and study its effect in distinct representatives of transformed and nontransformed cells. The KRAS oncogene signaling pathway is one of the most important signaling pathways activated in colon cancer; therefore, we inserted the urokinase plasminogen activator receptor (uPAR; PLAUR gene) promoter as one of the upregulated promoters by this pathway upstream of a suicide gene (thymidine kinase [TK]) and a reporter gene (beta-galactosidase, beta-gal [LacZ]). This promoter is a natural combination of different motifs responsive to the RAS signaling pathway, such as the transcription factors AP1 (FOS/JUN), SP1, SP3, and AP2alpha, and nuclear factor kappa B (NFkappaB). The reporter plasmid under the control of the uPAR promoter (PUCUPARLacZ) had the ability to express beta-gal in colon cancer cells (human colon adenocarcinoma [SW480] and human colorectal carcinoma [HCT116] cell lines), while it could not express beta-gal in nontransformed human umbilical vein endothelial cells (HUVEC) and normal colon cells. After confirming the ability of pUCUPARTK (suicide plasmid) to express TK in SW480 and HCT116 cells by real-time PCR, cytotoxicity assays showed that pUCUPARTK decreased the viability of these cells in the presence of ganciclovir 20 and 40 microg/mL (and higher), respectively. Although M30 CytoDEATH antibody could not detect a significant rate of apoptosis induced by ganciclovir in pUCUPARTK-transfected HCT116 cells, the percentage of stained cells was marked in comparison with untreated cells. While this antibody could detect apoptosis in HCT116 cell line transfected with positive control plasmid, it could not detect apoptosis in SW480 cells transfected with the same positive control. This discrepancy could be attributed to the different mechanisms of TK/ganciclovir-induced apoptosis in tumor protein p53 (TP53)-expressing (HCT116) and -deficient (SW480) cells. Annexin-propidium iodide staining could detect apoptosis in treated, pUCUPARTK-transfected SW480 and HCT116 cells. This study showed that the uPAR promoter can be considered as a suitable candidate for specific suicide gene therapy of colon cancer and probably other cancers in which the RAS signaling pathway is involved in their carcinogenesis process.
Collapse
Affiliation(s)
- Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
12
|
Miyake K, Inokuchi K, Miyake N, Dan K, Shimada T. HIV vector-mediated targeted suicide gene therapy for adult T-cell leukemia. Gene Ther 2007; 14:1662-7. [PMID: 17898798 DOI: 10.1038/sj.gt.3303024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the potential efficacy of treating adult T-cell leukemia (ATL) using a gene therapeutic approach involving the use of a herpes simplex virus-thymidine kinase (HSV-TK)-mediated suicide system. Human immunodeficiency virus (HIV)-based vectors containing the HSV-TK gene were constructed to achieve targeted gene transfer into CD4-positive ATL cells, after which the transduced cells were selectively killed by treatment with ganciclovir (GCV). To examine the utility of HIV vectors in vivo, ATL-NOD-SCID mice were prepared by intraperitoneal injection of 1 x 10(7) MT2 cells into NK-depleted nonobese diabetic/severely compromised immunodeficient (NOD-SCID) mice. Thereafter, 1 ml of concentrated HIV vector expressing HSV-TK (HXCTKN) or GFP (HXGFP) stock was injected into the intraperitoneal cavity, and GCV was administered twice a day for 5 days. Fluorescence-activated cell sorting (FACS) analysis showed that 7-11% of MT2 or HUT102 cells recovered from the peritoneal cavity were transduced with the HXGFP. After 3 weeks, plasma sIL2-R alpha levels were significantly lower in mice administered HXCTKN than in those administered HXGFP. Moreover, HXCTKN-injected mice survived significantly longer than HXGFP-injected mice. Taken together, these findings suggest that HIV vectors could be used for in vivo targeted gene transfer into ATL cells and could thus serve as the basis for the development of effective new therapies for the treatment of ATL.
Collapse
Affiliation(s)
- K Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Oppermann M, Fechner H, Eberle J. Dimethyl sulfoxide enhances doxycycline-dependent protein expression in Tet-On cells. Biotechniques 2007; 42:304, 306, 308 passim. [PMID: 17390537 DOI: 10.2144/000112387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Abstract
The understanding that tumor cells can be recognized and eliminated by the immune system has led to intense interest in the development of cancer vaccines. Viruses are naturally occurring agents that cause human disease but have the potential to prevent disease when attenuated forms or subunits are used as vaccines before exposure. A large number of viruses have been engineered as attenuated vaccines for the expression of tumor antigens, immunomodulatory molecules, and as vehicles for direct destruction of tumor cells or expression of highly specific gene products. This article focuses on the major viruses that are under development as cancer vaccines, including the poxviruses, adenoviruses, adeno-associated viruses, herpesviruses, retroviruses, and lentiviruses. The biology supporting these viruses as vaccines is reviewed and clinical progress is reported.
Collapse
Affiliation(s)
- Andrew Eisenberger
- Division of Surgical Oncology and The Tumor Immunology Laboratory, Department of Surgery, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
15
|
Zi-Bo LI, Zhao-Jun ZENG, Qian CHEN, Sai-Qun LUO, Wei-Xin HU. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer. BMC Cancer 2006; 6:66. [PMID: 16539746 PMCID: PMC1463003 DOI: 10.1186/1471-2407-6-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 03/16/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HSVtk/ganciclovir (GCV) gene therapy has been extensively studied in tumors and relies largely on the gene expression of HSVtk. Most studies, however, have failed to demonstrate any significant benefit of a controlled gene expression strategy in cancer treatment. The Tet-On system is commonly used to regulate gene expression following Dox induction. We have evaluated the antitumor effect of HSVtk/ganciclovir gene therapy under Tet-On regulation by means of adeno-associated virus-2 (AAV-2)-mediated HSVtk gene transfer with direct intratumoral injections in mice bearing breast cancer tumors. METHODS Recombinant adeno-associated virus-2 (rAAV) was constructed and transduced into MCF-7 cell line. GCV treatment to the rAAV infected MCF-7 cells was performed by MTT assay under the doxycycline (Dox) induction or without Dox induction at a vp (viral particle) number of > or =10(4)/cell. The virus was administered intratumorally to nude mice that had also received GCV intraperitoneally. The antitumor effects were evaluated by measuring tumor regression and histological analysis. RESULTS We have demonstrated that GCV treatment to the infected MCF-7 cells under the Dox induction was of more inhibited effects than those without Dox induction at > or =10(4) vp/cell. In ex vivo experiments, tumor growth of BALB/C nude mice breast cancer was retarded after rAAV-2/HSVtk/Tet-On was injected into the tumors under the Dox induction. Infiltrating cells were also observed in tumors after Dox induction followed by GCV treatment and cells were profoundly damaged. The expression of HSVtk gene in MCF-7 cells and BALB/C nude mice tumors was up-regulated by Tet-On under Dox induction with reverse transcription-PCR (RT-PCR) analysis. CONCLUSION The antitumor effect of rAAV-mediated HSVtk/GCV gene therapy under the Dox induction with direct intratumoral injections may be a useful treatment for breast cancer and other solid tumors.
Collapse
Affiliation(s)
- LI Zi-Bo
- Molecular Biology Research Center, Xiangya Medical College, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, P. R. China
| | - ZENG Zhao-Jun
- Molecular Biology Research Center, Xiangya Medical College, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, P. R. China
| | - CHEN Qian
- Molecular Biology Research Center, Xiangya Medical College, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, P. R. China
| | - LUO Sai-Qun
- Molecular Biology Research Center, Xiangya Medical College, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, P. R. China
| | - HU Wei-Xin
- Molecular Biology Research Center, Xiangya Medical College, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, P. R. China
| |
Collapse
|