1
|
Cai S, Ye J, Zhang Q, Guan T, Zhang G, Zheng Z. Preparation of a new monoclonal antibody against D205R protein of African swine fever virus and identification of its linear antigenic epitope. Int J Biol Macromol 2025; 308:142116. [PMID: 40112994 DOI: 10.1016/j.ijbiomac.2025.142116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
African swine fever virus (ASFV), a highly contagious virus with a double-stranded DNA genome, is notorious for causing severe hemorrhagic fever in pigs, often leading to mortality rates as high as 100 %. First identified in Kenya in 1921, the virus has since spread globally, with a significant outbreak in China in 2018, causing extensive economic losses in the swine industry. The D205R protein (pD205R) of ASFV, classified as a non-structural protein, plays a role in the transcription of viral genes and is associated with ASFV RNA polymerase. However, the specific function of this protein remains unclear. To gain a deeper insight into the structure, function, and mechanisms of interaction between pD205R and the host, we successfully expressed the pD205R protein and generated a monoclonal antibody (mAb), designated 3G6G1, targeting this protein. The mAb 3G6G1 can be utilized for indirect immunofluorescence (IFA) and Western blotting (WB) detection of ASFV strains. Through the evaluation of the reactivity of antibodies against a series of truncated pD205R fragments, we identified the epitope recognized by mAb 3G6G1 as residing within the amino acid sequence 96 VLSKKNI 102. Bioinformatics analysis indicated that this antigenic epitope possesses a high antigenic index and is highly conserved. These findings will establish a foundation for further research into the function of the D205R protein and its role in the interaction between ASFV and its host.
Collapse
Affiliation(s)
- Siqi Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Jinyuan Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China; Wen's Food Group, Yunfu 527400, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Tong Guan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China.
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Wen's Food Group, Yunfu 527400, China.
| |
Collapse
|
2
|
Gutiérrez-Santiago F, Martínez-Fernández V, Garrido-Godino AI, Colino-Palomino C, Clemente-Blanco A, Conesa C, Acker J, Navarro F. Maf1 phosphorylation is regulated through the action of prefoldin-like Bud27 on PP4 phosphatase in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:7081-7095. [PMID: 38864693 PMCID: PMC11229332 DOI: 10.1093/nar/gkae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Bud27 is a prefoldin-like protein that participates in transcriptional regulation mediated by the three RNA polymerases in Saccharomyces cerevisiae. Lack of Bud27 significantly affects RNA pol III transcription, although the involved mechanisms have not been characterized. Here, we show that Bud27 regulates the phosphorylation state of the RNA pol III transcriptional repressor, Maf1, influences its nuclear localization, and likely its activity. We demonstrate that Bud27 is associated with the Maf1 main phosphatase PP4 in vivo, and that this interaction is required for proper Maf1 dephosphorylation. Lack of Bud27 decreases the interaction among PP4 and Maf1, Maf1 dephosphorylation, and its nuclear entry. Our data uncover a new nuclear function of Bud27, identify PP4 as a novel Bud27 interactor and demonstrate the effect of this prefoldin-like protein on the posttranslational regulation of Maf1. Finally, our data reveal a broader effect of Bud27 on PP4 activity by influencing, at least, the phosphorylation of Rad53.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética; Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética; Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
| | - Ana Isabel Garrido-Godino
- Departamento de Biología Experimental-Genética; Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
| | - Cristina Colino-Palomino
- Departamento de Biología Experimental-Genética; Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
| | | | - Christine Conesa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Joël Acker
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética; Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO). Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071. Jaén, Spain
| |
Collapse
|
3
|
Cuevas-Bermúdez A, Martínez-Fernández V, Garrido-Godino AI, Jordán-Pla A, Peñate X, Martín-Expósito M, Gutiérrez G, Govind CK, Chávez S, Pelechano V, Navarro F. The association of the RSC remodeler complex with chromatin is influenced by the prefoldin-like Bud27 and determines nucleosome positioning and polyadenylation sites usage in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194995. [PMID: 37967810 DOI: 10.1016/j.bbagrm.2023.194995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
The tripartite interaction between the chromatin remodeler complex RSC, RNA polymerase subunit Rpb5 and prefoldin-like Bud27 is necessary for proper RNA pol II elongation. Indeed lack of Bud27 alters this association and affects transcription elongation. This work investigates the consequences of lack of Bud27 on the chromatin association of RSC and RNA pol II, and on nucleosome positioning. Our results demonstrate that RSC binds chromatin in gene bodies and lack of Bud27 alters this association, mainly around polyA sites. This alteration impacts chromatin organization and leads to the accumulation of RNA pol II molecules around polyA sites, likely due to pausing or arrest. Our data suggest that RSC is necessary to maintain chromatin organization around those sites, and any alteration of this organization results in the widespread use of alternative polyA sites. Finally, we also find a similar molecular phenotype that occurs upon TOR inhibition with rapamycin, which suggests that alternative polyadenylation observed upon TOR inhibition is likely Bud27-dependent.
Collapse
Affiliation(s)
- Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Xenia Peñate
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | | | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain; Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
| |
Collapse
|
4
|
Yang Y, Zhang G, Su M, Shi Q, Chen Q. Prefoldin Subunits and Its Associate Partners: Conservations and Specificities in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:556. [PMID: 38498526 PMCID: PMC10893143 DOI: 10.3390/plants13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Prefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation. However, the specific and critical roles of prefoldins in plants have not been well summarized. In this review, we present an overview of plant prefoldin and its related proteins, summarize the structure of prefoldin/prefoldin-like complex (PFD/PFDLc), and analyze the versatile landscape by prefoldin subunits, from cytoplasm to nucleus regulation. We also focus the specific role of prefoldin-mediated phytohormone response and global plant development. Finally, we overview the emerging prefoldin-like (PFDL) subunits in plants and the novel roles in related processes, and discuss the next direction in further studies.
Collapse
Affiliation(s)
- Yi Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Gang Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Qingbiao Shi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| |
Collapse
|
5
|
Zhou J, Jiang Z, Fu L, Qu F, Dai M, Xie N, Zhang S, Wang F. Contribution of labor related gene subtype classification on heterogeneity of polycystic ovary syndrome. PLoS One 2023; 18:e0282292. [PMID: 36857354 PMCID: PMC9977056 DOI: 10.1371/journal.pone.0282292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE As one of the most common endocrine disorders in women of reproductive age, polycystic ovary syndrome (PCOS) is highly heterogeneous with varied clinical features and diverse gestational complications among individuals. The patients with PCOS have 2-fold higher risk of preterm labor which is associated with substantial infant morbidity and mortality and great socioeconomic cost. The study was designated to identify molecular subtypes and the related hub genes to facilitate the susceptibility assessment of preterm labor in women with PCOS. METHODS Four mRNA datasets (GSE84958, GSE5090, GSE43264 and GSE98421) were obtained from Gene Expression Omnibus database. Twenty-eight candidate genes related to preterm labor or labor were yielded from the researches and our unpublished data. Then, we utilized unsupervised clustering to identify molecular subtypes in PCOS based on the expression of above candidate genes. Key modules were generated with weighted gene co-expression network analysis R package, and their hub genes were generated with CytoHubba. The probable biological function and mechanism were explored through Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In addition, STRING and Cytoscape software were used to identify the protein-protein interaction (PPI) network, and the molecular complex detection (MCODE) was used to identify the hub genes. Then the overlapping hub genes were predicted. RESULTS Two molecular subtypes were found in women with PCOS based on the expression similarity of preterm labor or labor-related genes, in which two modules were highlighted. The key modules and PPI network have five overlapping five hub genes, two of which, GTF2F2 and MYO6 gene, were further confirmed by the comparison between clustering subgroups according to the expression of hub genes. CONCLUSIONS Distinct PCOS molecular subtypes were identified with preterm labor or labor-related genes, which might uncover the potential mechanism underlying heterogeneity of clinical pregnancy complications in women with PCOS.
Collapse
Affiliation(s)
- Jue Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhou Jiang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leyi Fu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minchen Dai
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ningning Xie
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FW); (SZ)
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FW); (SZ)
| |
Collapse
|
6
|
Xu GF, Gong CC, Lyu H, Deng HM, Zheng SC. Dynamic transcriptome analysis of Bombyx mori embryonic development. INSECT SCIENCE 2022; 29:344-362. [PMID: 34388292 DOI: 10.1111/1744-7917.12934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori has been extensively studied but the gene expression control of its embryonic development is unclear. In this study, we performed transcriptome profiling of six stages of B. mori embryonic development using RNA sequencing (RNA-seq). A total of 12 894 transcripts were obtained from the embryos. Of these, 12 456 transcripts were shared among the six stages, namely, fertilized egg, blastoderm, germ-band, organogenesis, reversal period, and youth period stages. There were 111, 48, 41, 54, 77, and 107 transcripts specifically expressed during the six stages, respectively. By analyzing weighted gene correlation networks and differently expressed genes, we found that during embryonic development, many genes related to DNA replication, transcription, protein synthesis, and epigenetic modifications were upregulated in the early embryos. Genes of cuticle proteins, chitin synthesis-related proteins, and neuropeptides were more abundant in the late embryos. Although pathways of juvenile hormone and the ecdysteroid 20-hydroxyecdysone, and transcription factors were expressed throughout the embryonic development stages, more regulatory pathways were highly expressed around the organogenesis stage, suggesting more gene expression for organogenesis. The results of RNA-seq were confirmed by quantitative real-time polymerase chain reaction of 16 genes of different pathways. Nucleic acid methylation and seven sites in histone H3 modifications were confirmed by dot blot and western blot. This study increases the understanding of the molecular mechanisms of the embryonic developmental process and information on the regulation of B. mori development.
Collapse
Affiliation(s)
- Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng-Cheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hui-Min Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
7
|
Martónez-Ferníndez V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2021. [DOI: 10.3934/genet.2018.1.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractRpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme.In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Veránica Martónez-Ferníndez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| |
Collapse
|
8
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
9
|
Chen S, Feng Y, Zhang B, Chen X, Wei W, Ma H. RMP promotes the proliferation and radioresistance of esophageal carcinoma. J Cancer 2019; 10:3698-3705. [PMID: 31333787 PMCID: PMC6636304 DOI: 10.7150/jca.32680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/16/2019] [Indexed: 11/11/2022] Open
Abstract
RMP is a RNA polymerase II Subunit RPB-5 associated protein shown to act as an oncogene in several cancer. However, the mechanism of the involvement of RMP in esophageal cancer (EC) remains unclear. We analyzed RMP expression in EC cell lines and EC tissues. The connection between RMP and clinical pathological features of EC was also elucidated. To investigate the role of RMP in EC, We performed CCK-8 assay to evaluate cell proliferation, and Annexin V/PI double-staining to evaluate cell apoptosis. Effect of RMP on tumor progression in nude mouse models was assessed by measurement of volume and weight of tumors. Expression of RMP, CEA and CA199 in vivo were measured by Inmunohistochemical staining. First of all, our study showed that RMP was highly expressed in EC cell lines (compared with normal cells) and tumor tissues (compare with corresponding normal tissues). Then, we found that RMP was bound up with the status of nodal and T stage which indicating that RMP may be related to the growth and malignant degree of EC. Moreover upregulation of RMP could contribute to tumor growth in vitro and vivo. In addition, the results also showed that overexpression of RMP could significantly reduce the susceptibility to radiotherapy. Taken together, all these further suggested that RMP would play a chance-promoting in EC which may provide us a powerful goal for gene targeting treatment of esophageal cancer.
Collapse
Affiliation(s)
- Shaomu Chen
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Biao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaochun Chen
- Department of Cardiothoracic surgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wenxiang Wei
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Martínez-Fernández V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2018; 5:63-74. [PMID: 31435513 PMCID: PMC6690254 DOI: 10.3934/genet.2018.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Rpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme. In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
12
|
Thomas PA, Mita P, Ha S, Logan SK. Role of the Unconventional Prefoldin Proteins URI and UXT in Transcription Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:85-94. [PMID: 30484154 DOI: 10.1007/978-3-030-00737-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Unconventional prefoldin RPB5 interacting protein (URI), also known as RPB5-Mediating Protein (RMP) has been shown to play several regulatory roles in different cellular compartments including the mitochondria, as a phosphatase binding protein; in the cytoplasm, as a chaperone-like protein; and in the nucleus, as a transcriptional regulator through binding to RPB5 and RNA polymerase II (polII). This chapter focuses on the role URI plays in transcriptional regulation in the prostate cell. In prostate cells, URI is tightly bound to another prefoldin-like protein called UXT, a known androgen receptor (AR) cofactor. Part of a multiprotein complex, URI and UXT act as transcriptional repressors, and URI regulates KAP1 through PP2A phosphatase activity. The discovery of the interaction of URI and UXT with KAP1, AR, and PP2A, as well as the numerous interactions between URI and components of the R2TP/prefoldin-like complex, RPB5, and nuclear proteins involved in DNA damage response, chromatin remodeling and gene transcription, reveal a pleiotropic effect of the URI/UXT complex on nuclear processes. The mechanisms by which URI/UXT affect transcription, chromatin structure and regulation, and genome stability, remain to be elucidated but will be of fundamental importance considering the many processes affected by alterations of URI/UXT and other prefoldins and prefoldin-like proteins.
Collapse
Affiliation(s)
- Phillip A Thomas
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA
| | - Paolo Mita
- Institute for Systems Genetics, New York University School of Medicine, New York, NY, USA
| | - Susan Ha
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA
| | - Susan K Logan
- Departments of Urology, and Biochemistry and Molecular Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Martínez-Fernández V, Garrido-Godino AI, Cuevas-Bermudez A, Navarro F. The Yeast Prefoldin Bud27. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:109-118. [PMID: 30484156 DOI: 10.1007/978-3-030-00737-9_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bud27 and its human orthologue URI (unconventional prefoldin RPB5-interactor) are members of the prefoldin (PFD) family of ATP-independent molecular chaperones binding the Rpb5 subunit to all three nuclear eukaryotic RNA polymerases (RNA pols). Bud27/URI are considered to function as a scaffold protein able to assemble additional members of the prefoldin (PDF) family in both human and yeast. Bud27 and URI are not subunits of the canonical PFD/GimC complex and not only the composition but also other functions independent of the PFD/GimC complex have been described for Bud27 and URI. Bud27 interacts only with Pfd6 but no other components of the R2TP/PFDL. Furthermore previously reported interaction between Bud27 and Pfd2 was not later confirmed. These results point to major differences in the prefoldin-like complex composition between yeast and other organisms, suggesting also important differences in functions. Furthermore, this assumption could be extended to the R2TP/PFDL complex, which has been shown to differ between different organisms and has not been identified in yeast. This casts doubt on whether Bud27 cooperation with prefoldin and other components of the R2TP/PFDL modules are required for its action. This could be extended to URI and point to a role of Bud27/URI in cell functions more relevant than this previously proposed as co-prefoldin.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ana Isabel Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Abel Cuevas-Bermudez
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
| |
Collapse
|
14
|
Mita P, Savas JN, Briggs EM, Ha S, Gnanakkan V, Yates JR, Robins DM, David G, Boeke JD, Garabedian MJ, Logan SK. URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells. J Biol Chem 2016; 291:25516-25528. [PMID: 27780869 PMCID: PMC5207251 DOI: 10.1074/jbc.m116.741660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.
Collapse
Affiliation(s)
- Paolo Mita
- From the Institute of Systems Genetics and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Jeffrey N Savas
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Erica M Briggs
- the Departments of Biochemistry and Molecular Pharmacology
| | - Susan Ha
- Urology, and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Veena Gnanakkan
- the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - John R Yates
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Diane M Robins
- the Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Gregory David
- the Departments of Biochemistry and Molecular Pharmacology
| | - Jef D Boeke
- From the Institute of Systems Genetics and
- the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
- the Departments of Biochemistry and Molecular Pharmacology
| | - Michael J Garabedian
- Urology, and
- Microbiology at New York University School of Medicine, New York, New York 10016
| | - Susan K Logan
- Urology, and
- the Departments of Biochemistry and Molecular Pharmacology
| |
Collapse
|
15
|
Vernekar DV, Bhargava P. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1340-53. [PMID: 26423792 DOI: 10.1016/j.bbagrm.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Yeast Bud27, an unconventional prefoldin is reported to affect the expression of nutrient-responsive genes, translation initiation and assembly of the multi-subunit eukaryotic RNA polymerases (pols), at a late step. We found that Bud27 associates with pol III in active as well as repressed states. Pol III transcription and occupancy at the target genes reduce with the deletion of BUD27. It promotes the interaction of pol III with the chromatin remodeler RSC found on most of the pol III targets, and with the heat shock protein Ssa4, which helps in nuclear import of the assembled pol III. Under nutrient-starvation, Ssa4-pol III interaction increases, while pol III remains inside the nucleus. Bud27 but not Ssa4 is required for RSC-pol III interaction, which reduces under nutrient-starvation. In the bud27Δ cells, total protein level of the largest pol III subunit Rpc160 but not of Rpc128, Rpc34 and Rpc53 subunits is reduced. This is accompanied by lower transcription of RPC128 gene and lower RPC160 translation due to reduced association of mRNA with the ribosomes. The resultant alteration in the normal cellular ratio of the two largest subunits of pol III core leads to reduced association of other pol III subunits and hampers the normal assembly of pol III at an early step in the cytoplasm. Our results show that Bud27 is required in multiple activities responsible for pol III biogenesis and activity.
Collapse
Affiliation(s)
- Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
16
|
Zhou Q, Huang F, Chen L, Chen E, Bai L, Cheng X, He M, Tang H. RPB5-Mediating Protein Suppresses Hepatitis B Virus (HBV) Transcription and Replication by Counteracting the Transcriptional Activation of Hepatitis B virus X Protein in HBV Replication Mouse Model. Jundishapur J Microbiol 2015; 8:e21936. [PMID: 26495109 PMCID: PMC4609327 DOI: 10.5812/jjm.21936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND RPB5-Mediating protein (RMP) is associated with the RNA polymerase II subunit RPB5. This protein functionally counteracts the transcriptional activation of Hepatitis B Virus X protein (HBx) by competitively binding to the RPB5; however, the effects of RMP on Hepatitis B virus (HBV) transcription and replication remain unknown. OBJECTIVES The purpose of this study was to investigate the effect of RMP on viral transcription and replication in vivo by using the hydrodynamic-based HBV replication mouse model. MATERIALS AND METHODS Male balb/c mice were transfected with wild type (1.2 wt) or the HBx minus HBV plasmids (1.2x (-)) with or without HBx and RMP, to establish an HBV replication mouse model by hydrodynamic injection through the tail vein. The HBV RNA and HBV DNA replication intermediates (RI) were analyzed in the liver. RESULTS RPB5-Mediating protein could inhibit HBV transcription and replication in groups transfected with the 1.2 wt and HBx. The inhibitory effect disappeared in the 1.2x (-) groups, yet it reappeared in the groups co-transfected with 1.2x (-) and HBx. An inhibitory effect was indicated at a low dose of RMP (0.3 ug, 0.5 ug and 0.7 ug) compared to the control group and groups that had received high doses of RMP. CONCLUSIONS Our study demonstrated that a low dose of RMP could inhibit HBV transcription and replication, which is dependent on the appearance of HBx in vivo.
Collapse
Affiliation(s)
- Qiaoling Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Feijun Huang
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Republic of China
| | - Lanlan Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Xing Cheng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Min He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, Republic of China
| |
Collapse
|
17
|
Mirón-García MC, Garrido-Godino AI, Martínez-Fernández V, Fernández-Pevida A, Cuevas-Bermúdez A, Martín-Expósito M, Chávez S, de la Cruz J, Navarro F. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 2014; 42:9666-76. [PMID: 25081216 PMCID: PMC4150788 DOI: 10.1093/nar/gku685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity.
Collapse
Affiliation(s)
- María Carmen Mirón-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Ana Isabel Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, E41012 Sevilla, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
18
|
Xie N, Chen X, Zhang T, Liu B, Huang C. Using proteomics to identify the HBx interactome in hepatitis B virus: how can this inform the clinic? Expert Rev Proteomics 2013; 11:59-74. [PMID: 24308553 DOI: 10.1586/14789450.2014.861745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a small and enveloped DNA virus, of which chronic infection is the main risk factor of liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus X protein (HBx) is a multifunctional protein encoded by HBV genome, which have significant effects on HBV replication and pathogenesis. Through directly interacting with cellular proteins, HBx is capable to promote HBV replication, regulate transcription of host genes, disrupt protein degradation, modulate signaling pathway, manipulate cell death and deregulate cell cycle. In this review, we briefly discuss the diversified effects of HBx-interactome and their potential clinical significances.
Collapse
Affiliation(s)
- Na Xie
- The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | |
Collapse
|
19
|
Yang S, Wang H, Guo Y, Chen S, Zhang MY, Shen J, Yu H, Miao J, Wang HY, Wei W. RMP plays distinct roles in the proliferation of hepatocellular carcinoma cells and normal hepatic cells. Int J Biol Sci 2013; 9:637-48. [PMID: 23847445 PMCID: PMC3708043 DOI: 10.7150/ijbs.6439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022] Open
Abstract
RMP has been shown to function in the transcription regulation through association with RNA polymerase (RNAP) II subunit RPB5. It also has been shown to be required for the proliferation of hepatocellular carcinoma (HCC) cells with an antiapoptotic property. In this article, we further demonstrate that RMP displays distinct features in HCC cells compared with normal hepatic cells. RMP expression is remarkably increased in various cancer cell lines including HCC cells when compared with normal cells. Depletion of RMP could inhibit the proliferation of HCC cells, but not the normal hepatic cells. RMP significantly prevented apoptosis of HCC cells in SMMC-7721 and HepG2, but had little effect on apoptosis in the normal hepatic cells. The mechanisms of RMP's distinct features rely on different responsive expressions of apoptosis factors induced by RMP in HCC and hepatic cells. Either overexpression or depletion of RMP significantly affected the expression of apoptosis factors in HCC cells. However, normal hepatic cells showed a tendency to resist RMP for the regulation of apoptosis. In the clinical samples, the increased expression of RMP in HCCs was also observed when compared with the matched non-tumor tissues from 30 HCC patients. The different expression levels of and distinct responses to RMP between HCC and hepatic cells suggest that RMP might serve as not only a biomarker for the diagnosis of HCC, but also a potential target for the HCC therapy.
Collapse
Affiliation(s)
- Sijun Yang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, 215123 China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mita P, Savas JN, Ha S, Djouder N, Yates JR, Logan SK. Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 2013; 8:e63879. [PMID: 23667685 PMCID: PMC3648552 DOI: 10.1371/journal.pone.0063879] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/09/2013] [Indexed: 12/03/2022] Open
Abstract
Unconventional prefoldin RPB5 Interactor (URI) was identified as a transcriptional repressor that binds RNA polymerase II (pol II) through interaction with the RPB5/POLR2E subunit. Despite the fact that many other proteins involved in transcription regulation have been shown to interact with URI, its nuclear function still remains elusive. Previous mass spectrometry analyses reported that URI is part of a novel protein complex called R2TP/prefoldin-like complex responsible for the cytoplasmic assembly of RNA polymerase II. We performed a mass spectrometry (MS)-based proteomic analysis to identify nuclear proteins interacting with URI in prostate cells. We identified all the components of the R2TP/prefoldin-like complex as nuclear URI interactors and we showed that URI binds and regulates RPB5 protein stability and transcription. Moreover, we validated the interaction of URI to the P53 and DNA damage-Regulated Gene 1 (PDRG1) and show that PDRG1 protein is also stabilized by URI binding. We present data demonstrating that URI nuclear/cytoplasmic shuttling is affected by compounds that stall pol II on the DNA (α-amanitin and actinomycin-D) and by leptomycin B, an inhibitor of the CRM1 exportin that mediates the nuclear export of pol II subunits. These data suggest that URI, and probably the entire R2TP/prefoldin-like complex is exported from the nucleus through CRM1. Finally we identified putative URI sites of phosphorylation and acetylation and confirmed URI sites of post-transcriptional modification identified in previous large-scale analyses the importance of which is largely unknown. However URI post-transcriptional modification was shown to be essential for URI function and therefore characterization of novel sites of URI modification will be important to the understanding of URI function.
Collapse
Affiliation(s)
- Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute-CA, La Jolla, California, United States of America
| | - Susan Ha
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
| | - Nabil Djouder
- Centro Nacional de Investigaciones Oncológicas, CNIO, Fundación Banco Bilbao Vizcaya (F-BBVA)-CNIO Cancer Cell Biology Programme, Madrid, Spain
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute-CA, La Jolla, California, United States of America
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
21
|
Mirón-García MC, Garrido-Godino AI, García-Molinero V, Hernández-Torres F, Rodríguez-Navarro S, Navarro F. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 2013; 9:e1003297. [PMID: 23459708 PMCID: PMC3573130 DOI: 10.1371/journal.pgen.1003297] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/18/2012] [Indexed: 01/22/2023] Open
Abstract
The unconventional prefoldin URI/RMP, in humans, and its orthologue in yeast, Bud27, have been proposed to participate in the biogenesis of the RNA polymerases. However, this role of Bud27 has not been confirmed and is poorly elucidated. Our data help clarify the mechanisms governing biogenesis of the three eukaryotic RNA pols. We show evidence that Bud27 is the first example of a protein that participates in the biogenesis of the three eukaryotic RNA polymerases and the first example of a protein modulating their assembly instead of their nuclear transport. In addition we demonstrate that the role of Bud27 in RNA pols biogenesis depends on Rpb5. In fact, lack of BUD27 affects growth and leads to a substantial accumulation of the three RNA polymerases in the cytoplasm, defects offset by the overexpression of RPB5. Supporting this, our data demonstrate that the lack of Bud27 affects the correct assembly of Rpb5 and Rpb6 to the three RNA polymerases, suggesting that this process occurs in the cytoplasm and is a required step prior to nuclear import. Also, our data support the view that Rpb5 and Rpb6 assemble somewhat later than the rest of the complexes. Furthermore, Bud27 Rpb5-binding but not PFD-binding domain is necessary for RNA polymerases biogenesis. In agreement, we also demonstrate genetic interactions between BUD27, RPB5, and RPB6. Bud27 shuttles between the nucleus and the cytoplasm in an Xpo1-independent manner, and also independently of microtubule polarization and possibly independently of its association with the RNA pols. Our data also suggest that the role of Bud27 in RNA pols biogenesis is independent of the chaperone prefoldin (PFD) complex and of Iwr1. Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis. The mechanisms governing the assembly and the transport of the three eukaryotic RNA polymerases to the nucleus are in discussion. Interesting papers have demonstrated the participation of some proteins in the assembly of the nuclear RNA polymerases and in their transport to the nucleus, but the mechanisms involved are poorly understood. Our data help clarify the mechanisms governing biogenesis of the three eukaryotic RNA pols and demonstrate that the prefoldin Bud27 of Saccharomyces cerevisiae mediates the correct assembly of the three complexes prior to their translocation to the nucleus, in a process which is dependent on Rpb5. In addition, our data support the view that, during the assembly of the RNA pols, Rpb5 and Rpb6 assemble rather late compared to the rest of the complexes. Furthermore, this role of Bud27 seems to be specific, as it is not extended to other prefoldin members. Finally, the role of Bud27 seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis.
Collapse
Affiliation(s)
- María Carmen Mirón-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ana Isabel Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Varinia García-Molinero
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression Coupled with RNA Transport Laboratory, Valencia, Spain
| | - Francisco Hernández-Torres
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Susana Rodríguez-Navarro
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression Coupled with RNA Transport Laboratory, Valencia, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
- * E-mail:
| |
Collapse
|
22
|
General Transcription Factor IIB Overexpression and a Potential Link to Proliferation in Human Hepatocellular Carcinoma. Pathol Oncol Res 2012; 19:195-203. [DOI: 10.1007/s12253-012-9569-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 08/15/2012] [Indexed: 01/24/2023]
|
23
|
Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 2011; 31:3639-52. [PMID: 21730289 DOI: 10.1128/mcb.05429-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes.
Collapse
|
24
|
Yang H, Gu J, Zheng Q, Li M, Lian X, Miao J, Jiang J, Wei W. RPB5-mediating protein is required for the proliferation of hepatocellular carcinoma cells. J Biol Chem 2011; 286:11865-74. [PMID: 21310960 DOI: 10.1074/jbc.m110.136929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RPB5-mediating protein (RMP) is associated with the RNA polymerase II subunit RPB5. RMP functionally counteracts the transcriptional activation of hepatitis B virus X protein that has been shown to play a role in the development of hepatocellular carcinoma (HCC). However, the effect of RMP on the growth of HCC remains unclear. In this study, we characterized the potential role of RMP in the proliferation of human HCC cells using two cell lines, SMMC-7721 and HepG2. We found that RMP expression increased when HCC cells were treated with (60)Co γ-irradiation. Cell growth and colony formation assays suggest that RMP plays an antiapoptotic role in the proliferation and growth of HCC cells. We also show that RMP depletion induced the G(2) arrest of HCC cells characterized by the decreased expression of Cdk1 and Cyclin B. Tumor formation assays further confirmed the in vivo requirement of RMP during HCC growth. In conclusion, our results demonstrate that RMP is a radiation-sensitive factor, and it may play essential roles in HCC growth by affecting the proliferation and apoptosis of HCC cells.
Collapse
Affiliation(s)
- Huicui Yang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
More than 30 years of research on nuclear RNA polymerases (RNAP I, II, and III) has uncovered numerous factors that regulate the activity of these enzymes during the transcription reaction. However, very little is known about the machinery that regulates the fate of RNAPs before or after transcription. In particular, the mechanisms of biogenesis of the 3 nuclear RNAPs, which comprise both common and specific subunits, remains mostly uncharacterized and the proteins involved are yet to be discovered. Using protein affinity purification coupled to mass spectrometry (AP-MS), we recently unraveled a high-density interaction network formed by nuclear RNAP subunits from the soluble fraction of human cell extracts. Validation of the dataset using a machine learning approach trained to minimize the rate of false positives and false negatives yielded a high-confidence dataset and uncovered novel interactors that regulate the RNAP II transcription machinery, including a set of proteins we named the RNAP II-associated proteins (RPAPs). One of the RPAPs, RPAP3, is part of an 11-subunit complex we termed the RPAP3/R2TP/prefoldin-like complex. Here, we review the literature on the subunits of this complex, which points to a role in nuclear RNAP biogenesis.
Collapse
Affiliation(s)
- Philippe Cloutier
- Laboratory of Gene Transcription and Proteomics, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Benoit Coulombe
- Laboratory of Gene Transcription and Proteomics, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
26
|
Feig M, Burton ZF. RNA polymerase II flexibility during translocation from normal mode analysis. Proteins 2010; 78:434-46. [PMID: 19714773 DOI: 10.1002/prot.22560] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The structural dynamics in eukaryotic RNA polymerase II (RNAPII) is described from computational normal mode analysis based on a series of crystal structures of pre- and post-translocated states with open and closed trigger loops. Conserved modes are identified that involve translocation of the nucleic acid complex coupled to motions of the enzyme, in particular in the clamp and jaw domains of RNAPII. A combination of these modes is hypothesized to be involved during active transcription. The NMA modes indicate furthermore that downstream DNA translocation may occur separately from DNA:RNA hybrid translocation. A comparison of the modes between different states of RNAPII suggests that productive translocation requires an open trigger loop and is inhibited by the presence of an NTP in the active site. This conclusion is also supported by a comparison of the overall flexibility in terms of root mean square fluctuations.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
27
|
Kang BG, Shin JH, Yi JK, Kang HC, Lee JJ, Heo HS, Chae JH, Shin I, Kim CG. Corepressor MMTR/DMAP1 is involved in both histone deacetylase 1- and TFIIH-mediated transcriptional repression. Mol Cell Biol 2007; 27:3578-88. [PMID: 17371848 PMCID: PMC1899998 DOI: 10.1128/mcb.01808-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.
Collapse
Affiliation(s)
- Bong Gu Kang
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leung SY, Ho C, Tu IP, Li R, So S, Chu KM, Yuen ST, Chen X. Comprehensive analysis of 19q12 amplicon in human gastric cancers. Mod Pathol 2006; 19:854-63. [PMID: 16575401 DOI: 10.1038/modpathol.3800593] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amplification at 19q12 has been observed in multiple tumor types, while cyclin E1 (CCNE1) has been considered to be the key oncogene within this amplicon. We have previously applied cDNA microarray analysis to systematically characterize gene expression patterns of gastric tumor and nontumor samples. We identified a cluster of five tightly coregulated genes all located at chromosome 19q12, including CCNE1. We found that the 19q12 gene cluster is highly expressed in gastric tumors compared to nontumor gastric samples. Array based comparative genomic hybridization and real-time PCR was used to define the boundary of the 19q12 amplicon to a region of approximately 200 kb. Interestingly, we found that in some cases amplification at 19q12 was not associated with DNA copy number gain at CCNE1, suggesting that some other genes within the 19q12 amplicon may also have important function during gastric tumorigenesis. We found high expression of the 19q12 gene cluster to be statistically correlated with the cell proliferation gene signature. Using the SAM software, we identified a set of 577 genes whose expression levels positively correlated with the 19q12 gene cluster. GO term analysis revealed that this genelist is enriched with genes involved in cell cycle regulation and cell proliferation. In conclusion, expression array analysis combined with array comparative genomic hybridization and real-time PCR provides a new and powerful tool to identify clusters of genes which may be regulated by genomic DNA aberrations. In addition, our study indicates that amplification at 19q12 is associated with cell proliferation in vivo.
Collapse
Affiliation(s)
- Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|