1
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
2
|
Gujar R, Maurya N, Yadav V, Gupta M, Arora S, Khatri N, Sen P. c-Src Suppresses Dendritic Cell Antitumor Activity via T Cell Ig and Mucin Protein-3 Receptor. THE JOURNAL OF IMMUNOLOGY 2016; 197:1650-62. [PMID: 27439518 DOI: 10.4049/jimmunol.1600104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
The enhanced expression of T cell Ig and mucin protein-3 (TIM-3) on tumor-associated dendritic cells (DCs) attenuates antitumor effects of DNA vaccines. To identify a potential target (or targets) for reducing TIM-3 expression on tumor-associated DCs, we explored the molecular mechanisms regulating TIM-3 expression. In this study, we have identified a novel signaling pathway (c-Src→Bruton's tyrosine kinase→transcription factors Ets1, Ets2, USF1, and USF2) necessary for TIM-3 upregulation on DCs. Both IL-10 and TGF-β, which are produced in the tumor microenvironment, upregulated TIM-3 expression on DCs via this pathway. Suppressed expression of c-Src or downstream Bruton's tyrosine kinase, Ets1, Ets2, USF1, or USF2 blocked IL-10- and TGF-β-induced TIM-3 upregulation on DCs. Notably, in vivo knockdown of c-Src in mice reduced TIM-3 expression on tumor-associated DCs. Furthermore, adoptive transfer of c-Src-silenced DCs in mouse tumors enhanced the in vivo antitumor effects of immunostimulatory CpG DNA; however, TIM-3 overexpression in c-Src-silenced DCs blocked this effect. Collectively, our data reveal the molecular mechanism regulating TIM-3 expression in DCs and identify c-Src as a target for improving the efficacy of nucleic acid-mediated anticancer therapy.
Collapse
Affiliation(s)
- Ravindra Gujar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Neeraj Maurya
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Vinod Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Mamta Gupta
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Saurabh Arora
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Neeraj Khatri
- Division of Animal Facility, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
| | - Pradip Sen
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| |
Collapse
|
3
|
Tzenov YR, Andrews PG, Voisey K, Popadiuk P, Xiong J, Popadiuk C, Kao KR. Human papilloma virus (HPV) E7-mediated attenuation of retinoblastoma (Rb) induces hPygopus2 expression via Elf-1 in cervical cancer. Mol Cancer Res 2013; 11:19-30. [PMID: 23284001 DOI: 10.1158/1541-7786.mcr-12-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is the etiologic agent of cervical cancer. In this study, we provide evidence for the human Pygopus (hPygo)2 gene as a cellular biomarker for HPV-related disease. In a tumor microarray of cervical cancer progression, hPygo2 levels were greater in high-grade lesions and squamous cell carcinomas than in normal epithelia. Similarly, hPygo2 mRNA and protein levels were greater in HPV-positive cervical cancer cells relative to uninfected primary cells. RNA interference (RNAi)-mediated depletion of HPV-E7 increased whereas E74-like factor (Elf)-1 RNAi decreased association of Retinoblastoma (Rb) tumor suppressor with the hPygo2 promoter in cervical cancer cell lines. Transfection of dominant-active Rb inhibited Elf-1-dependent activation of hPygo2, whereas Elf-1 itself increased hPygo2 expression. Chromatin immunoprecipitation assays showed that Rb repressed hPygo2 by inhibiting Elf-1 at the Ets-binding site in the hPygo2 promoter. These results suggested that abrogation of Rb by E7 resulted in derepression of Elf-1, which in turn stimulated expression of hPygo2. Thus, initiation of hPygo2 expression by Elf-1 was required for proliferation of cervical cancer cells and its expression therefore may act as a surrogate marker for dysplasia.
Collapse
Affiliation(s)
- Youlian R Tzenov
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang V, Davis DA, Veeranna RP, Haque M, Yarchoan R. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor-2 alpha. PLoS One 2010; 5:e9641. [PMID: 20224786 PMCID: PMC2835759 DOI: 10.1371/journal.pone.0009641] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Hypoxia inducible factors (HIFs) are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1). PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis. Methodology/Principal Findings To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets) factor that can bind to HIF-2α but not HIF-1α, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region. Conclusions/Significance These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.
Collapse
Affiliation(s)
- Victoria Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ravindra P. Veeranna
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Muzammel Haque
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
XIE HL, CHEN ZC, LI JH, ZENG LW, TAN GH. Characterization of Key Regulatory Elements of LCRG1 Promoter*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wu Y, He Y, Zhang H, Dai X, Zhou X, Gu J, Wang G, Zhu J. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model. J Genet Genomics 2008; 35:431-9. [DOI: 10.1016/s1673-8527(08)60060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/17/2022]
|