1
|
Je M, Kang K, Yoo JI, Kim Y. The Influences of Macronutrients on Bone Mineral Density, Bone Turnover Markers, and Fracture Risk in Elderly People: A Review of Human Studies. Nutrients 2023; 15:4386. [PMID: 37892460 PMCID: PMC10610213 DOI: 10.3390/nu15204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a health condition that involves weak bone mass and a deteriorated microstructure, which consequently lead to an increased risk of bone fractures with age. In elderly people, a fracture attributable to osteoporosis elevates mortality. The objective of this review was to examine the effects of macronutrients on bone mineral density (BMD), bone turnover markers (BTMs), and bone fracture in elderly people based on human studies. A systematic search was conducted in the PubMed®/MEDLINE® database. We included human studies published up to April 2023 that investigated the association between macronutrient intake and bone health outcomes. A total of 11 meta-analyses and 127 individual human studies were included after screening the records. Carbohydrate consumption seemed to have neutral effects on bone fracture in limited studies, but human studies on carbohydrates' effects on BMD or/and BTMs are needed. The human studies analyzed herein did not clearly show whether the intake of animal, vegetable, soy, or milk basic proteins has beneficial effects on bone health due to inconsistent results. Moreover, several individual human studies indicated an association between eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and osteocalcin. Further studies are required to draw a clear association between macronutrients and bone health in elderly people.
Collapse
Affiliation(s)
- Minkyung Je
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Kyeonghoon Kang
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, 27 Inhang-Ro, Incheon 22332, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Khalooeifard R, Oraee-Yazdani S, Keikhaee M, Shariatpanahi ZV. Protein Supplement and Enhanced Recovery After Posterior Spine Fusion Surgery: A Randomized, Double-blind, Placebo-controlled Trial. Clin Spine Surg 2022; 35:E356-E362. [PMID: 34379607 DOI: 10.1097/bsd.0000000000001222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN This was a randomized, double-blind clinical trial study. OBJECTIVE The objective of this study was to evaluate the effect of protein supplementation on vertebral fusion and enhanced recovery after posterior spine fusion (PSF) surgery. SUMMARY OF BACKGROUND DATA Nonfusion is one of the most common complications of lumbar spine surgery. It has been shown that protein plays an important role in bone repair; however, its correlation to vertebral fusion following PSF surgery is unknown. PATIENTS AND METHODS In this randomized, double-blind clinical trial study, the intervention group received a diet with 1.2 g of protein plus high-protein supplement (36 g whey protein), and the control group received a similar diet, except for starch as a placebo from 48 hours before to 1 month after surgery. RESULTS The intervention group showed a significantly higher rate of vertebral fusion compared with the control group (P=0.019). Surgical site infection and pain were significantly lower in the intervention group. A significant difference was found in the wound healing rate in favor of the intervention group. The rates of decrease in serum high-sensitivity C-reactive protein levels and increase in serum levels of insulin-like growth factor 1, albumin, total protein, and alkaline phosphatase were greater in the intervention group than in the control group (P<0.001). CONCLUSIONS Increased protein intake improves vertebral fusion and enhances recovery in patients undergoing PSF. This was the first study to investigate the effect of protein on fusion and healing factors; as a result, further clinical trials are needed to confirm the current results.
Collapse
Affiliation(s)
- Razieh Khalooeifard
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences
| | - Saeed Oraee-Yazdani
- Shohada Tajrish Neurosurgical Center of Excellence, Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Keikhaee
- Shohada Tajrish Neurosurgical Center of Excellence, Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahdat Shariatpanahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
3
|
How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022; 11:foods11040528. [PMID: 35206005 PMCID: PMC8871094 DOI: 10.3390/foods11040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.
Collapse
|
4
|
Darling AL, Manders RJF, Sahni S, Zhu K, Hewitt CE, Prince RL, Millward DJ, Lanham-New SA. Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int 2019; 30:741-761. [PMID: 30903209 DOI: 10.1007/s00198-019-04933-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
We undertook a systematic review and meta-analysis of published papers assessing dietary protein and bone health. We found little benefit of increasing protein intake for bone health in healthy adults but no indication of any detrimental effect, at least within the protein intakes of the populations studied. This systematic review and meta-analysis analysed the relationship between dietary protein and bone health across the life-course. The PubMed database was searched for all relevant human studies from the 1st January 1976 to 22nd January 2016, including all bone outcomes except calcium metabolism. The searches identified 127 papers for inclusion, including 74 correlational studies, 23 fracture or osteoporosis risk studies and 30 supplementation trials. Protein intake accounted for 0-4% of areal BMC and areal BMD variance in adults and 0-14% of areal BMC variance in children and adolescents. However, when confounder adjusted (5 studies) adult lumbar spine and femoral neck BMD associations were not statistically significant. There was no association between protein intake and relative risk (RR) of osteoporotic fractures for total (RR(random) = 0.94; 0.72 to 1.23, I2 = 32%), animal (RR (random) = 0.98; 0.76 to 1.27, I2 = 46%) or vegetable protein (RR (fixed) = 0.97 (0.89 to 1.09, I2 = 15%). In total protein supplementation studies, pooled effect sizes were not statistically significant for LSBMD (total n = 255, MD(fixed) = 0.04 g/cm2 (0.00 to 0.08, P = 0.07), I2 = 0%) or FNBMD (total n = 435, MD(random) = 0.01 g/cm2 (-0.03 to 0.05, P = 0.59), I2 = 68%). There appears to be little benefit of increasing protein intake for bone health in healthy adults but there is also clearly no indication of any detrimental effect, at least within the protein intakes of the populations studied (around 0.8-1.3 g/Kg/day). More studies are urgently required on the association between protein intake and bone health in children and adolescents.
Collapse
Affiliation(s)
- A L Darling
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - R J F Manders
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - S Sahni
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre St, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - K Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - C E Hewitt
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - R L Prince
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - D J Millward
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - S A Lanham-New
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
5
|
Zhang L, Zhang S, Song H, Li B. Effect of Collagen Hydrolysates from Silver Carp Skin ( Hypophthalmichthys molitrix) on Osteoporosis in Chronologically Aged Mice: Increasing Bone Remodeling. Nutrients 2018; 10:nu10101434. [PMID: 30287779 PMCID: PMC6212965 DOI: 10.3390/nu10101434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is a common skeletal disorder in humans and gelatin hydrolysates from mammals have been reported to improve osteoporosis. In this study, 13-month-old mice were used to evaluate the effects of collagen hydrolysates (CHs) from silver carp skin on osteoporosis. No significant differences were observed in mice body weight, spleen or thymus indices after daily intake of antioxidant collagen hydrolysates (ACH; 200 mg/kg body weight (bw) (LACH), 400 mg/kg bw (MACH), 800 mg/kg bw (HACH)), collagenase hydrolyzed collagen hydrolysates (CCH) or proline (400 mg/kg body weight) for eight weeks, respectively. ACH tended to improve bone mineral density, increase bone hydroxyproline content, enhance alkaline phosphatase (ALP) level and reduce tartrate-resistant acid phosphatase 5b (TRAP-5b) activity in serum, with significant differences observed between the MACH and model groups (p < 0.05). ACH exerted a better effect on osteoporosis than CCH at the identical dose, whereas proline had no significant effect on repairing osteoporosis compared to the model group. Western blotting results demonstrated that CHs mainly increased bone remodeling by stimulating the transforming growth factor β1 (TGF-β1)/Smad signaling pathway and improving the interaction between collagen and α2β1 integrin. The results indicated that CHs from fish could be applied to alleviate osteoporosis or treat bone loss.
Collapse
Affiliation(s)
- Ling Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Siqi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongdong Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Bo Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing 100083, China.
| |
Collapse
|
6
|
Van Elswyk ME, Weatherford CA, McNeill SH. A Systematic Review of Renal Health in Healthy Individuals Associated with Protein Intake above the US Recommended Daily Allowance in Randomized Controlled Trials and Observational Studies. Adv Nutr 2018; 9:404-418. [PMID: 30032227 PMCID: PMC6054213 DOI: 10.1093/advances/nmy026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/10/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
A systematic review was used to identify randomized controlled trials (RCTs) and observational epidemiologic studies (OBSs) that examined protein intake consistent with either the US RDA (0.8 g/kg or 10-15% of energy) or a higher protein intake (≥20% but <35% of energy or ≥10% higher than a comparison intake) and reported measures of kidney function. Studies (n = 26) of healthy, free-living adults (>18 y old) with or without metabolic disease risk factors were included. Studies of subjects with overt disease, such as chronic kidney, end-stage renal disease, cancer, or organ transplant, were excluded. The most commonly reported variable was glomerular filtration rate (GFR), with 13 RCTs comparing GFRs obtained with normal and higher protein intakes. Most (n = 8), but not all (n = 5), RCTs reported significantly higher GFRs in response to increased protein intake, and all rates were consistent with normal kidney function in healthy adults. The evidence from the current review is limited and inconsistent with regard to the role of protein intake and the risk of kidney stones. Increased protein intake had little or no effect on blood markers of kidney function. Evidence reported here suggests that protein intake above the US RDA has no adverse effect on blood pressure. All included studies were of moderate to high risk of bias and, with the exception of 2 included cohorts, were limited in duration (i.e. <6 mo). Data in the current review are insufficient to determine if increased protein intake from a particular source, i.e., plant or animal, influences kidney health outcomes. These data further indicate that, at least in the short term, higher protein intake within the range of recommended intakes for protein is consistent with normal kidney function in healthy individuals.
Collapse
|
7
|
Antonio J, Ellerbroek A, Evans C, Silver T, Peacock CA. High protein consumption in trained women: bad to the bone? J Int Soc Sports Nutr 2018; 15:6. [PMID: 29434529 PMCID: PMC5793405 DOI: 10.1186/s12970-018-0210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background It has been posited that the consumption of extra protein (> 0.8 g/kg/d) may be deleterious to bone mineral content. However, there is no direct evidence to show that consuming a high-protein diet results in a demineralization of the skeleton. Thus, the primary endpoint of this randomized controlled trial was to determine if a high-protein diet affected various parameters of whole body and lumbar bone mineral content in exercise-trained women. Methods Twenty-four women volunteered for this 6-month investigation (n = 12 control, n = 12 high-protein). The control group was instructed to consume their habitual diet; however, the high-protein group was instructed to consume ≥2.2 g of protein per kilogram body weight daily (g/kg/d). Body composition was assessed via dual-energy x-ray absorptiometry (DXA). Subjects were instructed to keep a food diary via the mobile app MyFitnessPal®. Exercise or activity level was not controlled. Subjects were asked to maintain their current levels of exercise. Results During the 6-month treatment period, there was a significant difference in protein intake between the control and high-protein groups (mean±SD; control: 1.5±0.3, high-protein: 2.8±1.1 g/kg/d); however, there were no differences in the consumption total calories, carbohydrate or fat. Whole body bone mineral density did not change in the control (pre: 1.22±0.08, post: 1.22±0.09 g/cm2) or high-protein group (pre: 1.25±0.11, post: 1.24±0.10 g/cm2). Similarly, lumbar bone mineral density did not change in the control (pre: 1.08±0.16, post: 1.05±0.13 g/cm2) or high-protein group (pre: 1.07±0.11, post: 1.08±0.12 g/cm2). In addition, there were no changes in whole body or lumbar T-Scores in either group. Furthermore, there were no changes in fat mass or lean body mass. Conclusion Despite an 87% higher protein intake (high-protein versus control), 6 months of a high-protein diet had no effect on whole body bone mineral density, lumbar bone mineral density, T-scores, lean body mass or fat mass.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Anya Ellerbroek
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Cassandra Evans
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Tobin Silver
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| | - Corey A Peacock
- Department of Health and Human Performance, Nova Southeastern University, 3401 South University Drive, Davie, FL 33328 USA
| |
Collapse
|
8
|
Koutsofta I, Mamais I, Chrysostomou S. The effect of protein diets in postmenopausal women with osteoporosis: Systematic review of randomized controlled trials. J Women Aging 2018; 31:117-139. [DOI: 10.1080/08952841.2018.1418822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Koutsofta
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis Mamais
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavri Chrysostomou
- Department of Life Sciences, School of Science, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Wallace TC, Frankenfeld CL. Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2017; 36:481-496. [PMID: 28686536 DOI: 10.1080/07315724.2017.1322924] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary intake of protein is fundamental for optimal acquisition and maintenance of bone across all life stages; however, it has been hypothesized that intakes above the current recommended dietary allowance (RDA) might be beneficial for bone health. We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines when preparing and reporting this systematic review and meta-analysis. A literature search strategy through April 11, 2017, was developed for the following 3 databases: PubMed, Ovid Medline, and Agricola. Included studies were those randomized controlled trials and prospective cohort studies among healthy adults ages 18 and older that examined the relationships between varying doses of protein intake at or above the current U.S. RDA (0.8 g/kg/d or 10%-15% of total caloric intake) from any source on fracture, bone mineral density (BMD)/bone mineral content (BMC), and/or markers of bone turnover. Twenty-nine articles were included for data extraction (16 randomized controlled trials [RCTs] and 13 prospective cohort studies). Meta-analysis of the prospective cohort studies showed high vs low protein intakes resulted in a statistically significant 16% decrease in hip fractures (standardized mean difference [SMD] = 0.84, 95% confidence interval [CI], 0.73, 0.95; I2 = 36.8%). Data from studies included in these analyses collectively lean toward the hypothesis that protein intake above the current RDA is beneficial to BMD at several sites. This systematic review supports that protein intakes above the current RDA may have some beneficial role in preventing hip fractures and BMD loss. There were no differences between animal or plant proteins, although data in this area were scarce. Larger, long-term, and more well-controlled clinical trials measuring fracture outcomes and BMD are needed to adequately assess whether protein intake above the current RDA is beneficial as a preventative measure and/or intervention strategy for osteoporosis. Key teaching points: • • Bone health is a multifactorial musculoskeletal issue, and optimal protein intakes are key in developing and maintaining bone throughout the life span. • • Dietary protein at levels above the current RDA may be beneficial in preventing hip fractures and BMD loss. • • Plant vs animal proteins do not seem to differ in their ability to prevent bone loss; however, data in this area are scarce. • • Larger, long-term RCTs using women not using hormone replacement therapy (HRT) are needed to adequately assess the magnitude of impact that protein intakes above the RDA have on preventing bone loss.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax , Virginia , USA.,b Think Healthy Group, Inc. , Washington , DC
| | - Cara L Frankenfeld
- c Department of Global and Community Health , George Mason University , Fairfax , Virginia , USA
| |
Collapse
|
10
|
Omi N. Influence of exercise and sports on bone. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Hydrolyzed collagen intake increases bone mass of growing rats trained with running exercise. J Int Soc Sports Nutr 2013; 10:35. [PMID: 23914839 PMCID: PMC3750261 DOI: 10.1186/1550-2783-10-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023] Open
Abstract
Background Some studies have shown that dietary hydrolyzed collagen peptides (HC) effectively prevent age-related bone loss. However, it is not known whether the intake of HC also has positive effect on bone mass or strength when combined with exercise during growth phase. Methods We examined the effects of 11 weeks of HC intake and running exercise on bone mass and strength in growing rats. Rats were randomized into four groups, the 20% casein group (Casein20), the 40% casein group (Casein40), the 20% HC group (HC20), and the 40% HC group (HC40). Each group was further divided into exercise groups (Casein20 + Ex, Casein40 + Ex, HC20 + Ex, HC40 + Ex) and non-exercise group (Casein20, Casein40, HC20, HC40). In the HC intake groups, 30% of casein protein was replaced with HC. Exercise group rats were trained 6 days per week on a treadmill (25–30 m/min, 60 min) for 60 days. After being sacrificed, their bone mineral content (BMC) and bone strength were evaluated. Results Exercise and dietary HC effects were observed in the adjusted BMC of lumbar spine and tibia among the 20% protein groups (p < 0.001 for exercise; p < 0.05 for dietary HC, respectively). These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively). On the other hand, in adjusted bone breaking force and energy, dietary HC effect was not significant. Among the 40% protein groups, similar results were obtained in the adjusted BMC, femoral weight, bone breaking force, and energy. There were no differences between the 20% protein groups and the 40% protein groups. Conclusions The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise. On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.
Collapse
|
12
|
Jones J. Wheat Belly—An Analysis of Selected Statements and Basic Theses from the Book. CEREAL FOOD WORLD 2012. [DOI: 10.1094/cfw-57-4-0177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- J. Jones
- St. Catherine University, St. Paul, MN, U.S.A
| |
Collapse
|
13
|
Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, Schünemann HJ. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr 2012; 66:780-8. [PMID: 22510792 PMCID: PMC3392894 DOI: 10.1038/ejcn.2012.37] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Numerous randomised controlled trials (RCTs) published in first tier medical journals have evaluated the health effects of diets high in protein. We conducted a rigorous systematic review of RCTs comparing higher- and lower-protein diets. METHODS We searched several electronic databases up to July 2011 for studies focusing on patient-important outcomes (for example, cardiovascular disease) and secondary outcomes such as risk factors for chronic disease (for example, adiposity). RESULTS We identified 111 articles reporting on 74 trials. Pooled effect sizes using standardised mean differences (SMDs) were small to moderate and favoured higher-protein diets for weight loss (SMD -0.36, 95% confidence interval (CI) -0.56 to -0.17), body mass index (-0.37, CI -0.56 to 0.19), waist circumference (-0.43, CI -0.69 to -0.16), blood pressure (systolic: -0.21, CI -0.32 to -0.09 and diastolic: -0.18, CI -0.29 to -0.06), high-density lipoproteins (HDL 0.25, CI 0.07 to 0.44), fasting insulin (-0.20, CI -0.39 to -0.01) and triglycerides (-0.51, CI -0.78 to -0.24). Sensitivity analysis of studies with lower risk of bias abolished the effect on HDL and fasting insulin, and reduced the effect on triglycerides. We observed nonsignificant effects on total cholesterol, low-density lipoproteins, C-reactive protein, HbA1c, fasting blood glucose, and surrogates for bone and kidney health. Adverse gastrointestinal events were more common with high-protein diets. Multivariable meta-regression analysis showed no significant dose response with higher protein intake. CONCLUSIONS Higher-protein diets probably improve adiposity, blood pressure and triglyceride levels, but these effects are small and need to be weighed against the potential for harms.
Collapse
Affiliation(s)
- N Santesso
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J 2011; 10:41. [PMID: 21529374 PMCID: PMC3114717 DOI: 10.1186/1475-2891-10-41] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 04/30/2011] [Indexed: 01/19/2023] Open
Abstract
Background Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Methods Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Results Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. Conclusions A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health.
Collapse
Affiliation(s)
- Tanis R Fenton
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|
15
|
Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr 2009; 90:1674-92. [PMID: 19889822 DOI: 10.3945/ajcn.2009.27799] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There has been a resurgence of interest in the controversial relation between dietary protein and bone health. OBJECTIVE This article reports on the first systematic review and meta-analysis of the relation between protein and bone health in healthy human adults. DESIGN The MEDLINE (January 1966 to September 2007) and EMBASE (1974 to July 2008) databases were electronically searched for all relevant studies of healthy adults; studies of calcium excretion or calcium balance were excluded. RESULTS In cross-sectional surveys, all pooled r values for the relation between protein intake and bone mineral density (BMD) or bone mineral content at the main clinically relevant sites were significant and positive; protein intake explained 1-2% of BMD. A meta-analysis of randomized placebo-controlled trials indicated a significant positive influence of all protein supplementation on lumbar spine BMD but showed no association with relative risk of hip fractures. No significant effects were identified for soy protein or milk basic protein on lumbar spine BMD. CONCLUSIONS A small positive effect of protein supplementation on lumbar spine BMD in randomized placebo-controlled trials supports the positive association between protein intake and bone health found in cross-sectional surveys. However, these results were not supported by cohort study findings for hip fracture risk. Any effects found were small and had 95% CIs that were close to zero. Therefore, there is a small benefit of protein on bone health, but the benefit may not necessarily translate into reduced fracture risk in the long term.
Collapse
Affiliation(s)
- Andrea L Darling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Bulló M, Amigó-Correig P, Márquez-Sandoval F, Babio N, Martínez-González MA, Estruch R, Basora J, Solà R, Salas-Salvadó J. Mediterranean diet and high dietary acid load associated with mixed nuts: effect on bone metabolism in elderly subjects. J Am Geriatr Soc 2009; 57:1789-1798. [PMID: 19807791 DOI: 10.1111/j.1532-5415.2009.02481.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To analyze the effect of differing diet on the acid load content on bone metabolism. DESIGN Multicentric, randomized, single-blind, parallel-group clinical trial. SETTING Outpatient clinics. PARTICIPANTS Two hundred thirty-eight elderly men and women aged 60 to 80 at high risk for cardiovascular disease were randomly assigned to three interventional groups: a recommended low-fat diet (control diet group), a Mediterranean diet supplemented with virgin olive oil, or a Mediterranean diet supplemented with mixed nuts. MEASUREMENTS Main outcomes were 12-month changes from baseline in bone formation and resorption markers and bone mass measured according to quantitative ultrasound scanning. RESULTS The baseline data on the anthropometric, bone densitometry, and biochemical variables did not differ between the three groups. Dietary potential renal acid load (PRAL) and daily net endogenous acid production (NEAP) at baseline did not differ between groups. After intervention, subjects allocated to the Mediterranean diet with mixed nuts had a significant increase of PRAL and NEAP. In comparison, subjects in the Mediterranean diet with nuts group had higher parathyroid hormone (PTH) levels (2.63, 95% confidence interval (CI)=-1.01-6.35, P=.02) and a nonsignificantly higher (0.31, 95% CI=-0.13-0.74, P=.14) urine free deoxypyridoxine:creatinine ratio, a marker of bone resorption, than the control group and the Mediterranean diet with virgin olive oil group. CONCLUSION A Mediterranean dietary pattern associated with a high dietary acid load derived from consumption of mixed nuts does not seem to have a much greater effect on bone metabolism biomarkers, with the exception of PTH levels, than a Mediterranean diet without mixed nuts or a control diet in elderly subjects.
Collapse
Affiliation(s)
- Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine of Reus, School of Medicine, Institut d'Investigacions Sanitàries Pere i Virgili, University Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fenton TR, Eliasziw M, Lyon AW, Tough SC, Hanley DA. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr 2008; 88:1159-66. [PMID: 18842807 DOI: 10.1093/ajcn/88.4.1159] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The acid-ash diet hypothesis of osteoporosis suggests that acid from the modern diet causes a demineralization of the skeleton, and mobilized bone calcium is excreted. A systematic approach has not been used to summarize the findings of the numerous studies about the hypothesis. OBJECTIVES The purpose of this meta-analysis was to estimate the quantity of net acid excretion and calciuria associated with the modern diet, to assess the association between acid excretion and calcium excretion, and to assess the influence of urine preservatives on calcium measurement. DESIGN We systematically searched for trials of the acid-ash hypothesis and conducted a meta-analysis. RESULTS Twenty-five of 105 studies met the inclusion criteria. The estimated quantity of net acid excretion from the weighted average of the control diets from 11 studies was 47 mEq/d. The increase in urinary calcium with a change in renal net acid excretion depended on whether the urine was acidic or alkaline (P < 0.001). A significant linear relation was observed between net acid excretion and calcium excretion for both acidic and alkaline urine (P < 0.001). The estimated change in urine calcium associated with a change of 47 mEq of net acid excretion in acidic urine was 1.6 mmol/d (66 mg/d) of calcium. CONCLUSION Evidence suggests a linear association between changes in calcium excretion in response to experimental changes in net acid excretion. However, this finding is not evidence that the source of the excreted calcium is bone or that this calciuria contributes to the development of osteoporosis.
Collapse
Affiliation(s)
- Tanis R Fenton
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|