1
|
Bulduk BK, Tortajada J, Torres‐Egurrola L, Valiente‐Pallejà A, Martínez‐Leal R, Vilella E, Torrell H, Muntané G, Martorell L. High frequency of mitochondrial DNA rearrangements in the peripheral blood of adults with intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2025; 69:137-152. [PMID: 39506491 PMCID: PMC11735882 DOI: 10.1111/jir.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) rearrangements are recognised factors in mitochondrial disorders and ageing, but their involvement in neurodevelopmental disorders, particularly intellectual disability (ID) and autism spectrum disorder (ASD), remains poorly understood. Previous studies have reported mitochondrial dysfunction in individuals with both ID and ASD. The aim of this study was to investigate the prevalence of large-scale mtDNA rearrangements in ID and ID with comorbid ASD (ID-ASD). METHOD We used mtDNA-targeted next-generation sequencing and the MitoSAlt high-throughput computational pipeline in peripheral blood samples from 76 patients with ID (mean age 52.5 years, 37% female), 59 patients with ID-ASD (mean age 41.3 years, 46% female) and 32 healthy controls (mean age 42.4 years, 47% female) from Catalonia. RESULTS The study revealed a high frequency of mtDNA rearrangements in patients with ID, with 10/76 (13.2%) affected individuals. However, the prevalence was significantly lower in patients with ID-ASD 1/59 (1.7%) and in HC 1/32 (3.1%). Among the mtDNA rearrangements, six were identified as deletions (median size 6937 bp and median heteroplasmy level 2.3%) and six as duplications (median size 10 455 bp and median heteroplasmy level 1.9%). One of the duplications, MT-ATP6 m.8765-8793dup (29 bp), was present in four individuals with ID with a median heteroplasmy level of 3.9%. CONCLUSIONS Our results show that mtDNA rearrangements are frequent in patients with ID, but not in those with ID-ASD, when compared to HC. Additionally, MitoSAlt has demonstrated high sensitivity and accuracy in detecting mtDNA rearrangements, even at very low heteroplasmy levels in blood samples. While the high frequency of mtDNA rearrangements in ID is noteworthy, the role of these rearrangements is currently unclear and needs to be confirmed with further data, particularly in post-mitotic tissues and through age-matched control studies.
Collapse
Affiliation(s)
- B. K. Bulduk
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - J. Tortajada
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - L. Torres‐Egurrola
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - A. Valiente‐Pallejà
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - R. Martínez‐Leal
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Genètica i Ambient en PsiquiatriaIntellectual Disability and Developmental Disorders Research Unit (UNIVIDD), Fundació VillablancaReusCataloniaSpain
| | - E. Vilella
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - H. Torrell
- Centre for Omic Sciences (COS)Joint Unit Universitat Rovira i Virgili‐EURECAT Technology Centre of Catalonia, Unique Scientific and Technical InfrastructuresReusCataloniaSpain
| | - G. Muntané
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Institut de Biologia Evolutiva (UPF‐CSIC), Department of Medicine and Life SciencesUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaCataloniaSpain
| | - L. Martorell
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Penon-Portmann M, Naugle K, Brodie F, Schallhorn J, Griggs P, So J. Novel heterozygous OPA3 variant in a family with congenital cataracts, sensorineural hearing loss and neuropathy, without optic atrophy and comparison of pathogenic and population variants. Am J Med Genet A 2025; 197:e63846. [PMID: 39166438 DOI: 10.1002/ajmg.a.63846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Heterozygous mutations in the OPA3 gene are associated with autosomal dominant optic atrophy-3 (OPA3), whereas biallelic mutations cause autosomal recessive 3-methylglutaconic aciduria type III. To date, all cases with pathogenic variants in the gene OPA3 have presented with optic atrophy. We report a large family with congenital cataracts, hearing loss and neuropathy, with a likely pathogenic novel missense variant in OPA3, c.30G>C; p.(Lys10Asn) that segregates with disease in the family pedigree. The family's clinical presentation has significant phenotypic overlap with previously reported cases of OPA3, except for a notable lack of optic atrophy. The analysis of all known disease-associated variants in OPA3 revealed an enrichment in missense variants in patients with OPA3 phenotype compared with loss-of-function variants, which are more likely to be observed in individuals with 3-methylglutaconic aciduria type III, supporting different mechanisms of disease. This case broadens the clinical and genetic spectrum associated with OPA3 mutations and highlights that optic atrophy is not an obligate feature of OPA3-related disorders.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- University of California, San Francisco, San Francisco, California, USA
- University of Washington, Seattle, Washington, USA
| | - Kendyl Naugle
- University of California, San Francisco, San Francisco, California, USA
- University of California, San Diego, La Jolla, California, USA
| | - Frank Brodie
- University of California, San Francisco, San Francisco, California, USA
| | - Julie Schallhorn
- University of California, San Francisco, San Francisco, California, USA
| | - Paul Griggs
- University of Washington, Seattle, Washington, USA
- Northwest Eye Surgeons, Seattle, Washington, USA
| | - Joyce So
- University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Finsterer J, Strobl W. Gastrointestinal involvement in neuromuscular disorders. J Gastroenterol Hepatol 2024; 39:1982-1993. [PMID: 38859699 DOI: 10.1111/jgh.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Although not often discussed, many of the neuromuscular disorders (NMDs) affect the gastrointestinal tract (GIT). Depending on the type of NMD, the prevalence of GIT involvement ranges from <5% (e.g. hereditary neuropathies, myofibrillar myopathies) to 100% (e.g. MNGIE, OPMD). Particularly in NMDs with multisystem affection, involvement of the GIT can dominate the clinical presentation or at least make up a significant part of the clinical picture. The most prominent representatives of NMDs with multisystem involvement are the mitochondrial disorders (MIDs) and the myotonic dystrophies. The best known syndromic MIDs with GIT involvement are MNGIE, MELAS, Leigh, and Pearson syndromes. Among neuropathies, GIT involvement is most commonly found in ALS and GBS. GIT involvement may also be a feature of myasthenia. The clinical manifestations of GIT involvement are diverse and can affect the entire GIT, from the teeth to the rectum, including the liver and pancreas. The most well-known clinical manifestations of GIT involvement are dysphagia, nausea, vomiting, reflux, hollow organ dysmotility, hepatopathy, diabetes, diarrhea, constipation, and fecal incontinence. Even if treatment can usually only be symptomatic, the therapeutic options are diverse, are often effective, and can significantly and beneficially influence the course of the underlying NMD.
Collapse
Affiliation(s)
| | - Walter Strobl
- Department of Health Sciences, Medicine and Research, Danube University for Continuing Education Krems and MOTIO, Vienna, Austria
| |
Collapse
|
4
|
Villalba MF, Li CM, Pakravan P, Bademci G, Chang TCP. Commercial Gene Panels for Congenital Anterior Segment Anomalies: Are They All the Same? Am J Ophthalmol 2023; 251:90-103. [PMID: 36906093 PMCID: PMC10247492 DOI: 10.1016/j.ajo.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE We compared next generation sequencing multigene panels (NGS-MGP) from 5 commercial laboratories to inform ophthalmologists' decision making in diagnostic genetic testing for congenital anterior segment anomalies (CASAs). DESIGN Comparison of commercial genetic testing panels. METHODS This observational study gathered publicly available information on NGS-MGP from 5 commercial laboratories for the following: cataracts, glaucoma, anterior segment dysgenesis (ASD), microphthalmia-anophthalmia-coloboma (MAC), corneal dystrophies, and Axenfeld-Rieger syndrome (ARS). We compared gene panel composition, consensus rate (genes covered by all the panels per condition, "concurrent"), dissensus rate (genes covered by only 1 panel per condition, "standalone"), and intronic variant coverage. For individual genes, we compared publication history and association with systemic conditions. RESULTS Altogether, cataract, glaucoma, corneal dystrophies, MAC, ASD, and ARS panels tested 239, 60, 36, 292, and 10 discrete genes, respectively. The consensus rate varied between 16% and 50%, and the dissensus rate varied between 14% and 74%. After pooling concurrent genes from all conditions, 20% of these genes were concurrent in 2 or more conditions. For both cataract and glaucoma, concurrent genes had significantly stronger correlation with the condition than standalone genes. CONCLUSIONS The genetic testing of CASAs using NGS-MGPs is complicated, owing to their number, variety, and phenotypic and genetic overlap. Although the inclusion of additional genes, such as the standalone ones, might increase diagnostic yield, these genes are also less well studied, indicating uncertainty over their role in CASA pathogenesis. Rigorous prospective diagnostic yield studies of NGS-MGPs will aid in making decisions of panel selection for the diagnosis of CASAs.
Collapse
Affiliation(s)
- Maria Fernanda Villalba
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA; John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Chris Michael Li
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Parastou Pakravan
- University of Miami Miller School of Medicine (M.F.V., C.M.L., P.P.), Miami, Florida, USA
| | - Guney Bademci
- John P. Hussmann Institute for Human Genomics (M.F.V., G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Human Genetics (G.B.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ta Chen Peter Chang
- From the Bascom Palmer Eye Institute (M.F.V., T.C.P.C.), University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
5
|
Dudakova L, Skalicka P, Davidson AE, Sadan AN, Chylova M, Jahnova H, Anteneova N, Tesarova M, Honzik T, Liskova P. Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy? Genes (Basel) 2021; 12:genes12121918. [PMID: 34946867 PMCID: PMC8702069 DOI: 10.3390/genes12121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells.
Collapse
Affiliation(s)
- Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Alice E. Davidson
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Amanda N. Sadan
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
| | - Monika Chylova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Helena Jahnova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Nicole Anteneova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Marketa Tesarova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
- Correspondence: ; Tel.: +420-224-967-139
| |
Collapse
|
6
|
Abstract
Mitochondrial disorders (MIDs) due to respiratory-chain defects or nonrespiratory chain defects are usually multisystem conditions [mitochondrial multiorgan disorder syndrome (MIMODS)] affecting the central nervous system (CNS), peripheral nervous system, eyes, ears, endocrine organs, heart, kidneys, bone marrow, lungs, arteries, and also the intestinal tract. Frequent gastrointestinal (GI) manifestations of MIDs include poor appetite, gastroesophageal sphincter dysfunction, constipation, dysphagia, vomiting, gastroparesis, GI pseudo-obstruction, diarrhea, or pancreatitis and hepatopathy. Rare GI manifestations of MIDs include dry mouth, paradontosis, tracheoesophageal fistula, stenosis of the duodeno-jejunal junction, atresia or imperforate anus, liver cysts, pancreas lipomatosis, pancreatic cysts, congenital stenosis or obstruction of the GI tract, recurrent bowel perforations with intra-abdominal abscesses, postprandial abdominal pain, diverticulosis, or pneumatosis coli. Diagnosing GI involvement in MIDs is not at variance from diagnosing GI disorders due to other causes. Treatment of mitochondrial GI disease includes noninvasive or invasive measures. Therapy is usually symptomatic. Only for myo-neuro-gastro-intestinal encephalopathy is a causal therapy with autologous stem-cell transplantation available. It is concluded that GI manifestations of MIDs are more widespread than so far anticipated and that they must be recognized as early as possible to initiate appropriate diagnostic work-up and avoid any mitochondrion-toxic treatment.
Collapse
Affiliation(s)
| | - Marlies Frank
- First Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|
7
|
Finsterer J, Zarrouk-Mahjoub S, Daruich A. The Eye on Mitochondrial Disorders. J Child Neurol 2016; 31:652-62. [PMID: 26275973 DOI: 10.1177/0883073815599263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022]
Abstract
Ophthalmologic manifestations of mitochondrial disorders are frequently neglected or overlooked because they are often not regarded as part of the phenotype. This review aims at summarizing and discussing the etiology, pathogenesis, diagnosis, and treatment of ophthalmologic manifestations of mitochondrial disorders. Review of publications about ophthalmologic involvement in mitochondrial disorders by search of Medline applying appropriate search terms. The eye is frequently affected by syndromic as well as nonsyndromic mitochondrial disorders. Primary and secondary ophthalmologic manifestations can be differentiated. The most frequent ophthalmologic manifestations of mitochondrial disorders include ptosis, progressive external ophthalmoplegia, optic atrophy, retinopathy, and cataract. More rarely occurring are nystagmus and abnormalities of the cornea, ciliary body, intraocular pressure, the choroidea, or the brain secondarily affecting the eyes. It is important to recognize and diagnose ophthalmologic manifestations of mitochondrial disorders as early as possible because most are accessible to symptomatic treatment with partial or complete short-term or long-term beneficial effect. Ophthalmologic manifestations of mitochondrial disorders need to be appropriately diagnosed to initiate the most effective management and guarantee optimal outcome.
Collapse
Affiliation(s)
| | | | - Alejandra Daruich
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Switzerland
| |
Collapse
|
8
|
Early-onset cataracts, spastic paraparesis, and ataxia caused by a novel mitochondrial tRNAGlu (MT-TE) gene mutation causing severe complex I deficiency: a clinical, molecular, and neuropathologic study. J Neuropathol Exp Neurol 2013; 72:164-75. [PMID: 23334599 DOI: 10.1097/nen.0b013e31828129c5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial respiratory chain disease is associated with a spectrum of clinical presentations and considerable genetic heterogeneity. Here we report molecular genetic and neuropathologic findings from an adult with an unusual manifestation of mitochondrial DNA disease. Clinical features included early-onset cataracts, ataxia, and progressive paraparesis, with sequencing revealing the presence of a novel de novo m.14685G>A mitochondrial tRNA(Glu) (MT-TE) gene mutation. Muscle biopsy showed that 13% and 34% of muscle fibers lacked cytochrome c oxidase activity and complex I subunit expression, respectively. Biochemical studies confirmed a marked decrease in complex I activity. Neuropathologic investigation revealed a large cystic lesion affecting the left putamen, caudate nucleus, and internal capsule, with evidence of marked microvacuolation, neuron loss, perivascular lacunae, and blood vessel mineralization. The internal capsule showed focal axonal loss, whereas brainstem and spinal cord showed descending anterograde degeneration in medullary pyramids and corticospinal tracts. In agreement with muscle biopsy findings, reduced complex I immunoreactivity was detected in the remaining neuronal populations, particularly in the basal ganglia and cerebellum, correlating with the neurologic dysfunction exhibited by the patient. This study emphasizes the importance of molecular genetic and postmortem neuropathologic analyses for furthering our understanding of underlying mechanisms of mitochondrial disorders.
Collapse
|
9
|
Wortmann SB, Rodenburg RJT, Jonckheere A, de Vries MC, Huizing M, Heldt K, van den Heuvel LP, Wendel U, Kluijtmans LA, Engelke UF, Wevers RA, Smeitink JAM, Morava E. Biochemical and genetic analysis of 3-methylglutaconic aciduria type IV: a diagnostic strategy. Brain 2008; 132:136-46. [DOI: 10.1093/brain/awn296] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Oldfors A, Tulinius M. Mitochondrial encephalomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:125-165. [PMID: 18808998 DOI: 10.1016/s0072-9752(07)86006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
11
|
Komlósi K, Kellermayer R, Maász A, Havasi V, Hollódy K, Vincze O, Merkli H, Pál E, Melegh B. Maternally inherited deafness and unusual phenotypic manifestations associated with A3243G mitochondrial DNA mutation. Pathol Oncol Res 2005; 11:82-6. [PMID: 15999151 DOI: 10.1007/bf02893371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/15/2005] [Indexed: 11/30/2022]
Abstract
The mitochondrial DNA A3243G transition is a fairly common mutation which often associates with a MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) phenotype, however, a broad variety in the associated clinical picture has also been described. The patient reported here developed a generalized seizure at age 12, which was followed by bilateral hearing loss and occasional fatigue. The maternal inheritance pattern of hearing loss pointed to a possible mitochondrial origin, which was confirmed by molecular analysis of the mitochondrial DNA, revealing a heteroplasmic A3243G transition. Interestingly, muscle biopsy showed ragged-red fibers in the proband, which is unusual in the deafness-associated forms of this mitochondrial disorder. In addition to hearing impairment in four generations of the family, fatal cerebral embolization in the mother and fatal heart attack in the maternal grandmother (both at age 33) also occurred. On the contrary, diabetes, which usually accompanies the hearing loss variant, was specifically absent in all generations. The unusual manifestations associated with this mutation somewhat differentiate this family from the already known variants.
Collapse
Affiliation(s)
- Katalin Komlósi
- Department of Medical Genetics and Child Development, University of Pécs, Pécs, H-7624, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|