1
|
Xiao J, Hao LW, Wang J, Yu XS, You JY, Li ZJ, Mao HD, Meng XY, Feng JX. Comprehensive characterization of the genetic landscape of familial Hirschsprung's disease. World J Pediatr 2023; 19:644-651. [PMID: 36857021 PMCID: PMC10258170 DOI: 10.1007/s12519-023-00686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is one of the most common congenital digestive tract malformations and can cause stubborn constipation or gastrointestinal obstruction after birth, causing great physical and mental pain to patients and their families. Studies have shown that more than 20 genes are involved in HSCR, and most cases of HSCR are sporadic. However, the overall rate of familial recurrence in 4331 cases of HSCR is about 7.6%. Furthermore, familial HSCR patients show incomplete dominance. We still do not know the penetrance and genetic characteristics of these known risk genes due to the rarity of HSCR families. METHODS To find published references, we used the title/abstract terms "Hirschsprung" and "familial" in the PubMed database and the MeSH terms "Hirschsprung" and "familial" in Web of Science. Finally, we summarized 129 HSCR families over the last 40 years. RESULTS The male-to-female ratio and the percentage of short segment-HSCR in familial HSCR are much lower than in sporadic HSCR. The primary gene factors in the syndromic families are ret proto-oncogene (RET) and endothelin B receptor gene (EDNRB). Most families show incomplete dominance and are relevant to RET, and the RET mutation has 56% penetrance in familial HSCR. When one of the parents is a RET mutation carrier in an HSCR family, the offspring's recurrence risk is 28%, and the incidence of the offspring does not depend on whether the parent suffers from HSCR. CONCLUSION Our findings will help HSCR patients obtain better genetic counseling, calculate the risk of recurrence, and provide new insights for future pedigree studies.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Lu-Wen Hao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Xiao-Si Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Jing-Yi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Ze-Jian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Han-Dan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China.
| | - Jie-Xiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China.
| |
Collapse
|
2
|
Wang H, Li Q, Zhang Z, Xiao P, Li L, Jiang Q. Functional Studies on Novel RET Mutations and Their Implications for Genetic Counseling for Hirschsprung Disease. Front Genet 2019; 10:924. [PMID: 31649719 PMCID: PMC6792140 DOI: 10.3389/fgene.2019.00924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of ganglion cells in the gut. RET is considered to be the main susceptibility gene. In our previous screening of 83 HSCR patients, targeted exome sequencing identified nine rare variants of RET, most of which were new discoveries. Here, we performed in vitro arrays with functional studies to investigate their effects. Two variants (p.R77C and p.R67insL) were demonstrated to disrupt the glycosylation of RET and affect its subcellular localization. Three nonsense mutations (p.W85X, p.E252X, and p.Y263X) could not produce detectable RET full-length protein, and the other three mutations (p.R770X, p.Q860X, and p.V778Afs*1) were translated into truncated proteins of predicted sizes. One canonical splice acceptor site mutation (c.2802-2 A > G) was verified to affect gene regulation through aberrant splicing. In addition, we explored the effects of read-through reagents on RET nonsense mutations and showed that G418 significantly increased the full-length RET protein expression of p.Y263X in a dose-dependent manner, together with a mild recovery of p-ERK and p-STAT3. Our data provide a functional analysis of novel RET mutations and suggest that all of the rare variants detected from patients with clinically severe HSCR are indeed pathogenic. Thus, our findings have implications for proper genetic counseling.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
3
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
4
|
Kolvenbach CM, Dworschak GC, Frese S, Japp AS, Schuster P, Wenzlitschke N, Yilmaz Ö, Lopes FM, Pryalukhin A, Schierbaum L, van der Zanden LFM, Kause F, Schneider R, Taranta-Janusz K, Szczepańska M, Pawlaczyk K, Newman WG, Beaman GM, Stuart HM, Cervellione RM, Feitz WFJ, van Rooij IALM, Schreuder MF, Steffens M, Weber S, Merz WM, Feldkötter M, Hoppe B, Thiele H, Altmüller J, Berg C, Kristiansen G, Ludwig M, Reutter H, Woolf AS, Hildebrandt F, Grote P, Zaniew M, Odermatt B, Hilger AC. Rare Variants in BNC2 Are Implicated in Autosomal-Dominant Congenital Lower Urinary-Tract Obstruction. Am J Hum Genet 2019; 104:994-1006. [PMID: 31051115 PMCID: PMC6506863 DOI: 10.1016/j.ajhg.2019.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/22/2019] [Indexed: 12/29/2022] Open
Abstract
Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Institute of Anatomy, University of Bonn, 53115 Bonn, Germany; Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Gabriel C Dworschak
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Institute of Anatomy, University of Bonn, 53115 Bonn, Germany; Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Sandra Frese
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Anna S Japp
- Institute of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Peggy Schuster
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60439 Frankfurt am Main, Germany
| | - Nina Wenzlitschke
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60439 Frankfurt am Main, Germany
| | - Öznur Yilmaz
- Institute of Anatomy, University of Bonn, 53115 Bonn, Germany
| | - Filipa M Lopes
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centere, Manchester M13 9PT, United Kingdom
| | - Alexey Pryalukhin
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Luca Schierbaum
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Loes F M van der Zanden
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Franziska Kause
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ronen Schneider
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Katarzyna Taranta-Janusz
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-089 Białystok, Poland
| | - Maria Szczepańska
- Department and Clinics of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 40-055 Zabrze, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology, and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Glenda M Beaman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Raimondo M Cervellione
- Paediatric Urology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, United Kingdom
| | - Wouter F J Feitz
- Department of Urology, Pediatric Urology, Radboudumc Amalia Children's Hospital, 6525 GA Nijmegen, the Netherlands
| | - Iris A L M van Rooij
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, 6525 GA Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, 6525 GA Nijmegen, the Netherlands
| | | | - Stefanie Weber
- Department of Pediatrics, University Hospital Marburg, 35037 Marburg, Germany
| | - Waltraut M Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn, 53127 Bonn, Germany
| | - Markus Feldkötter
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospital Bonn, 53129 Bonn, Germany
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospital Bonn, 53129 Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50391 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50391 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50391 Cologne, Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn, 53127 Bonn, Germany
| | - Glen Kristiansen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127 Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centere, Manchester M13 9PT, United Kingdom
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, 60439 Frankfurt am Main, Germany
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, 56-417 Zielona Góra, Poland
| | - Benjamin Odermatt
- Institute of Anatomy, University of Bonn, 53115 Bonn, Germany; Institute of Neuro-Anatomy, University of Bonn, 53115 Bonn, Germany.
| | - Alina C Hilger
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, 53113 Bonn, Germany; Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Brosens E, Burns AJ, Brooks AS, Matera I, Borrego S, Ceccherini I, Tam PK, García-Barceló MM, Thapar N, Benninga MA, Hofstra RMW, Alves MM. Genetics of enteric neuropathies. Dev Biol 2016; 417:198-208. [PMID: 27426273 DOI: 10.1016/j.ydbio.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
Abstract
Abnormal development or disturbed functioning of the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is associated with the development of neuropathic gastrointestinal motility disorders. Here, we review the underlying molecular basis of these disorders and hypothesize that many of them have a common defective biological mechanism. Genetic burden and environmental components affecting this common mechanism are ultimately responsible for disease severity and symptom heterogeneity. We believe that they act together as the fulcrum in a seesaw balanced with harmful and protective factors, and are responsible for a continuum of symptoms ranging from neuronal hyperplasia to absence of neurons.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Medical Genetics, Istituto Giannina Gaslini, Genova, Italy
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Paul K Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong, China
| | - Maria-Mercè García-Barceló
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Marc A Benninga
- Pediatric Gastroenterology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
6
|
|
7
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
8
|
Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH, Wu CM, Hsu CC, Chiang HS, Kuo PL. SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One 2012; 7:e34011. [PMID: 22479503 PMCID: PMC3316533 DOI: 10.1371/journal.pone.0034011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
It is estimated that 10-15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12(+/+)/Septin12(+/-) chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Hau-Inh Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, College of Engineering, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ching-Ming Wu
- Department of Cell Biology & Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chao-Chin Hsu
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Serra A, Görgens H, Alhadad K, Fitze G, Schackert HK. Analysis of RET, ZEB2, EDN3 and GDNF Genomic Rearrangements in Central Congenital Hyperventilation Syndrome Patients by Multiplex Ligation-dependent Probe Amplification. Ann Hum Genet 2010; 74:369-74. [DOI: 10.1111/j.1469-1809.2010.00577.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Ahluwalia JK, Hariharan M, Bargaje R, Pillai B, Brahmachari V. Incomplete penetrance and variable expressivity: is there a microRNA connection? Bioessays 2009; 31:981-92. [PMID: 19642110 DOI: 10.1002/bies.200900066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incomplete penetrance and variable expressivity are non-Mendelian phenomena resulting in the lack of correlation between genotype and phenotype. Not withstanding the diversity in mechanisms, differential expression of homologous alleles within cells manifests as variations in penetrance and expressivity of mutations between individuals of the same genotype. These phenomena are seen most often in dominantly inherited diseases, implying that they are sensitive to concentration of the gene product. In this framework and the advances in understanding the role of microRNA (miRNA) in fine-tuning gene expression at translational level, we propose miRNA-mediated regulation as a mechanism for incomplete penetrance and variable expressivity. The presence of miRNA binding sites at 3' UTR, co-expression of target gene-miRNA pairs for genes showing incomplete penetrance and variable expressivity derived from available data lend support to our hypothesis. Single nucleotide polymorphisms in the miRNA target site facilitate the implied differential targeting of the transcripts from homologous alleles.
Collapse
Affiliation(s)
- Jasmine K Ahluwalia
- Dr. B. R. Ambedkar Centre for Biomedical Research, Delhi University, Delhi, India
| | | | | | | | | |
Collapse
|
11
|
Serra A, Görgens H, Alhadad K, Ziegler A, Fitze G, Schackert HK. Analysis of RET, ZEB2, EDN3 and GDNF genomic rearrangements in 80 patients with Hirschsprung disease (using multiplex ligation-dependent probe amplification). Ann Hum Genet 2009; 73:147-51. [PMID: 19183406 DOI: 10.1111/j.1469-1809.2008.00503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hirschsprung disease (HSCR) is transmitted in a complex pattern of inheritance and is mostly associated with variants in the RET proto-oncogene. However, RET mutations are only identified in 15-20% of sporadic HSCR cases and solely in 50% of the familial cases. Since genomic rearrangements in particularly sensitive areas of the RET proto-oncogene and/or associated genes may account for the HSCR phenotype in patients without other detectable RET variants, the aim of the present study was to identify rearrangements in the coding sequence of RET as well as in three HSCR-associated genes (ZEB2, EDN3 and GDNF) in HSCR patients by using Multiplex Ligation-dependent Probe Amplification (MLPA). We have screened 80 HSCR patients for genomic rearrangements in RET, ZEB2, EDN3 and GDNF and did not identify any deletion or amplification in these four genes in all patients. We conclude that genomic rearrangements in RET are rare and were not responsible for the HSCR phenotype in individuals without identifiable germline RET variants in our group of patients, yet this possibility cannot be excluded altogether because the confidence to identify variation in at least two percent of the individuals was only 95%.
Collapse
Affiliation(s)
- A Serra
- Departments of Pediatric Surgery and Surgical Research, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|