1
|
Lee KM, Castro E, Ratcliffe J, Lerner C, Çağlayan M. Nick sealing of polβ mismatch insertion products by LIG1 and LIG3α during 8-oxoG bypass leads to mutagenic or error-free base excision repair. J Biol Chem 2025:108540. [PMID: 40286853 DOI: 10.1016/j.jbc.2025.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Base excision repair (BER) requires a coordination at the downstream steps involving gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or 3α. We previously reported that a failure in DNA ligase function, stemming from an impairment in nick sealing of polβ nucleotide insertion products, leads to faulty repair events. Yet, how the fidelity of 8-oxoG bypass by polβ affects the efficiency of ligation remains unclear. Here, we show that LIG1 and LIG3α seal the resulting nick repair product of polβ mutagenic insertion of dATP opposite 8-oxoG, while LIG3α exhibits an inability to ligate polβ dCTP:8-oxoG insertion product, demonstrating that the identity of BER ligase plays a critical role in repair outcomes at the final step. Furthermore, our results show that a lack of ribonucleotide insertion by polβ during 8-oxoG bypass diminishes the repair coordination with both ligases, highlighting the critical role of nucleotide selectivity in maintaining BER accuracy. Finally, our results reveal that AP-Endonuclease 1 (APE1) proofreads nick repair intermediates containing 3'-mismatches or ribonucleotides templating 8-oxoG. Overall, our findings provide a mechanistic insight into how the dual coding potential of the oxidative lesion in -anti versus -syn conformation could govern error-prone versus error-free repair outcomes, leading to deviations in the BER pathway coordination and the formation of deleterious DNA intermediates.
Collapse
Affiliation(s)
- Kar Men Lee
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Erick Castro
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Camden Lerner
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Yudkina AV, Amanova MM, Zharkov DO. Polyamine Adducts with AP Sites: Interaction with DNA Polymerases and AP Endonucleases. Chem Res Toxicol 2025; 38:102-114. [PMID: 39763436 DOI: 10.1021/acs.chemrestox.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by Escherichia coli endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or E. coli exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Margarita M Amanova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Lee KM, Castro E, Ratcliffe JE, Çağlayan M. Mutagenic ligation of polβ mismatch insertion products during 8-oxoG bypass by LIG1 and LIG3α at the downstream steps of base excision repair pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619805. [PMID: 39484546 PMCID: PMC11526974 DOI: 10.1101/2024.10.23.619805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Base excision repair (BER) maintains genome integrity by fixing oxidized bases that could be formed when reactive oxygen species attack directly on the DNA. We previously reported the importance of a proper coordination at the downstream steps involving gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or 3α. Yet, how the fidelity of 8-oxoG bypass by polβ affects the efficiency of ligation remains unclear. Here, we show that LIG1 can seal nick products of polβ after both dATP and dCTP insertions during 8- oxoG bypass, while ribonucleotide insertions completely diminish the repair coordination with both ligases, highlighting a critical role for nucleotide selectivity in maintaining BER accuracy. Furthermore, our results demonstrate that LIG3α exhibits an inability to ligate nicks of polβ dCTP:8-oxoG insertion or with preinserted 3'-dC:8-oxoG. Finally, AP-Endonuclease 1 (APE1) proofreads nick repair intermediates containing 3'-dA/rA and 3'-dC/rC mismatches templating 8-oxoG. Overall, our findings provide a mechanistic insight into how the dual coding potential of the oxidative lesion and identity of BER ligase govern mutagenic versus error-free repair outcomes at the final steps and how the ribonucleotide challenge compromises the BER coordination leading to the formation of deleterious repair intermediates.
Collapse
|
4
|
Endutkin AV, Yudkina AV, Zharkov TD, Barmatov AE, Petrova DV, Kim DV, Zharkov DO. Repair and DNA Polymerase Bypass of Clickable Pyrimidine Nucleotides. Biomolecules 2024; 14:681. [PMID: 38927084 PMCID: PMC11201982 DOI: 10.3390/biom14060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Clickable nucleosides, most often 5-ethynyl-2'-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase β. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable.
Collapse
Affiliation(s)
- Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Alexander E. Barmatov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Yudkina AV, Kim DV, Zharkov TD, Zharkov DO, Endutkin AV. Probing the Conformational Restraints of DNA Damage Recognition with β-L-Nucleotides. Int J Mol Sci 2024; 25:6006. [PMID: 38892193 PMCID: PMC11172447 DOI: 10.3390/ijms25116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual βLdNs embedded in D-DNA. Here, we address the template properties of βLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by βLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase β treated βLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process βLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize βLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine βLdNs were resistant to repair in human cells, whereas purine βLdNs appear to be partly repaired. Overall, βLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| |
Collapse
|
6
|
Yudkina AV, Endutkin AV, Diatlova EA, Zharkov DO. A non-canonical nucleotide from viral genomes interferes with the oxidative DNA damage repair system. DNA Repair (Amst) 2024; 133:103605. [PMID: 38042029 DOI: 10.1016/j.dnarep.2023.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
Oxidative damage is a major source of genomic instability in all organisms with the aerobic metabolism. 8-Oxoguanine (8-oxoG), an abundant oxidized purine, is mutagenic and must be controlled by a dedicated DNA repair system (GO system) that prevents G:C→T:A transversions through an easily formed 8-oxoG:A mispair. In some forms, the GO system is present in nearly all cellular organisms. However, recent studies uncovered many instances of viruses possessing non-canonical nucleotides in their genomes. The features of genome damage and maintenance in such cases of alternative genetic chemistry remain barely explored. In particular, 2,6-diaminopurine (Z nucleotide) completely substitutes for A in the genomes of some bacteriophages, which have evolved pathways for dZTP synthesis and specialized polymerases that prefer dZTP over dATP. Here we address the ability of the GO system enzymes to cope with oxidative DNA damage in the presence of Z in DNA. DNA polymerases of two different structural families (Klenow fragment and RB69 polymerase) were able to incorporate dZMP opposite to 8-oxoG in the template, as well as 8-oxodGMP opposite to Z in the template. Fpg, a 8-oxoguanine-DNA glycosylase that discriminates against 8-oxoG:A mispairs, also did not remove 8-oxoG from 8-oxoG:Z mispairs. However, MutY, a DNA glycosylase that excises A from pairs with 8-oxoG, had a significantly lower activity on Z:8-oxoG mispairs. Similar preferences were observed for Fpg and MutY from different bacterial species (Escherichia coli, Staphylococcus aureus and Lactococcus lactis). Overall, the relaxed control of 8-oxoG in the presence of the Z nucleotide may be a source of additional mutagenesis in the genomes of bacteriophages or bacteria that have survived the viral invasion.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
Yudkina A, Bulgakov N, Kim D, Baranova S, Ishchenko A, Saparbaev M, Koval V, Zharkov D. Abasic site-peptide cross-links are blocking lesions repaired by AP endonucleases. Nucleic Acids Res 2023; 51:6321-6336. [PMID: 37216593 PMCID: PMC10325907 DOI: 10.1093/nar/gkad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA-protein cross-links. Those are subject to proteolysis but the fate of the resulting AP-peptide cross-links (APPXLs) is unclear. Here, we report two in vitro models of APPXLs synthesized by cross-linking of DNA glycosylases Fpg and OGG1 to DNA followed by trypsinolysis. The reaction with Fpg produces a 10-mer peptide cross-linked through its N-terminus, while OGG1 yields a 23-mer peptide attached through an internal lysine. Both adducts strongly blocked Klenow fragment, phage RB69 polymerase, Saccharolobus solfataricus Dpo4, and African swine fever virus PolX. In the residual lesion bypass, mostly dAMP and dGMP were incorporated by Klenow and RB69 polymerases, while Dpo4 and PolX used primer/template misalignment. Of AP endonucleases involved in BER, Escherichia coli endonuclease IV and its yeast homolog Apn1p efficiently hydrolyzed both adducts. In contrast, E. coli exonuclease III and human APE1 showed little activity on APPXL substrates. Our data suggest that APPXLs produced by proteolysis of AP site-trapped proteins may be removed by the BER pathway, at least in bacterial and yeast cells.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Bulgakov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Daria V Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana V Baranova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France
| | - Vladimir V Koval
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Geronimo I, Vidossich P, De Vivo M. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. J Chem Inf Model 2023; 63:1521-1528. [PMID: 36825471 PMCID: PMC10015460 DOI: 10.1021/acs.jcim.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A common and insidious DNA damage is 8-oxoguanine (8OG), bypassed with low catalytic efficiency and high error frequency by polymerases (Pols) during DNA replication. This is a fundamental process with far-reaching implications in cell function and diseases. However, the molecular determinants of how 8OG exactly affects the catalytic efficiency of Pols remain largely unclear. By examining ternary deoxycytidine triphosphate/DNA/Pol complexes containing the 8OG damage, we found that 8OG consistently adopts different conformations when bound to Pols, compared to when in isolated DNA. Equilibrium molecular dynamics and metadynamics free energy calculations quantified that 8OG is in the lowest energy conformation in isolated DNA. In contrast, 8OG adopts high-energy conformations often characterized by intramolecular steric repulsion when bound to Pols. We show that the 8OG conformation can be regulated by mutating Pol residues interacting with the 8OG phosphate group. These findings propose the 8OG conformation as a factor in Pol-mediated processing of damaged DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
9
|
Endutkin AV, Yudkina AV, Zharkov TD, Kim DV, Zharkov DO. Recognition of a Clickable Abasic Site Analog by DNA Polymerases and DNA Repair Enzymes. Int J Mol Sci 2022; 23:ijms232113353. [PMID: 36362137 PMCID: PMC9655677 DOI: 10.3390/ijms232113353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Azide–alkyne cycloaddition (“click chemistry”) has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the “A-rule”, directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase β. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.
Collapse
Affiliation(s)
- Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Timofey D. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Daria V. Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| |
Collapse
|
10
|
Whitaker AM, Stark WJ, Freudenthal B. Processing oxidatively damaged bases at DNA strand breaks by APE1. Nucleic Acids Res 2022; 50:9521-9533. [PMID: 36018803 PMCID: PMC9458457 DOI: 10.1093/nar/gkac695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species attack the structure of DNA, thus altering its base-pairing properties. Consequently, oxidative stress-associated DNA lesions are a major source of the mutation load that gives rise to cancer and other diseases. Base excision repair (BER) is the pathway primarily tasked with repairing DNA base damage, with apurinic/apyrimidinic endonuclease (APE1) having both AP-endonuclease and 3' to 5' exonuclease (exo) DNA cleavage functions. The lesion 8-oxo-7,8-dihydroguanine (8-oxoG) can enter the genome as either a product of direct damage to the DNA, or through polymerase insertion at the 3'-end of a DNA strand during replication or repair. Importantly, 3'-8-oxoG impairs the ligation step of BER and therefore must be removed by the exo activity of a surrogate enzyme to prevent double stranded breaks and cell death. In the present study, we use X-ray crystallography to characterize the exo activity of APE1 on 3'-8-oxoG substrates. These structures support a unified APE1 exo mechanism that differs from its more canonical AP-endonuclease activity. In addition, through complementation of the structural data with enzyme kinetics and binding studies employing both wild-type and rationally designed APE1 mutants, we were able to identify and characterize unique protein: DNA contacts that specifically mediate 8-oxoG removal by APE1.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
12
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
13
|
Yudkina AV, Zharkov DO. Miscoding and DNA Polymerase Stalling by Methoxyamine-Adducted Abasic Sites. Chem Res Toxicol 2022; 35:303-314. [PMID: 35089032 DOI: 10.1021/acs.chemrestox.1c00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apurinic/apyrimidinic (AP) sites appear in DNA spontaneously and as intermediates of base excision DNA repair. AP sites are noninstructive lesions: they strongly block DNA polymerases, and if bypassed, the nature of the incorporated dNMP is mostly guided by the interactions within the polymerase-DNA active site. Many DNA polymerases follow the "A-rule", preferentially incorporating dAMP opposite to natural AP sites. Methoxyamine (MX), a small molecule, efficiently reacts with the aldehyde moiety of natural AP sites, thereby preventing their cleavage by APEX1, the major human AP endonuclease. MX is currently regarded as a possible sensitizer of cancer cells toward DNA-damaging drugs. To evaluate the mutagenic potential of MX, we have studied the utilization of various dNTPs by five DNA polymerases of different families encountering MX-AP adducts in the template in comparison with the natural aldehydic AP site. The Klenow fragment of Escherichia coli DNA polymerase I strictly followed the A-rule with both natural AP and MX-adducted AP sites. Phage RB69 DNA polymerase, a close relative of human DNA polymerases δ and ε, efficiently incorporated both dAMP and dGMP. DNA polymerase β mostly incorporated dAMP and dCMP, preferring dCMP opposite to the natural AP site and dAMP opposite to the MX-AP site, while DNA polymerase λ was selective for dGMP, apparently via the primer misalignment mechanism. Finally, translesion DNA polymerase κ also followed the A-rule for MX-AP and additionally incorporated dCMP opposite to a natural AP site. Overall, the MX-AP site, despite structural differences, was similar to the natural AP site in terms of the dNMP misincorporation preference but was bypassed less efficiently by all polymerases except for Pol κ.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Family X DNA Polymerases. Genes (Basel) 2021; 13:genes13010015. [PMID: 35052363 PMCID: PMC8774566 DOI: 10.3390/genes13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
8-oxo-guanine (8OG) is a common base lesion, generated by reactive oxygen species, which has been associated with human diseases such as cancer, aging-related neurodegenerative disorders and atherosclerosis. 8OG is highly mutagenic, due to its dual-coding potential it can pair both with adenine or cytidine. Therefore, it creates a challenge for DNA polymerases striving to correctly replicate and/or repair genomic or mitochondrial DNA. Numerous structural studies provide insights into the mechanistic basis of the specificity of 8OG bypass by DNA polymerases from different families. Here, we focus on how repair polymerases from Family X (Pols β, λ and µ) engage DNA substrates containing the oxidized guanine. We review structures of binary and ternary complexes for the three polymerases, which represent distinct steps in their catalytic cycles—the binding of the DNA substrate and the incoming nucleotide, followed by its insertion and extension. At each of these steps, the polymerase may favor or exclude the correct C or incorrect A, affecting the final outcome, which varies depending on the enzyme.
Collapse
|
15
|
Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes (Basel) 2020; 11:genes11080866. [PMID: 32751599 PMCID: PMC7465369 DOI: 10.3390/genes11080866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1–DNA product complex was disrupted by DNA polymerase β (POLβ) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLβ and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.
Collapse
|
16
|
Hamm ML, Garcia AA, Gilbert R, Johri M, Ricart M, Sholes SL, Murray-Nerger LA, Wu EY. The importance of Ile716 toward the mutagenicity of 8-Oxo-2'-deoxyguanosine with Bacillus fragment DNA polymerase. DNA Repair (Amst) 2020; 89:102826. [PMID: 32113909 DOI: 10.1016/j.dnarep.2020.102826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
8-oxo-2'-deoxyguanosine (OdG) is a prominent DNA lesion that can direct the incorporation of dCTP or dATP during replication. As the latter reaction can lead to mutation, the ratio of dCTP/dATP incorporation can significantly affect the mutagenic potential of OdG. Previous work with the A-family polymerase BF and seven analogues of OdG identified a major groove amino acid, Ile716, which likely influences the dCTP/dATP incorporation ratio opposite OdG. To further probe the importance of this amino acid, dCTP and dATP incorporations opposite the same seven analogues were tested with two BF mutants, I716M and I716A. Results from these studies support the presence of clashing interactions between Ile716 and the C8-oxygen and C2-amine during dCTP and dATP incorporations, respectively. Crystallographic analysis suggests that residue 716 alters the conformation of the template base prior to insertion into the active site, thereby affecting enzymatic efficiency. These results are also consistent with previous work with A-family polymerases, which indicate they have tight, rigid active sites that are sensitive to template perturbations.
Collapse
Affiliation(s)
- Michelle L Hamm
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States.
| | - Anarosa A Garcia
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Rachel Gilbert
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Manavi Johri
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Miranda Ricart
- Department of Chemistry, University of Richmond, 138 UR Drive, Richmond, VA, 23173, United States
| | - Samantha L Sholes
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States
| | - Laura A Murray-Nerger
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States
| | - Eugene Y Wu
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, United States.
| |
Collapse
|
17
|
Yudkina A, Sokolov M, Abramov P, Grin I, Zharkov D. Platinum Polyoxoniobates Form Adducts with DNA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Variable termination sites of DNA polymerases encountering a DNA-protein cross-link. PLoS One 2018; 13:e0198480. [PMID: 29856874 PMCID: PMC5983568 DOI: 10.1371/journal.pone.0198480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH4-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4-5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule.
Collapse
|
19
|
Liu X, Zou X, Li H, Zou Z, Yang J, Wang C, Wu S, Zhang H. Bypass of an Abasic Site via the A-Rule by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Chem Res Toxicol 2017; 31:58-65. [PMID: 29183115 DOI: 10.1021/acs.chemrestox.7b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoying Liu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Xiaoli Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Huangyuan Li
- Key
Laboratory of Environment and Health among Universities and Colleges
in Fujian, School of Public Health, Fujian Medical University, Minhou
County, Fuzhou 350108, China
| | - Zhenyu Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Jie Yang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Chenlu Wang
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Shunhua Wu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Huidong Zhang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Freisinger E, Sigel RKO. Celebrating Helmut Sigel. J Biol Inorg Chem 2017; 23:1-5. [PMID: 29218638 DOI: 10.1007/s00775-017-1523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Eva Freisinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Zhang L. New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases. Chem Res Toxicol 2017; 30:1984-1992. [PMID: 28872853 DOI: 10.1021/acs.chemrestox.7b00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacteriophage T4 DNA polymerase (pol) and the closely related RB69 DNA pol have been developed into model enzymes to study family B DNA pols. While all family B DNA pols have similar structures and share conserved protein motifs, the molecular mechanism underlying natural drug resistance of nonherpes family B DNA pols and drug sensitivity of herpes DNA pols remains unknown. In the present study, we constructed T4 phages containing G466S, Y460F, G466S/Y460F, P469S, and V475W mutations in DNA pol. These amino acid substitutions replace the residues in drug-resistant T4 DNA pol with residues found in drug-sensitive herpes family DNA pols. We investigated whether the T4 phages expressing the engineered mutant DNA pols were sensitive to the antiviral drug phosphonoacetic acid (PAA) and characterized the in vivo replication fidelity of the phage DNA pols. We found that G466S substitution marginally increased PAA sensitivity, whereas Y460F substitution conferred resistance. The phage expressing a double mutant G466S/Y460F DNA pol was more PAA-sensitive. V475W T4 DNA pol was highly sensitive to PAA, as was the case with V478W RB69 DNA pol. However, DNA replication was severely compromised, which resulted in the selection of phages expressing more robust DNA pols that have strong ability to replicate DNA and contain additional amino acid substitutions that suppress PAA sensitivity. Reduced replication fidelity was observed in all mutant phages expressing PAA-sensitive DNA pols. These observations indicate that PAA sensitivity and fidelity are balanced in DNA pols that can replicate DNA in different environments.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute Department of Environmental Science and Engineering, Yangzhou University , No. 196 Huayang West Road, Hanjiang, Yangzhou, Jiangsu 225127, China.,Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
22
|
Abu El Asrar R, Margamuljana L, Abramov M, Bande O, Agnello S, Jang M, Herdewijn P. Enzymatic Incorporation of Modified Purine Nucleotides in DNA. Chembiochem 2017; 18:2408-2415. [PMID: 29024251 DOI: 10.1002/cbic.201700393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/19/2023]
Abstract
A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed).
Collapse
Affiliation(s)
- Rania Abu El Asrar
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Omprakash Bande
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefano Agnello
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Present address: Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Miyeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
23
|
A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. J Mol Biol 2017; 429:2308-2323. [PMID: 28601494 DOI: 10.1016/j.jmb.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions.
Collapse
|
24
|
Berdis AJ, McCutcheon D. The use of non-natural nucleotides to probe template-independent DNA synthesis. Chembiochem 2016; 8:1399-408. [PMID: 17607682 DOI: 10.1002/cbic.200700096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of template-independent DNA synthesis, we monitored the incorporation of various nucleotides at the "blunt-end" of duplex DNA by the high-fidelity bacteriophage T4 DNA polymerase. Although natural nucleotides are not incorporated at the blunt-end, a limited subset of non-natural indolyl analogues containing extensive pi-electron surface areas are efficiently utilized by the T4 DNA polymerase. These analogues possess high binding affinities that are remarkably similar to those measured during incorporation opposite an abasic site. In contrast, the k(pol) values are significantly lower during blunt-end extension when compared to incorporation opposite an abasic site. These kinetic differences suggest that the single-stranded region of the DNA template plays an important role during polymerization through stacking interactions with downstream bases, interactions with key amino acid residues, or both. In addition, we demonstrate that terminal deoxynucleotide transferase, a template-independent enzyme, can efficiently incorporate many of these non-natural nucleotides. However, that this unique polymerase cannot extend large, bulky non-natural nucleotides suggests that elongation is limited by steric constraints imposed by structural features present within the polymerase. Regardless, the kinetic data obtained from using either DNA polymerase indicate that template-independent synthesis can occur without the contributions of hydrogen-bonding interactions and suggest that pi-electron interactions play an important role in polymerization efficiency when templating information is not present.
Collapse
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
25
|
Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci Rep 2016; 6:23744. [PMID: 27030297 PMCID: PMC4814812 DOI: 10.1038/srep23744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kyeong Mi Kim
- Marine Biodiversity Institute of Korea, Seocheon, 325-902, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Korea
| | - Kathy Ann Miller
- Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
26
|
Vyas R, Efthimiopoulos G, Tokarsky EJ, Malik CK, Basu AK, Suo Z. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase. J Am Chem Soc 2015; 137:12131-42. [PMID: 26327169 PMCID: PMC4582013 DOI: 10.1021/jacs.5b08027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N(2)-yl)-1-aminopyrene (dG(1,8)), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG(1,8) bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG(1,8), we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG(1,8) lesion in the absence or presence of dCTP. The Dpo4·DNA-dG(1,8) binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG(1,8)·dCTP ternary structure, the aminopyrene moiety of the dG(1,8) lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson-Crick base pair with dG, two nucleotides upstream from the dG(1,8) site, creating a complex for "-2" frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism.
Collapse
Affiliation(s)
- Rajan Vyas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Georgia Efthimiopoulos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - E. John Tokarsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Chanchal K. Malik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
27
|
Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Genetics 2015. [PMID: 26224736 DOI: 10.1534/genetics.115.178566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyperthermophilic archaea offer certain advantages as models of genome replication, and Sulfolobus Y-family polymerases Dpo4 (S. solfataricus) and Dbh (S. acidocaldarius) have been studied intensively in vitro as biochemical and structural models of trans-lesion DNA synthesis (TLS). However, the genetic functions of these enzymes have not been determined in the native context of living cells. We developed the first quantitative genetic assays of replication past defined DNA lesions and error-prone motifs in Sulfolobus chromosomes and used them to measure the efficiency and accuracy of bypass in normal and dbh(-) strains of Sulfolobus acidocaldarius. Oligonucleotide-mediated transformation allowed low levels of abasic-site bypass to be observed in S. acidocaldarius and demonstrated that the local sequence context affected bypass specificity; in addition, most erroneous TLS did not require Dbh function. Applying the technique to another common lesion, 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), revealed an antimutagenic role of Dbh. The efficiency and accuracy of replication past 8-oxo-dG was higher in the presence of Dbh, and up to 90% of the Dbh-dependent events inserted dC. A third set of assays, based on phenotypic reversion, showed no effect of Dbh function on spontaneous -1 frameshifts in mononucleotide tracts in vivo, despite the extremely frequent slippage at these motifs documented in vitro. Taken together, the results indicate that a primary genetic role of Dbh is to avoid mutations at 8-oxo-dG that occur when other Sulfolobus enzymes replicate past this lesion. The genetic evidence that Dbh is recruited to 8-oxo-dG raises questions regarding the mechanism of recruitment, since Sulfolobus spp. have eukaryotic-like replisomes but no ubiquitin.
Collapse
|
28
|
Patra A, Zhang Q, Lei L, Su Y, Egli M, Guengerich FP. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. J Biol Chem 2015; 290:8028-38. [PMID: 25666608 DOI: 10.1074/jbc.m115.637561] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most common lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the "A rule"). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F. P. (2010 J. Mol. Biol. 404, 34-44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a "purine rule." A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. We conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.
Collapse
Affiliation(s)
- Amritaj Patra
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Qianqian Zhang
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Lei
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
29
|
Maddukuri L, Ketkar A, Eddy S, Zafar MK, Eoff RL. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa. Nucleic Acids Res 2014; 42:12027-40. [PMID: 25294835 PMCID: PMC4231769 DOI: 10.1093/nar/gku913] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells.
Collapse
Affiliation(s)
- Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Sarah Eddy
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| |
Collapse
|
30
|
Xu L, Vaidyanathan VG, Cho BP. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Chem Res Toxicol 2014; 27:1796-807. [PMID: 25195494 PMCID: PMC4203393 DOI: 10.1021/tx500252z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Surface plasmon resonance (SPR) was
used to measure polymerase-binding
interactions of the bulky mutagenic DNA lesions N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl
(FABP) or N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) in the context of two unique 5′-flanking bases (CG*A and TG*A). The enzymes used
were exo-nuclease-deficient Klenow fragment (Kf-exo–) or polymerase β (pol β). Specific binary and ternary
DNA binding affinities of the enzymes were characterized at subnanomolar
concentrations. The SPR results showed that Kf-exo– binds strongly to a double strand/single strand template/primer
junction, whereas pol β binds preferentially to double-stranded
DNA having a one-nucleotide gap. Both enzymes exhibited tight binding
to native DNA, with high nucleotide selectivity, where the KD values for each base pair increased in the
order dCTP ≪ dTTP ∼ dATP ≪ dGTP. In contrast
to that for pol β, Kf-exo– binds tightly to
lesion-modified templates; however, both polymerases exhibited minimal
nucleotide selectivity toward adducted DNA. Primer steady-state kinetics
and 19F NMR results support the SPR data. The relative
insertion efficiency fins of dCTP opposite
FABP was significantly higher in the TG*A sequence
compared to that in CG*A. Although Kf-exo– was not sensitive to the presence of a DNA lesion,
FAAF-induced conformational heterogeneity perturbed the active site
of pol β, weakening the enzyme’s ability to bind to FAAF
adducts compared to FABP adducts. The present study demonstrates the
effectiveness of SPR for elucidating how lesion-induced conformational
heterogeneity affects the binding capability of polymerases and ultimately
the nucleotide insertion efficiency.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
31
|
Doublié S, Zahn KE. Structural insights into eukaryotic DNA replication. Front Microbiol 2014; 5:444. [PMID: 25202305 PMCID: PMC4142720 DOI: 10.3389/fmicb.2014.00444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Three DNA polymerases of the B family function at the replication fork in eukaryotic cells: DNA polymerases α, δ, and ε. DNA polymerase α, an heterotetramer composed of two primase subunits and two polymerase subunits, initiates replication. DNA polymerases δ and ε elongate the primers generated by pol α. The DNA polymerase from bacteriophage RB69 has served as a model for eukaryotic B family polymerases for some time. The recent crystal structures of pol δ, α, and ε revealed similarities but also a number of unexpected differences between the eukaryotic polymerases and their bacteriophage counterpart, and also among the three yeast polymerases. This review will focus on their shared structural elements as well as the features that are unique to each of these polymerases.
Collapse
Affiliation(s)
- Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont Burlington, VT, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont Burlington, VT, USA
| |
Collapse
|
32
|
Comparison of the π-stacking properties of purine versus pyrimidine residues. Some generalizations regarding selectivity. J Biol Inorg Chem 2014; 19:691-703. [PMID: 24464134 DOI: 10.1007/s00775-013-1082-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Aromatic-ring stacking is pronounced among the noncovalent interactions occurring in biosystems and therefore some pertinent features regarding nucleobase residues are summarized. Self-stacking decreases in the series adenine > guanine > hypoxanthine > cytosine ~ uracil. This contrasts with the stability of binary (phen)(N) adducts formed by 1,10-phenanthroline (phen) and a nucleobase residue (N), which is largely independent of the type of purine residue involved, including (N1)H-deprotonated guanine. Furthermore, the association constant for (phen)(A)(0/4-) is rather independent of the type and charge of the adenine derivative (A) considered, be it adenosine or one of its nucleotides, including adenosine 5'-triphosphate (ATP(4-)). The same holds for the corresponding adducts of 2,2'-bipyridine (bpy), although owing to the smaller size of the aromatic-ring system of bpy, the (bpy)(A)(0/4-) adducts are less stable; the same applies correspondingly to the adducts formed with pyrimidines. In accord herewith, [M(bpy)](adenosine)(2+) adducts (M(2+) is Co(2+), Ni(2+), or Cu(2+)) show the same stability as the (bpy)(A)(0/4-) ones. The formation of an ionic bridge between -NH3 (+) and -PO3 (2-), as provided by tryptophan [H(Trp)(±)] and adenosine 5'-monophosphate (AMP(2-)), facilitates recognition and stabilizes the indole-purine stack in [H(Trp)](AMP)(2-). Such indole-purine stacks also occur in nature. Similarly, the formation of a metal ion bridge as occurs, e.g., between Cu(2+) coordinated to phen and the phosphonate group of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)) dramatically favors the intramolecular stack in Cu(phen)(PMEA). The consequences of such interactions for biosystems are discussed, especially emphasizing that the energies involved in such isomeric equilibria are small, allowing Nature to shift such equilibria easily.
Collapse
|
33
|
Shi XZ, Sarna SK. Cell culture retains contractile phenotype but epigenetically modulates cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2013; 304:G337-45. [PMID: 23238936 PMCID: PMC3566616 DOI: 10.1152/ajpgi.00369.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/11/2012] [Indexed: 01/31/2023]
Abstract
Smooth muscle cell cultures are used frequently to investigate the cellular mechanisms of contraction. We tested the hypothesis that cell culture alters the expression of select cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells without altering the contractile phenotype. We used muscularis externa (ME) tissues, freshly dispersed cells (FC), primary cell cultures (PC), and resuspensions of cell cultures (RC). Colon smooth muscle cells retained their phenotype in all states. We investigated expression of 10 cell-signaling proteins of excitation-contraction coupling in all four types of tissue. Expression of all these proteins did not differ between ME and FC (P > 0.05). However, expression of the α(1C)-subunit of Ca(v)1.2b, myosin light chain kinase, myosin phosphatase target subunit 1, and 17-kDa C kinase-potentiated protein phosphatase-1 inhibitor (CPI-17) decreased in PC and RC vs. ME and FC (all P < 0.05). Expression of Gα(i3), serine/threonine protein phosphatase-1 β-catalytic subunit, and Rho kinase 1 increased in PC and RC vs. ME and FC (all P < 0.05). Cell culture and resuspension downregulated expression of α-actin and calponin, but not myosin heavy chain. The net effect of these molecular changes was suppression of cell reactivity to ACh in RC vs. FC. Overexpression of CPI-17 in PC partially reversed the suppression of contractility in resuspended cells. Methylation-specific PCR showed increased methylation of the Cpi-17 gene promoter in PC vs. ME (P < 0.05). We concluded that smooth muscle cells retain their contractile phenotype in culture. However, reactivity to ACh declines because of altered expression of specific cell-signaling proteins involved in excitation-contraction coupling. DNA methylation of the Cpi-17 promoter may contribute to its gene suppression.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | |
Collapse
|
34
|
Freudenthal BD, Beard WA, Wilson SH. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res 2012; 41:1848-58. [PMID: 23267011 PMCID: PMC3561998 DOI: 10.1093/nar/gks1276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major base lesion resulting from oxidative stress is 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG) that has ambiguous coding potential. Error-free DNA synthesis involves 8-oxoG adopting an anti-conformation to base pair with cytosine whereas mutagenic bypass involves 8-oxoG adopting a syn-conformation to base pair with adenine. Left unrepaired the syn-8-oxoG/dAMP base pair results in a G–C to T–A transversion. During base excision repair of this mispair, DNA polymerase (pol) β is confronted with gap filling opposite 8-oxoG. To determine how pol β discriminates between anti- and syn-8-oxoG, we introduced a point mutation (R283K) to alter insertion specificity. Kinetic studies demonstrate that this substitution results in an increased fidelity opposite 8-oxoG. Structural studies with R283K pol β show that the binary DNA complex has 8-oxoG in equilibrium between anti- and syn-forms. Ternary complexes with incoming dCTP resemble the wild-type enzyme, with templating anti-8-oxoG base pairing with incoming cytosine. In contrast to wild-type pol β, the ternary complex of the R283K mutant with an incoming dATP-analogue and templating 8-oxoG resembles a G–A mismatched structure with 8-oxoG adopting an anti-conformation. These results demonstrate that the incoming nucleotide is unable to induce a syn-8-oxoG conformation without minor groove DNA polymerase interactions that influence templating (anti-/syn-equilibrium) of 8-oxoG while modulating fidelity.
Collapse
Affiliation(s)
- Bret D Freudenthal
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, PO Box 12233, Research Triangle Park, NC 27709-2233, USA
| | | | | |
Collapse
|
35
|
Hamm ML, Crowley KA, Ghio M, Lindell MAM, McFadden EJ, Silberg JSL, Weaver AM. Biochemical Investigations into the Mutagenic Potential of 8-Oxo-2′-deoxyguanosine Using Nucleotide Analogues. Chem Res Toxicol 2012; 25:2577-88. [DOI: 10.1021/tx300365g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michelle L. Hamm
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Kelly A. Crowley
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Michael Ghio
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Maria A. M. Lindell
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Emily J. McFadden
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Jordan S. L. Silberg
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| | - Amelia M. Weaver
- Department
of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173,
United States
| |
Collapse
|
36
|
Devadoss B, Lee I, Berdis AJ. Spectroscopic analysis of polymerization and exonuclease proofreading by a high-fidelity DNA polymerase during translesion DNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:34-45. [PMID: 22959853 DOI: 10.1016/j.bbapap.2012.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/26/2022]
Abstract
High fidelity DNA polymerases maintain genomic fidelity through a series of kinetic steps that include nucleotide binding, conformational changes, phosphoryl transfer, polymerase translocation, and nucleotide excision. Developing a comprehensive understanding of how these steps are coordinated during correct and pro-mutagenic DNA synthesis has been hindered due to lack of spectroscopic nucleotides that function as efficient polymerase substrates. This report describes the application of a non-natural nucleotide designated 5-naphthyl-indole-2'-deoxyribose triphosphate which behaves as a fluorogenic substrate to monitor nucleotide incorporation and excision during the replication of normal DNA versus two distinct DNA lesions (cyclobutane thymine dimer and an abasic site). Transient fluorescence and rapid-chemical quench experiments demonstrate that the rate constants for nucleotide incorporation vary as a function of DNA lesion. These differences indicate that the non-natural nucleotide can function as a spectroscopic probe to distinguish between normal versus translesion DNA synthesis. Studies using wild-type DNA polymerase reveal the presence of a fluorescence recovery phase that corresponds to the formation of a pre-excision complex that precedes hydrolytic excision of the non-natural nucleotide. Rate constants for the formation of this pre-excision complex are dependent upon the DNA lesion, and this suggests that the mechanism of exonuclease proofreading is regulated by the nature of the formed mispair. Finally, spectroscopic evidence confirms that exonuclease proofreading competes with polymerase translocation. Collectively, this work provides the first demonstration for a non-natural nucleotide that functions as a spectroscopic probe to study the coordinated efforts of polymerization and exonuclease proofreading during correct and translesion DNA synthesis.
Collapse
Affiliation(s)
- Babho Devadoss
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
37
|
Sherrer SM, Taggart DJ, Pack LR, Malik CK, Basu AK, Suo Z. Quantitative analysis of the mutagenic potential of 1-aminopyrene-DNA adduct bypass catalyzed by Y-family DNA polymerases. Mutat Res 2012; 737:25-33. [PMID: 22917544 DOI: 10.1016/j.mrfmmm.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/12/2012] [Accepted: 08/07/2012] [Indexed: 01/29/2023]
Abstract
N-(Deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dG(AP) induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dG(AP) lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dG(AP), we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dG(AP). Opposite dG(AP) and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dG(AP). Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dG(AP) bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dG(AP) bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dG(AP) in humans.
Collapse
Affiliation(s)
- Shanen M Sherrer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
38
|
Maxwell BA, Suo Z. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus. Biochemistry 2012; 51:3485-96. [PMID: 22471521 DOI: 10.1021/bi300246r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, exhibits ambiguous coding potential and can lead to genomic mutations. Tight control of 8-oxoG bypass during DNA replication is therefore extremely important in hyperthermophiles as the rate of oxidative damage to DNA is significantly increased at high temperatures. Here we employed pre-steady state kinetics to compare the kinetic responses to an 8-oxoG lesion of the main replicative and lesion bypass DNA polymerases of Sulfolobus solfataricus, a hyperthermophilic crenarchaeon. Upon encountering 8-oxoG, PolB1, the replicative DNA polymerase, was completely stalled by the lesion, as its 3' → 5' exonuclease activity increased significantly and outcompeted its slowed polymerase activity at and near the lesion site. In contrast, our results show that Dpo4, the lone Y-family DNA polymerase in S. solfataricus, can faithfully and efficiently incorporate nucleotides opposite 8-oxoG and extend from an 8-oxoG:C base pair with a mechanism similar to that observed for the replication of undamaged DNA. Furthermore, we show that the stalling of PolB1 at the lesion site can be relieved by Dpo4. Finally, the 3' → 5' exonuclease activity of PolB1 was the highest when 8-oxoG was mispaired with an incorrect nucleotide and could therefore correct rare mistakes made by Dpo4 during 8-oxoG bypass. These results provide a kinetic basis for a potential polymerase switching mechanism during 8-oxoG bypass whereby Dpo4 can switch with the stalled PolB1 at the replication fork to bypass and extend the damaged DNA and then switch off of the DNA substrate to allow continued replication of undamaged DNA by the more faithful PolB1.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
39
|
Sherrer SM, Sanman LE, Xia CX, Bolin ER, Malik CK, Efthimiopoulos G, Basu AK, Suo Z. Kinetic analysis of the bypass of a bulky DNA lesion catalyzed by human Y-family DNA polymerases. Chem Res Toxicol 2012; 25:730-40. [PMID: 22324639 DOI: 10.1021/tx200531y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolι), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dG(AP) on a synthetic DNA template but that hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dG(AP) sites (t(50)(bypass)) encountered by hPolη, hPolκ, and hPolι was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dG(AP) (hPolη > hPolκ > hPolι ≫ hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dG(AP) efficiently, replication by both hPolκ and hPolι was strongly stalled at the lesion site and at a site immediately downstream from dG(AP). By employing presteady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dG(AP)in vivo is catalyzed by a human Y-family DNA polymerase, e.g., hPolη, the process is certainly mutagenic.
Collapse
Affiliation(s)
- Shanen M Sherrer
- Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Obeid S, Welte W, Diederichs K, Marx A. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase. J Biol Chem 2012; 287:14099-108. [PMID: 22318723 DOI: 10.1074/jbc.m111.334904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C. Here we provide structural insights into constraints of the active site during nucleotide selection opposite an abasic site. It appears that these confines govern the nucleotide selection mainly by interaction of the incoming nucleotide with Tyr-671. Depending on the nucleobase, the nucleotides are differently positioned opposite Tyr-671 resulting in different alignments of the functional groups that are required for bond formation. The distances between the α-phosphate and the 3'-primer terminus increases in the order A < G < T, which follows the order of incorporation efficiency. Additionally, a binary KlenTaq structure bound to DNA containing an abasic site indicates that binding of the nucleotide triggers a remarkable rearrangement of enzyme and DNA template. The ability to resolve the stacking arrangement might be dependent on the intrinsic properties of the respective nucleotide contributing to nucleotide selection. Furthermore, we studied the incorporation of a non-natural nucleotide opposite an abasic site. The nucleotide was often used in studying stacking effects in DNA polymerization. Here, no interaction with Tyr-761 as found for the natural nucleotides is observed, indicating a different reaction path for this non-natural nucleotide.
Collapse
Affiliation(s)
- Samra Obeid
- Department of Chemistry, University of Konstanz, Universita¨tsstrasse 10, D 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
41
|
Crespan E, Maga G, Hübscher U. A new proofreading mechanism for lesion bypass by DNA polymerase-λ. EMBO Rep 2011; 13:68-74. [PMID: 22134548 DOI: 10.1038/embor.2011.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 11/09/2022] Open
Abstract
Replicative DNA polymerases (DNA pols) increase their fidelity by removing misincorporated nucleotides with their 3' → 5' exonuclease activity. Exonuclease activity reduces translesion synthesis (TLS) efficiency and TLS DNA pols lack 3' → 5' exonuclease activity. Here we show that physiological concentrations of pyrophosphate (PP(i)) activate the pyrophosphorolytic activity by DNA pol-λ, allowing the preferential excision of the incorrectly incorporated A opposite a 7,8-dihydro-8-oxoguanine lesion, or T opposite a 6-methyl-guanine, with respect to the correct C. This is the first example of an alternative proofreading mechanism used during TLS.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | |
Collapse
|
42
|
Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Proc Natl Acad Sci U S A 2011; 109:113-8. [PMID: 22178760 DOI: 10.1073/pnas.1112235108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxidation of genomic DNA forms the guanine lesion 7,8-dihydro-8-oxoguanine (8-oxoG). When in the template base position during DNA synthesis the 8-oxoG lesion has dual coding potential by virtue of its anti- and syn-conformations, base pairing with cytosine and adenine, respectively. This impacts mutagenesis, because insertion of adenine opposite template 8-oxoG can result in a G to T transversion. DNA polymerases vary by orders of magnitude in their preferences for mutagenic vs. error-free 8-oxoG lesion bypass. Yet, the structural basis for lesion bypass specificity is not well understood. The DNA base excision repair enzyme DNA polymerase (pol) β is presented with gap-filling synthesis opposite 8-oxoG during repair and has similar insertion efficiencies for dCTP and dATP. We report the structure of pol β in binary complex with template 8-oxoG in a base excision repair substrate. The structure reveals both the syn- and anti-conformations of template 8-oxoG in the confines of the polymerase active site, consistent with the dual coding observed kinetically for this enzyme. A ternary complex structure of pol β with the syn-8-oxoG:anti-A Hoogsteen base pair in the closed fully assembled preinsertion active site is also reported. The syn-conformation of 8-oxoG is stabilized by minor groove hydrogen bonding between the side chain of Arg283 and O8 of 8-oxoG. An adjustment in the position of the phosphodiester backbone 5'-phosphate enables 8-oxoG to adopt the syn-conformation.
Collapse
|
43
|
Hamm ML, Crowley KA, Ghio M, Del Giorno L, Gustafson MA, Kindler KE, Ligon CW, Lindell MAM, McFadden EJ, Siekavizza-Robles C, Summers MR. Importance of the C2, N7, and C8 positions to the mutagenic potential of 8-Oxo-2'-deoxyguanosine with two A family polymerases. Biochemistry 2011; 50:10713-23. [PMID: 22081979 DOI: 10.1021/bi201383c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
8-Oxo-2'-deoxyguanosine (OdG) is a prominent DNA lesion produced from the reaction of 2'-deoxyguanosine (dG) with reactive oxygen species. While dG directs the insertion of only dCTP during replication, OdG can direct the insertion of either dCTP or dATP, allowing for the production of dG → dT transversions. When replicated by Klenow fragment-exo (KF-exo), OdG preferentially directs the incorporation of dCTP over dATP, thus decreasing its mutagenic potential. However, when replicated by a highly related polymerase, the large fragment of polymerase I from Bacillus stearothermophilus (BF), dATP incorporation is preferred, and a higher mutagenic potential results. To gain insight into the reasons for this opposite preference and the effects of the C2, N7, and C8 positions on OdG mutagenicity, single-nucleotide insertions of dCTP and/or dATP opposite dG, OdG, and seven of their analogues were examined by steady state kinetics with both KF-exo and BF. Results from these studies suggest that the two enzymes behave similarly and are both sensitive not only to steric and electronic changes within the imidazole ring during both dCTP and dATP incorporation but also to the presence of the C2-exocyclic amine during dATP incorporation. The difference in incorporation preference opposite OdG appears to be due to a somewhat increased sensitivity to structural perturbations during dCTP incorporation with BF. Single-nucleotide extensions past the resulting base pairs were also studied and were not only similar between the two enzymes but also consistent with published ternary crystallographic studies with BF. These results are analyzed in the context of previous biochemical and structural studies, as well as stability studies with the resulting base pairs.
Collapse
Affiliation(s)
- Michelle L Hamm
- Department of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zahn KE, Averill A, Wallace SS, Doublié S. The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site. Biochemistry 2011; 50:10350-8. [PMID: 22026756 DOI: 10.1021/bi201219s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxycytosine (5-OHC) is a stable oxidation product of cytosine associated with an increased frequency of C → T transition mutations. When this lesion escapes recognition by the base excision repair pathway and persists to serve as a templating base during DNA synthesis, replicative DNA polymerases often misincorporate dAMP at the primer terminus, which can lead to fixation of mutations and subsequent disease. To characterize the dynamics of DNA synthesis opposite 5-OHC, we initiated a comparison of unmodified dCMP to 5-OHC, 5-fluorocytosine (5-FC), and 5-methylcytosine (5-MEC) in which these bases act as templates in the active site of RB69 gp43, a high-fidelity DNA polymerase sharing homology with human replicative DNA polymerases. This study presents the first crystal structure of any DNA polymerase binding this physiologically important premutagenic DNA lesion, showing that while dGMP is stabilized by 5-OHC through normal Watson-Crick base pairing, incorporation of dAMP leads to unstacking and instability in the template. Furthermore, the electronegativity of the C5 substituent appears to be important in the miscoding potential of these cytosine-like templates. While dAMP is incorporated opposite 5-OHC ~5 times more efficiently than opposite unmodified dCMP, an elevated level of incorporation is also observed opposite 5-FC but not 5-MEC. Taken together, these data imply that the nonuniform templating by 5-OHC is due to weakened stacking capabilities, which allows dAMP incorporation to proceed in a manner similar to that observed opposite abasic sites.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, United States
| | | | | | | |
Collapse
|
45
|
Obeid S, Schnur A, Gloeckner C, Blatter N, Welte W, Diederichs K, Marx A. Learning from Directed Evolution: Thermus aquaticus DNA Polymerase Mutants with Translesion Synthesis Activity. Chembiochem 2011; 12:1574-80. [DOI: 10.1002/cbic.201000783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 12/20/2022]
|
46
|
Zahn KE, Wallace SS, Doublié S. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Curr Opin Struct Biol 2011; 21:358-69. [PMID: 21482102 DOI: 10.1016/j.sbi.2011.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 02/07/2023]
Abstract
Deducing the structure of the DNA double helix in 1953 implied the mode of its replication: Watson-Crick (WC) base pairing might instruct an enzyme, now known as the DNA polymerase, during the synthesis of a daughter stand complementary to a single strand of the parental double helix. What has become increasingly clear in the last 60 years, however, is that adducted and oxidatively generated DNA bases are ubiquitous in physiological DNA, and all organisms conserve multiple DNA polymerases specialized for DNA synthesis opposite these damaged templates. Here, we review recent crystal structures depicting replicative and bypass DNA polymerases encountering two typical lesions arising from the oxidation of DNA: abasic sites, which block the replication fork, and the miscoding premutagenic lesion 7,8-dihydro-8-oxoguanine (8-oxoG).
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
47
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Xia S, Wang M, Lee HR, Sinha A, Blaha G, Christian T, Wang J, Konigsberg W. Variation in mutation rates caused by RB69pol fidelity mutants can be rationalized on the basis of their kinetic behavior and crystal structures. J Mol Biol 2011; 406:558-70. [PMID: 21216248 PMCID: PMC3059800 DOI: 10.1016/j.jmb.2010.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
Abstract
We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3'-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mina Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Harold R. Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Arjun Sinha
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gregor Blaha
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520
| | - Thomas Christian
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jimin Wang
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520
| | - William Konigsberg
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
49
|
Silverstein TD, Jain R, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Structure 2011; 18:1463-70. [PMID: 21070945 DOI: 10.1016/j.str.2010.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/22/2023]
Abstract
7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase η (Polη). We show that the open active site cleft of Polη can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Polη to prevent the mutagenic replication of 8-oxoG lesions in cells.
Collapse
Affiliation(s)
- Timothy D Silverstein
- Department of Structural & Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hansen CJ, Wu L, Fox JD, Arezi B, Hogrefe HH. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. Nucleic Acids Res 2010; 39:1801-10. [PMID: 21062827 PMCID: PMC3061061 DOI: 10.1093/nar/gkq1053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.
Collapse
Affiliation(s)
- Connie J Hansen
- Agilent Technologies Inc., Stratagene Products Division, 11011 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|