1
|
Li S, Wang Z, Wang X, Wang Y, Pattarayan D, Zhang Y, Nguyen P, Bhuniya A, Chen Y, Huang H, Huang Y, Wang L, Wang J, Li S, Zhang M, Liu Y, Lee N, Yang D. Integrative characterization of MYC RNA-binding function. CELL GENOMICS 2025:100878. [PMID: 40378850 DOI: 10.1016/j.xgen.2025.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 04/17/2025] [Indexed: 05/19/2025]
Abstract
Emerging evidence suggests that MYC interacts with RNAs. Here, we performed an integrative characterization of MYC as an RNA-binding protein in six cell lines. We found that MYC binds to a myriad of RNAs with high affinity for guanosine-rich RNAs. Global and specific depletion of RNAs reduces MYC chromatin occupancy. Mechanistically, two highly conserved sequences, amino acids 355-357 KRR and 364-367 RQRR, within the basic region of MYC are necessary for its RNA binding. Notably, alanine substitution of KRR abolishes MYC's RNA-binding ability both in vitro and in vivo, without affecting its ability to bind E-box DNA as part of the MYC:MAX dimer in vitro. The loss of RNA-binding function decreases MYC chromatin binding in vivo and attenuates its ability to promote gene expression, cell-cycle progression, and proliferation. Our study lays a foundation for future investigation into the role of RNAs in MYC-mediated transcriptional activation and oncogenic functions.
Collapse
Affiliation(s)
- Sihan Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zehua Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiaofei Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phuong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Department of Electrical and Computer Engineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Avishek Bhuniya
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luxuan Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Liu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Department of Electrical and Computer Engineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Henke-Schulz L, Minocha R, Maier NH, Sträßer K. The Prp19C/NTC subunit Syf2 and the Prp19C/NTC-associated protein Cwc15 function in TREX occupancy and transcription elongation. RNA (NEW YORK, N.Y.) 2024; 30:854-865. [PMID: 38627018 PMCID: PMC11182008 DOI: 10.1261/rna.079944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 06/19/2024]
Abstract
The Prp19 complex (Prp19C), also named NineTeen Complex (NTC), is conserved from yeast to human and functions in many different processes such as genome stability, splicing, and transcription elongation. In the latter, Prp19C ensures TREX occupancy at transcribed genes. TREX, in turn, couples transcription to nuclear mRNA export by recruiting the mRNA exporter to transcribed genes and consequently to nascent mRNAs. Here, we assess the function of the nonessential Prp19C subunit Syf2 and the nonessential Prp19C-associated protein Cwc15 in the interaction of Prp19C and TREX with the transcription machinery, Prp19C and TREX occupancy, and transcription elongation. Whereas both proteins are important for Prp19C-TREX interaction, Syf2 is needed for full Prp19C occupancy, and Cwc15 is important for the interaction of Prp19C with RNA polymerase II and TREX occupancy. These partially overlapping functions are corroborated by a genetic interaction between Δcwc15 and Δsyf2 Finally, Cwc15 also interacts genetically with the transcription elongation factor Dst1 and functions in transcription elongation. In summary, we uncover novel roles of the Prp19C component Syf2 and the Prp19C-associated protein Cwc15 in Prp19C's function in transcription elongation.
Collapse
Affiliation(s)
- Laura Henke-Schulz
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Rashmi Minocha
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Nils Holger Maier
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| |
Collapse
|
3
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
4
|
Long Y, Hwang T, Gooding AR, Goodrich KJ, Hanson SD, Vallery TK, Rinn JL, Cech TR. Evaluation of the RNA-dependence of PRC2 binding to chromatin in human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553776. [PMID: 37645830 PMCID: PMC10462166 DOI: 10.1101/2023.08.17.553776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2), an important histone modifier and epigenetic repressor, has been known to interact with RNA for almost two decades. In our previous publication (Long, Hwang et al. 2020), we presented data supporting the functional importance of RNA interaction in maintaining PRC2 occupancy on chromatin, using comprehensive approaches including an RNA-binding mutant of PRC2 and an rChIP-seq assay. Recently, concerns have been expressed regarding whether the RNA-binding mutant has impaired histone methyltransferase activity and whether the rChIP-seq assay can potentially generate artifacts. Here we provide new data that support a number of our original findings. First, we found the RNA-binding mutant to be fully capable of maintaining H3K27me3 levels in human induced pluripotent stem cells. The mutant had reduced methyltransferase activity in vitro, but only on some substrates at early time points. Second, we found that our rChIP-seq method gave consistent data across antibodies and cell lines. Third, we further optimized rChIP-seq by using lower concentrations of RNase A and incorporating a catalytically inactive mutant RNase A as a control, as well as using an alternative RNase (RNase T1). The EZH2 rChIP-seq results using the optimized protocols supported our original finding that RNA interaction contributes to the chromatin occupancy of PRC2.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
- Present address: Cardiovascular Research Institute, Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Taeyoung Hwang
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Present address: Lieber Institute for Brain Development, Department of Neurology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne R Gooding
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Karen J Goodrich
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Skylar D Hanson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Tenaya K Vallery
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Healy E, Zhang Q, Gail EH, Agius SC, Sun G, Bullen M, Pandey V, Das PP, Polo JM, Davidovich C. The apparent loss of PRC2 chromatin occupancy as an artifact of RNA depletion. Cell Rep 2024; 43:113858. [PMID: 38416645 DOI: 10.1016/j.celrep.2024.113858] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.
Collapse
Affiliation(s)
- Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; EMBL-Australia at SAiGENCI, Adelaide, SA, Australia
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Agius
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Partha Pratim Das
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Adelaide Centre for Epigenetics and South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; EMBL-Australia, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Beauvais V, Moreau K, Žunar B, Hervouet-Coste N, Novačić A, Le Dantec A, Primig M, Mosrin-Huaman C, Stuparević I, Rahmouni AR. Tho2 is critical for the recruitment of Rrp6 to chromatin in response to perturbed mRNP biogenesis. RNA (NEW YORK, N.Y.) 2023; 30:89-98. [PMID: 37914399 PMCID: PMC10726162 DOI: 10.1261/rna.079707.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.
Collapse
Affiliation(s)
- Valentin Beauvais
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Kévin Moreau
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Bojan Žunar
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Aurélia Le Dantec
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-2 Rennes, France
| | | | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| |
Collapse
|
7
|
Kern C, Radon C, Wende W, Leitner A, Sträßer K. Cross-linking mass spectrometric analysis of the endogenous TREX complex from Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1870-1880. [PMID: 37699651 PMCID: PMC10653388 DOI: 10.1261/rna.079758.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.
Collapse
Affiliation(s)
- Carina Kern
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Christin Radon
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Wolfgang Wende
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| |
Collapse
|
8
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
9
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
10
|
Chromatin localization of nucleophosmin organizes ribosome biogenesis. Mol Cell 2022; 82:4443-4457.e9. [PMID: 36423630 PMCID: PMC9949351 DOI: 10.1016/j.molcel.2022.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.
Collapse
|
11
|
De S, Edwards DM, Dwivedi V, Wang J, Varsally W, Dixon HL, Singh AK, Owuamalam PO, Wright MT, Summers RP, Hossain MN, Price EM, Wojewodzic MW, Falciani F, Hodges NJ, Saponaro M, Tanaka K, Azzalin CM, Baumann P, Hebenstreit D, Brogna S. Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in Schizosaccharomyces pombe. Nucleic Acids Res 2021; 50:350-367. [PMID: 34928380 PMCID: PMC8754637 DOI: 10.1093/nar/gkab1249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1Δ) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription.
Collapse
Affiliation(s)
- Sandip De
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David M Edwards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Vibha Dwivedi
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Jianming Wang
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Wazeer Varsally
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Hannah L Dixon
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Anand K Singh
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Interdisciplinary School of Life Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Precious O Owuamalam
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Matthew T Wright
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Reece P Summers
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Md Nazmul Hossain
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Emily M Price
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marcin W Wojewodzic
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway & Department of Research, Cancer Registry of Norway, Oslo University Hospital, Oslo, Norway & Environmental Genomics, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Francesco Falciani
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Nikolas J Hodges
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, UK
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Saverio Brogna
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| |
Collapse
|
12
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
13
|
Schuller SK, Schuller JM, Prabu JR, Baumgärtner M, Bonneau F, Basquin J, Conti E. Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex. eLife 2020; 9:e61467. [PMID: 33191913 PMCID: PMC7744097 DOI: 10.7554/elife.61467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
The yeast THO complex is recruited to active genes and interacts with the RNA-dependent ATPase Sub2 to facilitate the formation of mature export-competent messenger ribonucleoprotein particles and to prevent the co-transcriptional formation of RNA:DNA-hybrid-containing structures. How THO-containing complexes function at the mechanistic level is unclear. Here, we elucidated a 3.4 Å resolution structure of Saccharomyces cerevisiae THO-Sub2 by cryo-electron microscopy. THO subunits Tho2 and Hpr1 intertwine to form a platform that is bound by Mft1, Thp2, and Tex1. The resulting complex homodimerizes in an asymmetric fashion, with a Sub2 molecule attached to each protomer. The homodimerization interfaces serve as a fulcrum for a seesaw-like movement concomitant with conformational changes of the Sub2 ATPase. The overall structural architecture and topology suggest the molecular mechanisms of nucleic acid remodeling during mRNA biogenesis.
Collapse
Affiliation(s)
- Sandra K Schuller
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - J Rajan Prabu
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Marc Baumgärtner
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of BiochemistryMunichGermany
| |
Collapse
|
14
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
15
|
RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 2020; 52:931-938. [PMID: 32632336 DOI: 10.1038/s41588-020-0662-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Many chromatin-binding proteins and protein complexes that regulate transcription also bind RNA. One of these, Polycomb repressive complex 2 (PRC2), deposits the H3K27me3 mark of facultative heterochromatin and is required for stem cell differentiation. PRC2 binds RNAs broadly in vivo and in vitro. Yet, the biological importance of this RNA binding remains unsettled. Here, we tackle this question in human induced pluripotent stem cells by using multiple complementary approaches. Perturbation of RNA-PRC2 interaction by RNase A, by a chemical inhibitor of transcription or by an RNA-binding-defective mutant all disrupted PRC2 chromatin occupancy and localization genome wide. The physiological relevance of PRC2-RNA interactions is further underscored by a cardiomyocyte differentiation defect upon genetic disruption. We conclude that PRC2 requires RNA binding for chromatin localization in human pluripotent stem cells and in turn for defining cellular state.
Collapse
|
16
|
Xie Y, Ren Y. Mechanisms of nuclear mRNA export: A structural perspective. Traffic 2019; 20:829-840. [PMID: 31513326 DOI: 10.1111/tra.12691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA-binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67•Mtr2/human NXF1•NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD-box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67•Mtr2/NXF1•NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
17
|
Infantino V, Stutz F. The functional complexity of the RNA-binding protein Yra1: mRNA biogenesis, genome stability and DSB repair. Curr Genet 2019; 66:63-71. [PMID: 31292684 DOI: 10.1007/s00294-019-01011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
The mRNA export adaptor Yra1 is essential in S. cerevisiae, and conserved from yeast to human (ALY/REF). It is well characterized for its function during transcription elongation, 3' processing and mRNA export. Recently, different studies linked Yra1 to genome stability showing that Yra1 overexpression causes DNA Double Strand Breaks through DNA:RNA hybrids stabilization, and that Yra1 depletion affects DSB repair. However, the mechanisms through which Yra1 contributes to genome stability maintenance are not fully understood. Interestingly, our results showed that the Yra1 C-box domain is required for Yra1 recruitment to an HO-induced irreparable DSB following extensive resection, and that it is essential to repair an HO-induced reparable DSB. Furthermore, we defined that the C-box domain of Yra1 plays a crucial role in DSB repair through homologous recombination but not through non-homologous end joining. Future studies aim at deciphering the mechanism by which Yra1 contributes to DSB repair by searching for Yra1 partners important for this process. This review focuses on the functional complexity of the Yra1 protein, not only summarizing its role in mRNA biogenesis but also emphasizing its auto-regulation and implication in genome integrity either through DNA:RNA hybrids stabilization or DNA double strand break repair in S. cerevisiae.
Collapse
Affiliation(s)
- Valentina Infantino
- Department of Cell Biology, University of Geneva, 30 Quai E. Ansermet, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Cell Biology, University of Geneva, 30 Quai E. Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol Cell Biol 2019; 39:MCB.00540-18. [PMID: 30745412 DOI: 10.1128/mcb.00540-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Saccharomyces cerevisiae Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export. Such function of CBC is not mediated via THO and Sub2 of TREX, cleavage and polyadenylation factors, or Sus1 (that regulates mRNA export via transcription export 2 [TREX-2]). However, CBC promotes splicing of SUS1 mRNA and, consequently, Sus1 protein level and mRNA export via TREX-2. Collectively, our results support the hypothesis that CBC promotes recruitment of Yra1 and Npl3 to the active genes, independently of THO, Sub2, or cleavage and polyadenylation factors, and enhances mRNA export via TREX and RNP, respectively, in addition to its role in facilitating SUS1 mRNA splicing to increase mRNA export through TREX-2, revealing distinct stimulatory functions of CBC in mRNA export.
Collapse
|
19
|
Katahira J, Ishikawa H, Tsujimura K, Kurono S, Hieda M. Human THO coordinates transcription termination and subsequent transcript release from the
HSP70
locus. Genes Cells 2019; 24:272-283. [DOI: 10.1111/gtc.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Hiroki Ishikawa
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Kakeru Tsujimura
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Sadamu Kurono
- Graduate School of Medicine and Health Sciences Osaka University Suita Osaka Japan
- Laboratory Chemicals Division Wako Pure Chemical Industries Ltd Osaka Japan
| | - Miki Hieda
- Graduate School of Health Sciences Ehime Prefectural University of Health Sciences Iyo‐gun Ehime Japan
| |
Collapse
|
20
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Abstract
Although it was long assumed that eukaryotic pre-mRNAs are almost always spliced to generate linear mRNAs, it is now clear that thousands of protein-coding genes can be non-canonically spliced using backsplicing to produce circular RNAs (circRNAs). Most mature circRNAs accumulate in the cytoplasm; however, little is known about how circRNAs are exported from the nucleus to the cytoplasm as they lack many of the common signals used for mRNA export. In this point-of-view article, we will discuss our recently identified circRNA nuclear export pathway and address important open questions in the field.
Collapse
Affiliation(s)
- Zhengguo Li
- a School of Life Sciences , Chongqing University , Chongqing , China.,b Institute of Advanced Interdisciplinary Studies , Chongqing University , Chongqing , China
| | - Michael G Kearse
- c Department of Biochemistry and Biophysics , University of Pennsylvania, Perelman School of Medicine , Philadelphia , PA , USA
| | - Chuan Huang
- a School of Life Sciences , Chongqing University , Chongqing , China.,b Institute of Advanced Interdisciplinary Studies , Chongqing University , Chongqing , China
| |
Collapse
|
22
|
Zander G, Krebber H. Quick or quality? How mRNA escapes nuclear quality control during stress. RNA Biol 2017; 14:1642-1648. [PMID: 28708448 PMCID: PMC5731798 DOI: 10.1080/15476286.2017.1345835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022] Open
Abstract
Understanding the mechanisms for mRNA production under normal conditions and in response to cytotoxic stresses has been subject of numerous studies for several decades. The shutdown of canonical mRNA transcription, export and translation is required to have enough free resources for the immediate production of heat shock proteins that act as chaperones to sustain cellular processes. In recent work we uncovered a simple mechanism, in which the export block of regular mRNAs and a fast export of heat shock mRNAs is achieved by deactivation of the nuclear mRNA quality control mediated by the guard proteins. In this point of view we combine long known data with recently gathered information that support this novel model, in which cells omit quality control of stress responsive transcripts to ensure survival.
Collapse
Affiliation(s)
- Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Shi M, Zhang H, Wu X, He Z, Wang L, Yin S, Tian B, Li G, Cheng H. ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo. Nucleic Acids Res 2017; 45:9640-9653. [PMID: 28934468 PMCID: PMC5766156 DOI: 10.1093/nar/gkx597] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5′ end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3′ end of the mRNA. Furthermore, the 3′ processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5′ and the 3′ regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3′ processing.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Tian
- Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
24
|
Ren Y, Schmiege P, Blobel G. Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. eLife 2017; 6. [PMID: 28059701 PMCID: PMC5218534 DOI: 10.7554/elife.20070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
mRNA is cotranscrptionally processed and packaged into messenger ribonucleoprotein particles (mRNPs) in the nucleus. Prior to export through the nuclear pore, mRNPs undergo several obligatory remodeling reactions. In yeast, one of these reactions involves loading of the mRNA-binding protein Yra1 by the DEAD-box ATPase Sub2 as assisted by the hetero-pentameric THO complex. To obtain molecular insights into reaction mechanisms, we determined crystal structures of two relevant complexes: a THO hetero-pentamer bound to Sub2 at 6.0 Å resolution; and Sub2 associated with an ATP analogue, RNA, and a C-terminal fragment of Yra1 (Yra1-C) at 2.6 Å resolution. We found that the 25 nm long THO clamps Sub2 in a half-open configuration; in contrast, when bound to the ATP analogue, RNA and Yra1-C, Sub2 assumes a closed conformation. Both THO and Yra1-C stimulated Sub2’s intrinsic ATPase activity. We propose that THO surveys common landmarks in each nuclear mRNP to localize Sub2 for targeted loading of Yra1. DOI:http://dx.doi.org/10.7554/eLife.20070.001
Collapse
Affiliation(s)
- Yi Ren
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Philip Schmiege
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
25
|
Hur JK, Luo Y, Moon S, Ninova M, Marinov GK, Chung YD, Aravin AA. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev 2016; 30:840-55. [PMID: 27036967 PMCID: PMC4826399 DOI: 10.1101/gad.276030.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
Abstract
In this study, Hur et al. identified a novel function for the TREX complex, which is critical for pre-mRNA processing and mRNA nuclear export. They found that Thoc5 and other TREX components are essential for the biogenesis of noncoding RNA and delineate a novel mechanism for TREX loading on nascent RNA. The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.
Collapse
Affiliation(s)
- Junho K Hur
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yun D Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
26
|
Sakaguchi N, Maeda K. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation. Adv Immunol 2016; 131:135-86. [PMID: 27235683 DOI: 10.1016/bs.ai.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.
Collapse
Affiliation(s)
- N Sakaguchi
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - K Maeda
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Laboratory of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Recruitment, Duplex Unwinding and Protein-Mediated Inhibition of the Dead-Box RNA Helicase Dbp2 at Actively Transcribed Chromatin. J Mol Biol 2016; 428:1091-1106. [PMID: 26876600 DOI: 10.1016/j.jmb.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
RNA helicases play fundamental roles in modulating RNA structures and facilitating RNA-protein (RNP) complex assembly in vivo. Previously, our laboratory demonstrated that the DEAD-box RNA helicase Dbp2 in Saccharomyces cerevisiae is required to promote efficient assembly of the co-transcriptionally associated mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)(+)RNA. We also found that Yra1 associates directly with Dbp2 and functions as an inhibitor of Dbp2-dependent duplex unwinding, suggestive of a cycle of unwinding and inhibition by Dbp2. To test this, we undertook a series of experiments to shed light on the order of events for Dbp2 in co-transcriptional mRNP assembly. We now show that Dbp2 is recruited to chromatin via RNA and forms a large, RNA-dependent complex with Yra1 and Mex67. Moreover, single-molecule fluorescence resonance energy transfer and bulk biochemical assays show that Yra1 inhibits unwinding in a concentration-dependent manner by preventing the association of Dbp2 with single-stranded RNA. This inhibition prevents over-accumulation of Dbp2 on mRNA and stabilization of a subset of RNA polymerase II transcripts. We propose a model whereby Yra1 terminates a cycle of mRNP assembly by Dbp2.
Collapse
|
28
|
Abstract
Nuclear pore complexes (NPCs) have been shown to regulate distinct steps of the gene expression process, from transcription to mRNA export. In particular, mRNAs expressed from intron-containing genes are surveyed by a specific NPC-dependent quality control pathway ensuring that unspliced mRNAs are retained within the nucleus. In this Extra View, we summarize the different approaches that have been developed to evaluate the contribution of various NPC components to the expression of intron-containing genes. We further present the mechanistic models that could account for pre-mRNA retention at the nuclear side of NPCs. Finally, we discuss the possibility that other stages of intron-containing gene expression could be regulated by nuclear pores, in particular through the regulation of mRNA biogenesis factors by the NPC-associated SUMO protease Ulp1.
Collapse
Affiliation(s)
- Amandine Bonnet
- a Institut Jacques Monod; CNRS; UMR 7592; Univ Paris Diderot ; Sorbonne Paris Cité; Paris , France
| | - Benoit Palancade
- a Institut Jacques Monod; CNRS; UMR 7592; Univ Paris Diderot ; Sorbonne Paris Cité; Paris , France
| |
Collapse
|
29
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
30
|
Bretes H, Rouviere JO, Leger T, Oeffinger M, Devaux F, Doye V, Palancade B. Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs. Nucleic Acids Res 2014; 42:5043-58. [PMID: 24500206 PMCID: PMC4005672 DOI: 10.1093/nar/gku124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.
Collapse
Affiliation(s)
- Hugo Bretes
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France, Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France, Proteomics facility, Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France, Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada H2W 1R7, Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3T 1J4, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada H3A 1A3, Université Pierre et Marie Curie, UMR7238, 15, rue de l'Ecole de Médecine, 75006 Paris, France and CNRS, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.
Collapse
Affiliation(s)
- Evan C Merkhofer
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
32
|
Meinel DM, Burkert-Kautzsch C, Kieser A, O'Duibhir E, Siebert M, Mayer A, Cramer P, Söding J, Holstege FCP, Sträßer K. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet 2013; 9:e1003914. [PMID: 24244187 PMCID: PMC3828145 DOI: 10.1371/journal.pgen.1003914] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) synthesis and export are tightly linked, but the molecular mechanisms of this coupling are largely unknown. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to mRNA export and mediates mRNP formation. Here, we show that TREX is recruited to the transcription machinery by direct interaction of its subcomplex THO with the serine 2-serine 5 (S2/S5) diphosphorylated CTD of RNA polymerase II. S2 and/or tyrosine 1 (Y1) phosphorylation of the CTD is required for TREX occupancy in vivo, establishing a second interaction platform necessary for TREX recruitment in addition to RNA. Genome-wide analyses show that the occupancy of THO and the TREX components Sub2 and Yra1 increases from the 5' to the 3' end of the gene in accordance with the CTD S2 phosphorylation pattern. Importantly, in a mutant strain, in which TREX is recruited to genes but does not increase towards the 3' end, the expression of long transcripts is specifically impaired. Thus, we show for the first time that a 5'-3' increase of a protein complex is essential for correct expression of the genome. In summary, we provide insight into how the phospho-code of the CTD directs mRNP formation and export through TREX recruitment.
Collapse
Affiliation(s)
- Dominik M. Meinel
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelia Burkert-Kautzsch
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja Kieser
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Siebert
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andreas Mayer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrick Cramer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Johannes Söding
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katja Sträßer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
33
|
Mouaikel J, Causse S, Rougemaille M, Daubenton-Carafa Y, Blugeon C, Lemoine S, Devaux F, Darzacq X, Libri D. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation. Cell Rep 2013; 5:1082-94. [DOI: 10.1016/j.celrep.2013.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/10/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022] Open
|
34
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Saguez C, Gonzales FA, Schmid M, Bøggild A, Latrick CM, Malagon F, Putnam A, Sanderson L, Jankowsky E, Brodersen DE, Jensen TH. Mutational analysis of the yeast RNA helicase Sub2p reveals conserved domains required for growth, mRNA export, and genomic stability. RNA (NEW YORK, N.Y.) 2013; 19:1363-1371. [PMID: 23962665 PMCID: PMC3854527 DOI: 10.1261/rna.040048.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Sub2p/UAP56 is a highly conserved DEAD-box RNA helicase involved in the packaging and nuclear export of mRNA/protein particles (mRNPs). In Saccharomyces cerevisiae, Sub2p is recruited to active chromatin by the pentameric THO complex and incorporated into the larger transcription-export (TREX) complex. Sub2p also plays a role in the maintenance of genome integrity as its inactivation causes severe transcription-dependent recombination of DNA. Despite the central role of Sub2p in early mRNP biology, little is known about its function. Here, we report the presence of an N-terminal motif (NTM) conserved specifically in the Sub2p branch of RNA helicases. Mutation of the NTM causes nuclear accumulation of poly(A)(+) RNA and impaired growth without affecting core helicase functions. Thus, the NTM functions as an autonomous unit. Moreover, two sub2 mutants, that are deficient in ATP binding, act in a trans-dominant negative fashion for growth and induce high recombination rates in vivo. Although wild-type Sub2p is prevented access to transcribed loci in such a background, this does not mechanistically explain the phenotype.
Collapse
Affiliation(s)
- Cyril Saguez
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Fernando A. Gonzales
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Bøggild
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Chrysa M. Latrick
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Francisco Malagon
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andrea Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lee Sanderson
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ditlev E. Brodersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
36
|
Caporilli S, Yu Y, Jiang J, White-Cooper H. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLoS Genet 2013; 9:e1003526. [PMID: 23754955 PMCID: PMC3674997 DOI: 10.1371/journal.pgen.1003526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex.
Collapse
Affiliation(s)
- Simona Caporilli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yachuan Yu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jianqiao Jiang
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
37
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
38
|
Umlauf D, Bonnet J, Waharte F, Fournier M, Stierle M, Fischer B, Brino L, Devys D, Tora L. The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci 2013; 126:2656-67. [DOI: 10.1242/jcs.118000] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes mRNA export involves many evolutionarily conserved factors that carry the nascent transcript to the nuclear pore complex (NPC). The THO/TREX complex couples transcription to mRNA export and recruits the mRNA export receptor NXF1 for the transport of mRNP particles to the NPC. The transcription and export complex 2 (TREX-2) was suggested to interact with NXF1 and to shuttle between transcription sites and the NPC. Here, we characterize the dynamics of human TREX-2 and show that it stably associates with the NPC basket. Moreover, the association of TREX-2 with the NPC requires the basket nucleoporins NUP153 and TPR, but is independent of transcription. Differential profiles of mRNA nuclear accumulation reveal that TREX-2 functions similarly to basket nucleoporins, but differently from NXF1. Thus, our results show that TREX-2 is an NPC-associated complex in mammalian cells and suggest that it is involved in putative NPC basket-related functions.
Collapse
|
39
|
Lei H, Zhai B, Yin S, Gygi S, Reed R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 2012; 41:2517-25. [PMID: 23275560 PMCID: PMC3575797 DOI: 10.1093/nar/gks1314] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.
Collapse
Affiliation(s)
- Haixin Lei
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
41
|
Chi B, Wang Q, Wu G, Tan M, Wang L, Shi M, Chang X, Cheng H. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res 2012; 41:1294-306. [PMID: 23222130 PMCID: PMC3553972 DOI: 10.1093/nar/gks1188] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mRNA export complex TREX (TREX) is known to contain Aly, UAP56, Tex1 and the THO complex, among which UAP56 is required for TREX assembly. Here, we systematically investigated the role of each human TREX component in TREX assembly and its association with the mRNA. We found that Tex1 is essentially a subunit of the THO complex. Aly, THO and UAP56 are all required for assembly of TREX, in which Aly directly interacts with THO subunits Thoc2 and Thoc5. Both Aly and THO function in linking UAP56 to the cap-binding protein CBP80. Interestingly, association of UAP56 with the spliced mRNA, but not with the pre-mRNA, requires Aly and THO. Unexpectedly, we found that Aly and THO require each other to associate with the spliced mRNA. Consistent with these biochemical results, similar to Aly and UAP56, THO plays critical roles in mRNA export. Together, we propose that Aly, THO and UAP56 form a highly integrated unit to associate with the spliced mRNA and function in mRNA export.
Collapse
Affiliation(s)
- Binkai Chi
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hierlmeier T, Merl J, Sauert M, Perez-Fernandez J, Schultz P, Bruckmann A, Hamperl S, Ohmayer U, Rachel R, Jacob A, Hergert K, Deutzmann R, Griesenbeck J, Hurt E, Milkereit P, Baßler J, Tschochner H. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res 2012. [PMID: 23209026 PMCID: PMC3553968 DOI: 10.1093/nar/gks1056] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p-Noc1p-Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.
Collapse
Affiliation(s)
- Thomas Hierlmeier
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A, Laurent-Chabalier S, Nakamura M, Chen X, Zhang K, Meziane O, Boyer F, Parrinello H, Berkhout B, Terzian C, Benkirane M, Kiernan R. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 2012; 150:1147-57. [PMID: 22980978 DOI: 10.1016/j.cell.2012.08.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
Abstract
Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3'-5' exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation.
Collapse
Affiliation(s)
- Alexandre Wagschal
- Laboratoires de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, 34396 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gurskiy D, Orlova A, Vorobyeva N, Nabirochkina E, Krasnov A, Shidlovskii Y, Georgieva S, Kopytova D. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res 2012; 40:10689-700. [PMID: 22989713 PMCID: PMC3510517 DOI: 10.1093/nar/gks857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SAGA/TFTC is a histone acetyltransferase complex that has a second enzymatic activity because of the presence of a deubiquitination module (DUBm). Drosophila DUBm consists of Sgf11, ENY2 and Nonstop proteins. We show that Sgf11 has other DUBm-independent functions. It associates with Cbp80 component of the cap-binding complex and is thereby recruited onto growing messenger ribonucleic acid (mRNA); it also interacts with the AMEX mRNA export complex and is essential for hsp70 mRNA export, as well as for general mRNA export from the nucleus. Thus, Sgf11 functions as a component of both SAGA DUBm and the mRNA biogenesis machinery.
Collapse
Affiliation(s)
- Dmitriy Gurskiy
- Department of Regulation of Gene Expression, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Larochelle M, Lemay JF, Bachand F. The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res 2012; 40:10240-53. [PMID: 22965128 PMCID: PMC3488260 DOI: 10.1093/nar/gks838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mature snoRNAs. We also show physical and functional connections between THO and components of the TRAMP polyadenylation complex, whose loss of function also results in snoRNA accumulation. Consistent with a role in snoRNA expression, we demonstrate that THO and TRAMP complexes are recruited to snoRNA genes, and that a functional THO complex is required to maintain TRAMP occupancy at sites of snoRNA transcription. Our findings suggest that THO promotes exosome-mediated degradation of snoRNA precursors by ensuring the presence of the TRAMP complex at snoRNA genes. This study unveils an unexpected role for THO in the control of snoRNA expression and provides a new link between transcription and nuclear RNA decay.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
46
|
Ruepp MD, Schümperli D, Barabino SML. mRNA 3' end processing and more--multiple functions of mammalian cleavage factor I-68. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:79-91. [PMID: 21956970 DOI: 10.1002/wrna.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The formation of defined 3(') ends is an important step in the biogenesis of mRNAs. In eukaryotic cells, all mRNA 3(') ends are generated by endonucleolytic cleavage of primary transcripts in reactions that are essentially posttranscriptional. Nevertheless, 3(') end formation is tightly connected to transcription in vivo, and a link with mRNA export to the cytoplasm has been postulated. Here, we briefly review the current knowledge about the two types of mRNA 3(') end processing reactions, cleavage/polyadenylation and histone RNA processing. We then focus on factors shared between these two reactions. In particular, we discuss evidence for new functions of the mammalian cleavage factor I subunit CF I(m) 68 in histone RNA 3(') processing and in the export of mature mRNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
47
|
Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M. Structural basis for the assembly and disassembly of mRNA nuclear export complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:578-92. [PMID: 22406340 DOI: 10.1016/j.bbagrm.2012.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/17/2012] [Indexed: 12/17/2022]
Abstract
Most of the individual components of the nuclear elements of the gene expression pathway have been identified and high-resolution structural information is becoming available for many of them. Information is also starting to become available on the larger complexes they form and is beginning to give clues about how the dynamics of their interactions generate function. Although the translocation of export-competent messenger ribonucleoprotein particles (mRNPs) through the nuclear pore transport channel that is mediated by interactions with nuclear pore proteins (nucleoporins) is relatively well understood, the precise molecular mechanisms underlying the assembly of export-competent mRNPs in the nucleus and their Dbp5-mediated disassembly in the cytoplasm is less well defined. Considerable information has been obtained on the structure of Dbp5 in its different nucleotide-bound states and in complex with Gle1 or Nup159/NUP214. Although the precise manner by which the Dbp5 ATPase cycle is coupled to mRNP remodelling remains to be established, current models capture many key details of this process. The formation of export-competent mRNPs in the nucleus remains an elusive component of this pathway and the precise nature of the remodelling that generates these mRNPs as well as detailed understanding of the molecular mechanisms by which this step is integrated with the transcriptional, splicing and polyadenylation machinery by the TREX and TREX-2 complexes remain obscure. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Eugene Valkov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
48
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
49
|
Khodor YL, Rodriguez J, Abruzzi KC, Tang CHA, Marr MT, Rosbash M. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 2012; 25:2502-12. [PMID: 22156210 DOI: 10.1101/gad.178962.111] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with ∼3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.
Collapse
Affiliation(s)
- Yevgenia L Khodor
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
50
|
Architecture and nucleic acids recognition mechanism of the THO complex, an mRNP assembly factor. EMBO J 2012; 31:1605-16. [PMID: 22314234 DOI: 10.1038/emboj.2012.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022] Open
Abstract
The THO complex is a key factor in co-transcriptional formation of export-competent messenger ribonucleoprotein particles, yet its structure and mechanism of chromatin recruitment remain unknown. In yeast, this complex has been described as a heterotetramer (Tho2, Hpr1, Mft1, and Thp2) that interacts with Tex1 and mRNA export factors Sub2 and Yra1 to form the TRanscription EXport (TREX) complex. In this study, we purified yeast THO and found Tex1 to be part of its core. We determined the three-dimensional structures of five-subunit THO complex by electron microscopy and located the positions of Tex1, Hpr1, and Tho2 C-terminus using various labelling techniques. In the case of Tex1, a β-propeller protein, we have generated an atomic model which docks into the corresponding part of the THO complex envelope. Furthermore, we show that THO directly interacts with nucleic acids through the unfolded C-terminal region of Tho2, whose removal reduces THO recruitment to active chromatin leading to mRNA biogenesis defects. In summary, this study describes the THO architecture, the structural basis for its chromatin targeting, and highlights the importance of unfolded regions of eukaryotic proteins.
Collapse
|