1
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
2
|
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 2014; 42:5177-90. [PMID: 24553251 PMCID: PMC4005640 DOI: 10.1093/nar/gku146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase.
Collapse
Affiliation(s)
- Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robert N. Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher Gell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia C. Burrows
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Dale A. Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Sivaramesh Wigneshweraraj
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - David Alastair Smith
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Buck
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- *To whom correspondence should be addressed. Tel: +44 1133 433092; Fax: +44 1133 437897;
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Correspondence may also be addressed to Roman Tuma. Tel: +44 1133 433080; Fax: +44 1133 437897;
| |
Collapse
|
3
|
Bochkareva A, Zenkin N. The σ70 region 1.2 regulates promoter escape by unwinding DNA downstream of the transcription start site. Nucleic Acids Res 2013; 41:4565-72. [PMID: 23430153 PMCID: PMC3632114 DOI: 10.1093/nar/gkt116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms of abortive synthesis and promoter escape during initiation of transcription are poorly understood. Here, we show that, after initiation of RNA synthesis, non-specific interaction of σ70 region 1.2, present in all σ70 family factors, with the non-template strand around position −4 relative to the transcription start site facilitates unwinding of the DNA duplex downstream of the transcription start site. This leads to stabilization of short RNA products and allows their extension, i.e. promoter escape. We show that this activity of σ70 region 1.2 is assisted by the β-lobe domain, but does not involve the β′-rudder or the β′-switch-2, earlier proposed to participate in promoter escape. DNA sequence independence of this function of σ70 region 1.2 suggests that it may be conserved in all σ70 family factors. Our results indicate that the abortive nature of initial synthesis is caused, at least in part, by failure to open the downstream DNA by the β-lobe and σ region 1.2.
Collapse
Affiliation(s)
- Aleksandra Bochkareva
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | | |
Collapse
|
4
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
5
|
Luo J, Fishburn J, Hahn S, Ranish J. An integrated chemical cross-linking and mass spectrometry approach to study protein complex architecture and function. Mol Cell Proteomics 2011; 11:M111.008318. [PMID: 22067100 DOI: 10.1074/mcp.m111.008318] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Knowledge of protein structures and protein-protein interactions is essential for understanding biological processes. Chemical cross-linking combined with mass spectrometry is an attractive approach for studying protein-protein interactions and protein structure, but to date its use has been limited largely by low yields of informative cross-links (because of inefficient cross-linking reactions) and by the difficulty of confidently identifying the sequences of cross-linked peptide pairs from their fragmentation spectra. Here we present an approach based on a new MS labile cross-linking reagent, BDRG (biotin-aspartate-Rink-glycine), which addresses these issues. BDRG incorporates a biotin handle (for enrichment of cross-linked peptides prior to MS analysis), two pentafluorophenyl ester groups that react with peptide amines, and a labile Rink-based bond between the pentafluorophenyl groups that allows cross-linked peptides to be separated during MS and confidently identified by database searching of their fragmentation spectra. We developed a protocol for the identification of BDRG cross-linked peptides derived from purified or partially purified protein complexes, including software to aid in the identification of different classes of cross-linker-modified peptides. Importantly, our approach permits the use of high accuracy precursor mass measurements to verify the database search results. We demonstrate the utility of the approach by applying it to purified yeast TFIIE, a heterodimeric transcription factor complex, and to a single-step affinity-purified preparation of the 12-subunit RNA polymerase II complex. The results show that the method is effective at identifying cross-linked peptides derived from purified and partially purified protein complexes and provides complementary information to that from other structural approaches. As such, it is an attractive approach to study the topology of protein complexes.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP) enzymes and is highly regulated through the action of gene regulatory complexes. Important mechanistic insights have been gained from structural studies on multisubunit RNAP from bacteria, yeast and archaea, although the initiation process that involves the conversion of the inactive transcription complex to an active one has yet to be fully understood. RNAPs are unambiguously closely related in structure and function across all kingdoms of life and have conserved mechanisms. In bacteria, sigma (sigma) factors direct RNAP to specific promoter sites and the RNAP/sigma holoenzyme can either form a stable closed complex that is incompetent for transcription (as in the case of sigma(54)) or can spontaneously proceed to an open complex that is competent for transcription (as in the case of sigma(70)). The conversion of the RNAP/sigma(54) closed complex to an open complex requires ATP hydrolysis by enhancer-binding proteins, hence providing an ideal model system for studying the initiation process biochemically and structurally. In this review, we present recent structural studies of the two major bacterial RNAP holoenzymes and focus on mechanistic advances in the transcription initiation process via enhancer-binding proteins.
Collapse
Affiliation(s)
- Tamaswati Ghosh
- Department of Life Sciences, Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | |
Collapse
|
7
|
A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase. Proc Natl Acad Sci U S A 2010; 107:9376-81. [PMID: 20439713 DOI: 10.1073/pnas.1001188107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP hydrolysis-dependent molecular machines and motors often drive regulated conformational transformations in cell signaling and gene regulation complexes. Conformational reorganization of a gene regulation complex containing the major variant form of bacterial RNA polymerase (RNAP), Esigma(54), requires engagement with its cognate ATP-hydrolyzing activator protein. Importantly, this activated RNAP is essential for a number of adaptive responses, including those required for bacterial pathogenesis. Here we characterize the initial encounter between the enhancer-dependent Esigma(54) and its cognate activator AAA+ ATPase protein, before ADP+P(i) formation, using a small primed RNA (spRNA) synthesis assay. The results show that in a prehydrolysis state, sufficient activator-dependent rearrangements in Esigma(54) have occurred to allow engagement of the RNAP active site with single-stranded promoter DNA to support spRNA synthesis, but not to melt the promoter DNA. This catalytically competent transcription intermediate has similarity with the open promoter complex, in that the RNAP dynamics required for DNA scrunching should be occurring. Significantly, this work highlights that prehydrolysis states of ATPases are functionally important in the molecular transformations they drive.
Collapse
|
8
|
Zhang N, Joly N, Burrows PC, Jovanovic M, Wigneshweraraj SR, Buck M. The role of the conserved phenylalanine in the sigma54-interacting GAFTGA motif of bacterial enhancer binding proteins. Nucleic Acids Res 2009; 37:5981-92. [PMID: 19692583 PMCID: PMC2764435 DOI: 10.1093/nar/gkp658] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
σ54-dependent transcription requires activation by bacterial enhancer binding proteins (bEBPs). bEBPs are members of the AAA+ (ATPases associated with various cellular activities) protein family and typically form hexameric structures that are crucial for their ATPase activity. The precise mechanism by which the energy derived from ATP hydrolysis is coupled to biological output has several unknowns. Here we use Escherichia coli PspF, a model bEBP involved in the transcription of stress response genes (psp operon), to study determinants of its contact features with the closed promoter complex. We demonstrate that substitution of a highly conserved phenylalanine (F85) residue within the L1 loop GAFTGA motif affects (i) the ATP hydrolysis rate of PspF, demonstrating the link between L1 and the nucleotide binding pocket; (ii) the internal organization of the hexameric ring; and (iii) σ54 interactions. Importantly, we provide evidence for a close relationship between F85 and the −12 DNA fork junction structure, which may contribute to key interactions during the energy coupling step and the subsequent remodelling of the Eσ54 closed complex. The functionality of F85 is distinct from that of other GAFTGA residues, especially T86 where in contrast to F85 a clean uncoupling phenotype is observed.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, and Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
9
|
Burrows PC, Joly N, Nixon BT, Buck M. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues. Nucleic Acids Res 2009; 37:5138-50. [PMID: 19553192 PMCID: PMC2731916 DOI: 10.1093/nar/gkp541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) containing the major variant σ54 factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between σ54-RNAP (Eσ54) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP–BeF- and ADP–AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Eσ54 closed complex results in the re-organization of Eσ54 with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Eσ54 closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
10
|
Burrows PC, Schumacher J, Amartey S, Ghosh T, Burgis TA, Zhang X, Nixon BT, Buck M. Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein. Mol Microbiol 2009; 73:519-33. [PMID: 19486295 PMCID: PMC2745333 DOI: 10.1111/j.1365-2958.2009.06744.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial σ54-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein–DNA proximity assay to measure the contribution of the pre-SIi loop in σ54-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Eσ54. We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Life Sciences, Division of Biology, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Peña-Sánchez J, Poggio S, Flores-Pérez U, Osorio A, Domenzain C, Dreyfus G, Camarena L. Identification of the binding site of the σ
54 hetero-oligomeric FleQ/FleT activator in the flagellar promoters of Rhodobacter sphaeroides. Microbiology (Reading) 2009; 155:1669-1679. [DOI: 10.1099/mic.0.024455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the flagellar genes in Rhodobacter sphaeroides is dependent on one of the four sigma-54 factors present in this bacterium and on the enhancer binding proteins (EBPs) FleQ and FleT. These proteins, in contrast to other well-characterized EBPs, carry out activation as a hetero-oligomeric complex. To further characterize the molecular properties of this complex we mapped the binding sites or upstream activation sequences (UASs) of six different flagellar promoters. In most cases the UASs were identified at approximately 100 bp upstream from the promoter. However, the activity of the divergent promoters flhAp-flgAp, which are separated by only 53 bp, is mainly dependent on a UAS located approximately 200 bp downstream from each promoter. Interestingly, a significant amount of activation mediated by the upstream or contralateral UAS was also detected, suggesting that the architecture of this region is important for the correct regulation of these promoters. Sequence analysis of the regions carrying the potential FleQ/FleT binding sites revealed a conserved motif. In vivo footprinting experiments with the motAp promoter allowed us to identify a protected region that overlaps with this motif. These results allow us to propose a consensus sequence that represents the binding site of the FleQ/FleT activating complex.
Collapse
Affiliation(s)
- J. Peña-Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - S. Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - U. Flores-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - A. Osorio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - C. Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - G. Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - L. Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| |
Collapse
|
12
|
Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 2009; 387:306-19. [PMID: 19356588 DOI: 10.1016/j.jmb.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.
Collapse
Affiliation(s)
- Patricia C Burrows
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 2008; 32:337-46. [PMID: 18995832 PMCID: PMC2680985 DOI: 10.1016/j.molcel.2008.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/30/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
Transcription initiation involves the conversion from closed promoter complexes, comprising RNA polymerase (RNAP) and double-stranded promoter DNA, to open complexes, in which the enzyme is able to access the DNA template in a single-stranded form. The complex between bacterial RNAP and its major variant sigma factor σ54 remains as a closed complex until ATP hydrolysis-dependent remodeling by activator proteins occurs. This remodeling facilitates DNA melting and allows the transition to the open complex. Here we present cryoelectron microscopy reconstructions of bacterial RNAP in complex with σ54 alone, and of RNAP-σ54 with an AAA+ activator. Together with photo-crosslinking data that establish the location of promoter DNA within the complexes, we explain why the RNAP-σ54 closed complex is unable to access the DNA template and propose how the structural changes induced by activator binding can initiate conformational changes that ultimately result in formation of the open complex.
Collapse
|
14
|
Visualizing the organization and reorganization of transcription complexes for gene expression. Biochem Soc Trans 2008; 36:776-9. [PMID: 18631157 DOI: 10.1042/bst0360776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulated gene expression requires control of the transcription machinery, frequently through the establishment of different functional states of the transcribing enzyme RNA polymerase and its attendant activator proteins. In bacteria, major adaptive responses use an enhancer-dependent RNA polymerase, activated for transcription by a class of ATPases that remodel initial promoter complexes to form transcriptionally proficient open promoter complexes. In the present article, we summarize the integrated use of site-specific protein cleavage and DNA cross-linking methods, as well as FRET (fluorescence resonance energy transfer) in combination with X-ray crystallography and cryo-electron microscopy to gain insight into the organization of the enhancer-dependent sigma 54-RNA polymerase and the ATPase-driven activation mechanism.
Collapse
|
15
|
Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. J Mol Biol 2008; 381:1-12. [PMID: 18599077 DOI: 10.1016/j.jmb.2008.05.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/16/2022]
Abstract
AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Joly N, Burrows PC, Buck M. An intramolecular route for coupling ATPase activity in AAA+ proteins for transcription activation. J Biol Chem 2008; 283:13725-35. [PMID: 18326037 DOI: 10.1074/jbc.m800801200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AAA+ proteins (ATPases associated with various cellular activities) contribute to many cellular processes and typically function as higher order oligomers permitting the coordination of nucleotide hydrolysis for functional output, which leads to substrate remodeling. The precise mechanisms that enable the relay of nucleotide hydrolysis to their specific functional outputs are largely unknown. Here we use PspF, a specialized AAA+ protein required for enhancer-dependent transcription activation in Escherichia coli, as a model system to address this question. We demonstrate that a conserved asparagine is involved in internal organization of the oligomeric ring, regulation of ATPase activity by "trans" factors, and optimizing substrate remodeling. We provide evidence that the spatial relationship between the asparagine residue and the Walker B motif is one key element in the conformational signaling pathway that leads to substrate remodeling. Such functional organization most likely applies to other AAA+ proteins, including Ltag (simian virus 40), Rep40 (Adeno-associated virus-2), and p97 (Mus musculus) in which the asparagine to Walker B motif relationship is conserved.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
17
|
Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 2008; 68:538-46. [PMID: 18331472 DOI: 10.1111/j.1365-2958.2008.06181.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial sigma (sigma) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative sigma factor sigma(54) confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the sigma(54) factor makes with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Sivaramesh Wigneshweraraj
- Department of Microbiology, Division of Investigative Sciences, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
bEBPs (bacterial enhancer-binding proteins) are AAA+ (ATPase associated with various cellular activities) transcription activators that activate gene transcription through a specific bacterial sigma factor, sigma(54). Sigma(54)-RNAP (RNA polymerase) binds to promoter DNA sites and forms a stable closed complex, unable to proceed to transcription. The closed complex must be remodelled using energy from ATP hydrolysis provided by bEBPs to melt DNA and initiate transcription. Recently, large amounts of structural and biochemical data have produced insights into how ATP hydrolysis within the active site of bEBPs is coupled to the re-modelling of the closed complex. In the present article, we review some of the key nucleotides, mutations and techniques used and how they have contributed towards our understanding of the function of bEBPs.
Collapse
|
19
|
Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 2007; 375:43-58. [PMID: 18005983 DOI: 10.1016/j.jmb.2007.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/24/2022]
Abstract
Transcriptional control at the promoter melting step is not yet well understood. In this study, a site-directed photo-cross-linking method was used to systematically analyse component protein-DNA interactions that govern promoter melting by the enhancer-dependent Escherichia coli RNA polymerase (RNAP) containing the sigma(54) promoter specificity factor (E sigma(54)) at a single base pair resolution in three functional states. The sigma(54)-factor imposes tight control upon the RNAP by creating a regulatory switch where promoter melting nucleates, approximately 12 bp upstream of the transcription start site. Promoter melting by E sigma(54) is only triggered upon remodelling of this regulatory switch by a specialised activator protein in an ATP-hydrolysing reaction. We demonstrate that prior to DNA melting, only the sigma(54)-factor directly interacts with the promoter in the regulatory switch within the initial closed E sigma(54)-promoter complex and one intermediate E sigma(54)-promoter complex. We establish that activator-induced conformational rearrangements in the regulatory switch are a prerequisite to allow the promoter to enter the catalytic cleft of the RNAP and hence establish the transcriptionally competent open complex, where full promoter melting occurs. These results significantly advance our current understanding of the structural transitions occurring at bacterial promoters, where regulation occurs at the DNA melting step.
Collapse
|
20
|
Joly N, Rappas M, Wigneshweraraj SR, Zhang X, Buck M. Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein. Mol Microbiol 2007; 66:583-95. [PMID: 17883390 DOI: 10.1111/j.1365-2958.2007.05901.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial enhancer binding proteins (bEBP) are members of the AAA+ protein family and have a highly conserved 'DE' Walker B motif thought to be involved in the catalytic function of the protein with an active role in nucleotide hydrolysis. Based on detailed structural data, we analysed the functionality of the conserved 'DE' Walker B motif of a bEBP model, phage shock protein F (PspF), to investigate the role of these residues in the sigma(54)-dependent transcription activation process. We established their role in the regulation of PspF self-association and in the relay of the ATPase activity to the remodelling of an RNA polymerase.promoter complex (Esigma(54).DNA). Specific substitutions of the conserved glutamate (E) allowed the identification of new functional ATP.bEBP.Esigma(54) complexes which are stable and transcriptionally competent, providing a new tool to study the initial events of the sigma(54)-dependent transcription activation process. In addition, we show the importance of this glutamate residue in sigma(54).DNA conformation sensing, permitting the identification of new intermediate stages within the transcription activation pathway.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
21
|
Buck M, Bose D, Burrows P, Cannon W, Joly N, Pape T, Rappas M, Schumacher J, Wigneshweraraj S, Zhang X. A second paradigm for gene activation in bacteria. Biochem Soc Trans 2007; 34:1067-71. [PMID: 17073752 DOI: 10.1042/bst0341067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA(+) (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the sigma(54) factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The sigma(54) factor then controls the conformational changes in the RNAP required to form the open promoter complex.
Collapse
Affiliation(s)
- M Buck
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schumacher J, Joly N, Rappas M, Bradley D, Wigneshweraraj SR, Zhang X, Buck M. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 2007; 282:9825-9833. [PMID: 17242399 DOI: 10.1074/jbc.m611532200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominic Bradley
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Xiaodong Zhang
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
23
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2006; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|
24
|
Joly N, Schumacher J, Buck M. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 2006; 281:34997-5007. [PMID: 16973614 DOI: 10.1074/jbc.m606628200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
25
|
Leach RN, Gell C, Wigneshweraraj S, Buck M, Smith A, Stockley PG. Mapping ATP-dependent activation at a sigma54 promoter. J Biol Chem 2006; 281:33717-26. [PMID: 16926155 DOI: 10.1074/jbc.m605731200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54) promoter specificity factor is distinct from other bacterial RNA polymerase (RNAP) sigma factors in that it forms a transcriptionally silent closed complex upon promoter binding. Transcriptional activation occurs through a nucleotide-dependent isomerization of sigma(54), mediated via its interactions with an enhancer-binding activator protein that utilizes the energy released in ATP hydrolysis to effect structural changes in sigma(54) and core RNA polymerase. The organization of sigma(54)-promoter and sigma(54)-RNAP-promoter complexes was investigated by fluorescence resonance energy transfer assays using sigma(54) single cysteine-mutants labeled with an acceptor fluorophore and donor fluorophore-labeled DNA sequences containing mismatches that mimic nifH early- and late-melted promoters. The results show that sigma(54) undergoes spatial rearrangements of functionally important domains upon closed complex formation. sigma(54) and sigma(54)-RNAP promoter complexes reconstituted with the different mismatched DNA constructs were assayed by the addition of the activator phage shock protein F in the presence or absence of ATP and of non-hydrolysable analogues. Nucleotide-dependent alterations in fluorescence resonance energy transfer efficiencies identify different functional states of the activator-sigma(54)-RNAP-promoter complex that exist throughout the mechano-chemical transduction pathway of transcriptional activation, i.e. from closed to open promoter complexes. The results suggest that open complex formation only occurs efficiently on replacement of a repressive fork junction with down-stream melted DNA.
Collapse
Affiliation(s)
- Robert N Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
26
|
Schumacher J, Joly N, Rappas M, Zhang X, Buck M. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 2006; 156:190-9. [PMID: 16531068 DOI: 10.1016/j.jsb.2006.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Initiation of transcription is a major point of transcriptional regulation and invariably involves the transition from a closed to an open RNA polymerase (RNAP) promoter complex. In the case of the sigma(54)-RNAP, this multi step process requires energy, provided by ATP hydrolysis occurring within the AAA+ domain of enhancer binding proteins (EBPs). Typically, EBPs have an N-terminal regulatory domain, a central AAA+ domain that directly contacts sigma(54) and a C-terminal DNA binding domain. The following AAA+ EBP crystal structures have recently become available: heptameric AAA+ domains of NtrC1 and dimeric NtrC1 with its regulatory domain, hexameric AAA+ domains of ZraR with DNA binding domains, apo and nucleotide bound forms of the AAA+ domain of PspF as well as a cryo-EM structure of the AAA+ domain of PspF complexed with sigma(54). These AAA+ domains reveal the structural conservation between EBPs and other AAA+ domains. EBP specific structural features involved in substrate remodelling are located proximal to the pore of the hexameric ring. Parallels with the substrate binding elements near the central pore of other AAA+ members are drawn. We propose a structural model of EBPs in complex with a sigma(54)-RNAP-promoter complex.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
27
|
Rappas M, Schumacher J, Niwa H, Buck M, Zhang X. Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. J Mol Biol 2006; 357:481-92. [PMID: 16430918 DOI: 10.1016/j.jmb.2005.12.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022]
Abstract
Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.
Collapse
Affiliation(s)
- Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
28
|
Ray P, Hall RJ, Finn RD, Chen S, Patwardhan A, Buck M, van Heel M. Conformational Changes of Escherichia coli σ54-RNA-Polymerase upon Closed–Promoter Complex Formation. J Mol Biol 2005; 354:201-5. [PMID: 16246367 DOI: 10.1016/j.jmb.2005.09.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase from the mesophile Escherichia coli exists in two forms, the core enzyme and the holoenzyme. Using cryo-electron microscopy and single-particle analysis, we have obtained the structure of the complete RNA polymerase from E.coli containing the sigma54 factor within the closed-promoter complex. Comparisons with earlier reconstructions of the core enzyme and the sigma54 holoenzyme reveal the behaviour of this major variant RNA polymerase in defined functional states. The binding of DNA leads to significant conformational changes in the enzyme's catalytic subunits, apparently a necessity for the initiation of enhancer-dependent promoter-specific transcription.
Collapse
Affiliation(s)
- Pampa Ray
- Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Wigneshweraraj SR, Burrows PC, Severinov K, Buck M. Stable DNA opening within open promoter complexes is mediated by the RNA polymerase beta'-jaw domain. J Biol Chem 2005; 280:36176-84. [PMID: 16123036 DOI: 10.1074/jbc.m506416200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA opening for transcription-competent open promoter complex (OC) formation by the bacterial RNA polymerase (RNAP) relies upon a complex network of interactions between the structurally conserved and flexible modules of the catalytic beta and beta'-subunits, RNAP-associated sigma-subunit, and the DNA. Here, we show that one such module, the beta'-jaw, functions to stabilize the OC. In OCs formed by the major sigma70-RNAP, the stabilizing role of the beta'-jaw is not restricted to any particular melted DNA segment. In contrast, in OCs formed by the major variant sigma54-RNAP, the beta'-jaw and a conserved sigma54 regulatory domain co-operate to stabilize the melted DNA segment immediately upstream of the transcription start site. Clearly, regulated communication between the mobile modules of the RNAP and the functional domain(s) of the sigma subunit is required for stable DNA opening.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Division of Biology, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
30
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. EMBO J 2004; 23:4264-74. [PMID: 15470503 PMCID: PMC524387 DOI: 10.1038/sj.emboj.7600407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.
Collapse
Affiliation(s)
| | | | | | - Nikolay Zenkin
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08904, USA. Tel.: +1 732 445 6095; Fax: +1 732 445 573; E-mail:
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
32
|
Cannon WV, Schumacher J, Buck M. Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein. Nucleic Acids Res 2004; 32:4596-608. [PMID: 15333692 PMCID: PMC516047 DOI: 10.1093/nar/gkh755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/14/2004] [Accepted: 07/21/2004] [Indexed: 11/12/2022] Open
Abstract
Enhancer-dependent transcriptional activators that act upon the sigma54 bacterial RNA polymerase holoenzyme belong to the extensive AAA+ superfamily of mechanochemical ATPases. Formation and collapse of the transition state for ATP hydrolysis engenders direct interactions between AAA+ activators and the sigma54 factor, required for RNA polymerase isomerization. A DNA fork junction structure present within closed complexes serves as a nucleation point for the DNA melting seen in open promoter complexes and restricts spontaneous activator-independent RNA polymerase isomerization. We now provide physical evidence showing that the ADP.AlF(x) bound form of the AAA+ domain of the transcriptional activator protein PspF changes interactions between sigma54-RNA polymerase and a DNA fork junction structure present in the closed promoter complex. The results suggest that one functional state of the nucleotide-bound activator serves to alter DNA binding by sigma54 and sigma54-RNA polymerase and appears to drive events that precede DNA opening. Clear evidence for a DNA-interacting activity in the AAA+ domain of PspF was obtained, suggesting that PspF may make a direct contact to the DNA component of a basal promoter complex to promote changes in sigma54-RNA polymerase-DNA interactions that favour open complex formation. We also provide evidence for two distinct closed promoter complexes with differing stabilities.
Collapse
Affiliation(s)
- W V Cannon
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|