1
|
Nawn D, Hassan SS, Sil M, Ghosh A, Goswami A, Uversky VN. Proximal relationships of moonlighting proteins in Escherichia coli: A mathematical genomics perspective. Int J Biol Macromol 2025; 308:142766. [PMID: 40180079 DOI: 10.1016/j.ijbiomac.2025.142766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Moonlighting proteins in Escherichia coli (E.coli) perform multiple independent functions without altering their primary amino acid sequence, challenging the "one gene-one enzyme" hypothesis. Bacterial proteins serve various functions, including host cell adhesion, extracellular matrix interaction, and immune modulation, while also supporting essential physiological processes within the bacteria. Identifying these proteins in pathogens and tracking their genetic changes is crucial for understanding bacterial survival and virulence. A quantitative understanding of these proteins is pivotal as it enables the identification of specific patterns and relationships between amino acid composition, protein stability, and functional versatility. This study quantitatively analyzes 50 E. coli moonlighting proteins, revealing alanine as the most frequent residue (8.92 % median), while cysteine had the lowest (0.58 %). A preference for non-polar residues was observed (polar-to-non-polar ratio: 0.89). Quantitative features analyses identified seven distinct proximal sets, reflecting the pro- teins' spatial arrangements of amino acids, structural diversity, and functional roles in processes such as metabolism, stress response, and gene regulation. The highest percentage of disordered residues was 56.45 %, significantly lower than 100 % in human moonlighting proteins. These results deepen our understanding of the multifunctionality of E. coli moonlighting proteins, indicating their adaptability and implications for bacterial survival and pathogenicity.
Collapse
Affiliation(s)
- Debaleena Nawn
- Department of Computer Science and Engineering, Adamas University, Adamas Knowledge City, Barasat - Barrackpore Road" Jagannathpur, Kolkata 700126, West Bengal, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, West Bengal, India.
| | - Moumita Sil
- Biological Science Division, Indian Statistical Institute, 203 B.T Road, Kolkata 700108, West Bengal, India
| | - Ankita Ghosh
- Biological Science Division, Indian Statistical Institute, 203 B.T Road, Kolkata 700108, West Bengal, India
| | - Arunava Goswami
- Biological Science Division, Indian Statistical Institute, 203 B.T Road, Kolkata 700108, West Bengal, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Skovgaard O. An additional replication origin causes cell cycle specific DNA replication fork speed. Front Microbiol 2025; 16:1584664. [PMID: 40371120 PMCID: PMC12075136 DOI: 10.3389/fmicb.2025.1584664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Replication fork speed (RFS) in Escherichia coli has long been considered constant throughout the replication and cell cycles. In wild-type cells, the circular chromosome is duplicated bidirectionally from oriC, yielding two replication forks that converge at the ter region. Under slow-growth conditions, cells are smaller at initiation than at termination, so DNA replication consumes a larger fraction of cellular resources early in the cell cycle. To challenge this paradigm, we analyzed an E. coli strain with an additional ectopic copy of oriC-designated oriX-inserted midway along the left replichore. In this mutant, replication initiates simultaneously from both oriC and oriX, resulting in four active replication forks early in the cycle. Specifically, the rightward-moving fork from oriX and the leftward-moving fork from oriC converge first, while the leftward-moving fork from oriX is halted at the terA site until the arrival of the rightward-moving oriC fork. Consequently, the number of active replication forks varies dynamically-from zero to four, then two, then one, and finally zero-compared to the fixed zero-two-zero pattern observed in wild-type cells. RFS was calculated using marker frequency analysis of deep sequencing data. Our analysis revealed that RFS is reduced by approximately one third when four replication forks are active and increases by about one fourth when only one fork is active, resulting in a 2-fold variation in RFS during the replication cycle. Moreover, delaying replication initiation or increasing the available dNTP pool normalized these variations, indicating that nucleotide supply is the primary constraint on replication speed. These findings demonstrate that RFS is not inherently constant within a replication cycle and provide a basis for further studies into the factors that regulate replication kinetics.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
3
|
Boesen TO, Charbon G, Fu H, Jensen C, Sandler M, Jun S, Løbner-Olesen A. Dispensability of extrinsic DnaA regulators in Escherichia coli cell-cycle control. Proc Natl Acad Sci U S A 2024; 121:e2322772121. [PMID: 40014855 PMCID: PMC11331064 DOI: 10.1073/pnas.2322772121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/26/2024] [Indexed: 03/01/2025] Open
Abstract
Investigating a long-standing conceptual question in bacterial physiology, we examine why DnaA, the bacterial master replication initiator protein, exists in both ATP and ADP forms, despite only the ATP form being essential for initiation. We engineered the Δ4 Escherichia coli strain, devoid of all known external elements facilitating the DnaA-ATP/ADP conversion and found that these cells display nearly wild-type behaviors under nonoverlapping replication cycles. However, during rapid growth with overlapping cycles, Δ4 cells exhibit initiation instability. This aligns with our model predictions, suggesting that the intrinsic ATPase activity of DnaA alone is sufficient for robust initiation control in E. coli and the DnaA-ATP/ADP conversion regulatory elements extend the robustness to multifork replication, indicating an evolutionary adaptation. Moreover, our experiments revealed constant DnaA concentrations during steady-state cell elongation in both wild-type and Δ4 cells. These insights not only advance our understanding of bacterial cell-cycle regulation and DnaA but also highlight a fundamental divergence from eukaryotic cell-cycle controls, emphasizing protein copy-number sensing in bacteria versus programmed protein concentration oscillations in eukaryotes.
Collapse
Affiliation(s)
- Thias Oberg Boesen
- Department of Biology, University of Copenhagen, Copenhagen2200, Denmark
| | - Godefroid Charbon
- Department of Biology, University of Copenhagen, Copenhagen2200, Denmark
| | - Haochen Fu
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Cara Jensen
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Michael Sandler
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | - Suckjoon Jun
- Department of Physics, University of California San Diego, La Jolla, CA92093
| | | |
Collapse
|
4
|
Sass TH, Lovett ST. The DNA damage response of Escherichia coli, revisited: Differential gene expression after replication inhibition. Proc Natl Acad Sci U S A 2024; 121:e2407832121. [PMID: 38935560 PMCID: PMC11228462 DOI: 10.1073/pnas.2407832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
In 1967, in this journal, Evelyn Witkin proposed the existence of a coordinated DNA damage response in Escherichia coli, which later came to be called the "SOS response." We revisited this response using the replication inhibitor azidothymidine (AZT) and RNA-Seq analysis and identified several features. We confirm the induction of classic Save our ship (SOS) loci and identify several genes, including many of the pyrimidine pathway, that have not been previously demonstrated to be DNA damage-inducible. Despite a strong dependence on LexA, these genes lack LexA boxes and their regulation by LexA is likely to be indirect via unknown factors. We show that the transcription factor "stringent starvation protein" SspA is as important as LexA in the regulation of AZT-induced genes and that the genes activated by SspA change dramatically after AZT exposure. Our experiments identify additional LexA-independent DNA damage inducible genes, including 22 small RNA genes, some of which appear to activated by SspA. Motility and chemotaxis genes are strongly down-regulated by AZT, possibly as a result of one of more of the small RNAs or other transcription factors such as AppY and GadE, whose expression is elevated by AZT. Genes controlling the iron siderophore, enterobactin, and iron homeostasis are also strongly induced, independent of LexA. We confirm that IraD antiadaptor protein is induced independent of LexA and that a second antiadaptor, IraM is likewise strongly AZT-inducible, independent of LexA, suggesting that RpoS stabilization via these antiadaptor proteins is an integral part of replication stress tolerance.
Collapse
Affiliation(s)
- Thalia H. Sass
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| |
Collapse
|
5
|
Campion C, Charbon G, Nielsen PE, Løbner-Olesen A. Targeting synthesis of the Chromosome Replication Initiator Protein DnaA by antisense PNA-peptide conjugates in Escherichia coli. FRONTIERS IN ANTIBIOTICS 2024; 3:1384390. [PMID: 39816250 PMCID: PMC11732032 DOI: 10.3389/frabi.2024.1384390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 01/18/2025]
Abstract
Initiation of chromosome replication is an essential stage of the bacterial cell cycle that is controlled by the DnaA protein. With the aim of developing novel antimicrobials, we have targeted the initiation of DNA replication, using antisense peptide nucleic acids (PNAs), directed against DnaA translation. A series of anti-DnaA PNA conjugated to lysine-rich bacterial penetrating peptides (PNA-BPPs) were designed to block DnaA translation. These anti-DnaA PNA-BPPs inhibited growth of wild-type Escherichia coli cells at low micromolar concentrations, and cells exposed to anti-DnaA PNA-BPPs exhibited characteristic hallmarks of chromosome replication inhibition. These results present one of very few compounds successfully targeting initiation of chromosome replication, an essential step in the bacterial cell cycle.
Collapse
Affiliation(s)
- Christopher Campion
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Godefroid Charbon
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Chen T, Liu T, Wu Z, Wang B, Chen Q, Zhang M, Liang E, Ni J. Virus-pathogen interactions improve water quality along the Middle Route of the South-to-North Water Diversion Canal. THE ISME JOURNAL 2023; 17:1719-1732. [PMID: 37524909 PMCID: PMC10504254 DOI: 10.1038/s41396-023-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Bacterial pathogens and viruses are the leading causes of global waterborne diseases. Here, we discovered an interesting natural paradigm of water "self-purification" through virus-pathogen interactions over a 1432 km continuum along the Middle Route of the South-to-North Water Diversion Canal (MR-SNWDC) in China, the largest water transfer project in the world. Due to the extremely low total phosphorus (TP) content (ND-0.02 mg/L) in the MR-SNWDC, the whole canal has experienced long-lasting phosphorus (P) limitation since its operation in 2015. Based on 4443 metagenome-assembled genomes (MAGs) and 40,261 nonredundant viral operational taxonomic units (vOTUs) derived from our recent monitoring campaign, we found that residential viruses experiencing extreme P constraints had to adopt special adaptive strategies by harboring smaller genomes to minimize nucleotide replication, DNA repair, and posttranslational modification costs. With the decreasing P supply downstream, bacterial pathogens showed repressed environmental fitness and growth potential, and a weakened capacity to maintain P acquisition, membrane formation, and ribonucleotide biosynthesis. Consequently, the unique viral predation effects under P limitation, characterized by enhanced viral lytic infections and an increased abundance of ribonucleotide reductase (RNR) genes linked to viral nuclear DNA replication cycles, led to unexpectedly lower health risks from waterborne bacterial pathogens in the downstream water-receiving areas. These findings highlighted the great potential of water self-purification associated with virus-pathogen dynamics for water-quality improvement and sustainable water resource management.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qian Chen
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Mi Zhang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Enhang Liang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
7
|
Kohiyama M, Herrick J, Norris V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life (Basel) 2023; 13:1890. [PMID: 37763294 PMCID: PMC10532879 DOI: 10.3390/life13091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division.
Collapse
Affiliation(s)
- Masamichi Kohiyama
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France;
| | - John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- CBSA UR 4312, University of Rouen Normandy, University of Caen Normandy, Normandy University, 76000 Rouen, France
| |
Collapse
|
8
|
Huang D, Johnson AE, Sim BS, Lo TW, Merrikh H, Wiggins PA. The in vivo measurement of replication fork velocity and pausing by lag-time analysis. Nat Commun 2023; 14:1762. [PMID: 36997519 PMCID: PMC10063678 DOI: 10.1038/s41467-023-37456-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractAn important step towards understanding the mechanistic basis of the central dogma is the quantitative characterization of the dynamics of nucleic-acid-bound molecular motors in the context of the living cell. To capture these dynamics, we develop lag-time analysis, a method for measuring in vivo dynamics. Using this approach, we provide quantitative locus-specific measurements of fork velocity, in units of kilobases per second, as well as replisome pause durations, some with the precision of seconds. The measured fork velocity is observed to be both locus and time dependent, even in wild-type cells. In this work, we quantitatively characterize known phenomena, detect brief, locus-specific pauses at ribosomal DNA loci in wild-type cells, and observe temporal fork velocity oscillations in three highly-divergent bacterial species.
Collapse
|
9
|
Sass TH, Ferrazzoli AE, Lovett ST. DnaA and SspA regulation of the iraD gene of Escherichia coli: an alternative DNA damage response independent of LexA/RecA. Genetics 2022; 221:6571813. [PMID: 35445706 PMCID: PMC9157160 DOI: 10.1093/genetics/iyac062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor RpoS of Escherichia coli controls many genes important for tolerance of a variety of stress conditions. IraD promotes the post-translation stability of RpoS by inhibition of RssB, an adaptor protein for ClpXP degradation. We have previously documented DNA damage induction of iraD expression, independent of the SOS response. Both iraD and rpoS are required for tolerance to DNA damaging treatments such as H2O2 and the replication inhibitor azidothymidine in the log phase of growth. Using luciferase gene fusions to the 672 bp iraD upstream region, we show here that both promoters of iraD are induced by azidothymidine. Genetic analysis suggests that both promoters are repressed by DnaA-ATP, partially dependent on a putative DnaA box at -81 bp and are regulated by regulatory inactivation of DnaA, dependent on the DnaN processivity clamp. By electrophoretic mobility shift assays, we show that purified DnaA protein binds to the iraD upstream region, so DnaA regulation of IraD is likely to be direct. DNA damage induction of iraD during log phase growth is abolished in the dnaA-T174P mutant, suggesting that DNA damage, in some way, relieves DnaA repression, possibly through the accumulation of replication clamps and enhanced regulatory inactivation of DnaA. We also demonstrate that the RNA-polymerase associated factor, stringent starvation protein A, induced by the accumulation of ppGpp, also affects iraD expression, with a positive effect on constitutive expression and a negative effect on azidothymidine-induced expression.
Collapse
Affiliation(s)
- Thalia H Sass
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Alexander E Ferrazzoli
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Susan T Lovett
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
10
|
Elevated Levels of the Escherichia coli nrdAB-Encoded Ribonucleotide Reductase Counteract the Toxicity Caused by an Increased Abundance of the β Clamp. J Bacteriol 2021; 203:e0030421. [PMID: 34543109 DOI: 10.1128/jb.00304-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the Escherichia coli dnaN-encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (βE202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaNE202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB, that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaNE202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the βE202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB-encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaNE202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaNE202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaNE202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and βE202K clamp proteins support equivalent levels of Hda activity in vitro. Taken together, these results suggest that βE202K-Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.
Collapse
|
11
|
Kasho K, Oshima T, Chumsakul O, Nakamura K, Fukamachi K, Katayama T. Whole-Genome Analysis Reveals That the Nucleoid Protein IHF Predominantly Binds to the Replication Origin oriC Specifically at the Time of Initiation. Front Microbiol 2021; 12:697712. [PMID: 34475859 PMCID: PMC8407004 DOI: 10.3389/fmicb.2021.697712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
The structure and function of bacterial chromosomes are dynamically regulated by a wide variety of nucleoid-associated proteins (NAPs) and DNA superstructures, such as DNA supercoiling. In Escherichia coli, integration host factor (IHF), a NAP, binds to specific transcription promoters and regulatory DNA elements of DNA replication such as the replication origin oriC: binding to these elements depends on the cell cycle but underlying mechanisms are unknown. In this study, we combined GeF-seq (genome footprinting with high-throughput sequencing) with synchronization of the E. coli cell cycle to determine the genome-wide, cell cycle-dependent binding of IHF with base-pair resolution. The GeF-seq results in this study were qualified enough to analyze genomic IHF binding sites (e.g., oriC and the transcriptional promoters of ilvG and osmY) except some of the known sites. Unexpectedly, we found that before replication initiation, oriC was a predominant site for stable IHF binding, whereas all other loci exhibited reduced IHF binding. To reveal the specific mechanism of stable oriC–IHF binding, we inserted a truncated oriC sequence in the terC (replication terminus) locus of the genome. Before replication initiation, stable IHF binding was detected even at this additional oriC site, dependent on the specific DnaA-binding sequence DnaA box R1 within the site. DnaA oligomers formed on oriC might protect the oriC–IHF complex from IHF dissociation. After replication initiation, IHF rapidly dissociated from oriC, and IHF binding to other sites was sustained or stimulated. In addition, we identified a novel locus associated with cell cycle-dependent IHF binding. These findings provide mechanistic insight into IHF binding and dissociation in the genome.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Kensuke Nakamura
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
| | - Kazuki Fukamachi
- Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Menikpurage IP, Woo K, Mera PE. Transcriptional Activity of the Bacterial Replication Initiator DnaA. Front Microbiol 2021; 12:662317. [PMID: 34140937 PMCID: PMC8203912 DOI: 10.3389/fmicb.2021.662317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
In bacteria, DnaA is the most conserved DNA replication initiator protein. DnaA is a DNA binding protein that is part of the AAA+ ATPase family. In addition to initiating chromosome replication, DnaA can also function as a transcription factor either as an activator or repressor. The first gene identified to be regulated by DnaA at the transcriptional levels was dnaA. DnaA has been shown to regulate genes involved in a variety of cellular events including those that trigger sporulation, DNA repair, and cell cycle regulation. DnaA's dual functions (replication initiator and transcription factor) is a potential mechanism for DnaA to temporally coordinate diverse cellular events with the onset of chromosome replication. This strategy of using chromosome replication initiator proteins as regulators of gene expression has also been observed in archaea and eukaryotes. In this mini review, we focus on our current understanding of DnaA's transcriptional activity in various bacterial species.
Collapse
Affiliation(s)
- Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kristin Woo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Donati S, Kuntz M, Pahl V, Farke N, Beuter D, Glatter T, Gomes-Filho JV, Randau L, Wang CY, Link H. Multi-omics Analysis of CRISPRi-Knockdowns Identifies Mechanisms that Buffer Decreases of Enzymes in E. coli Metabolism. Cell Syst 2020; 12:56-67.e6. [PMID: 33238135 DOI: 10.1016/j.cels.2020.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Enzymes maintain metabolism, and their concentration affects cellular fitness: high enzyme levels are costly, and low enzyme levels can limit metabolic flux. Here, we used CRISPR interference (CRISPRi) to study the consequences of decreasing E. coli enzymes below wild-type levels. A pooled CRISPRi screen with 7,177 strains demonstrates that metabolism buffers fitness defects for hours after the induction of CRISPRi. We characterized the metabolome and proteome responses in 30 CRISPRi strains and elucidated three gene-specific buffering mechanisms: ornithine buffered the knockdown of carbamoyl phosphate synthetase (CarAB) by increasing CarAB activity, S-adenosylmethionine buffered the knockdown of homocysteine transmethylase (MetE) by de-repressing expression of the methionine pathway, and 6-phosphogluconate buffered the knockdown of 6-phosphogluconate dehydrogenase (Gnd) by activating a bypass. In total, this work demonstrates that CRISPRi screens can reveal global sources of metabolic robustness and identify local regulatory mechanisms that buffer decreases of specific enzymes. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Stefano Donati
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michelle Kuntz
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vanessa Pahl
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Niklas Farke
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Beuter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Chun-Ying Wang
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
14
|
The Lon Protease Links Nucleotide Metabolism with Proteotoxic Stress. Mol Cell 2020; 79:758-767.e6. [PMID: 32755596 DOI: 10.1016/j.molcel.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.
Collapse
|
15
|
Saxena R, Stanley CB, Kumar P, Cuneo MJ, Patil D, Jha J, Weiss KL, Chattoraj DK, Crooke E. A nucleotide-dependent oligomerization of the Escherichia coli replication initiator DnaA requires residue His136 for remodeling of the chromosomal origin. Nucleic Acids Res 2020; 48:200-211. [PMID: 31665475 PMCID: PMC7145717 DOI: 10.1093/nar/gkz939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli replication initiator protein DnaA binds ATP with high affinity but the amount of ATP required to initiate replication greatly exceeds the amount required for binding. Previously, we showed that ATP-DnaA, not ADP-DnaA, undergoes a conformational change at the higher nucleotide concentration, which allows DnaA oligomerization at the replication origin but the association state remains unclear. Here, we used Small Angle X-ray Scattering (SAXS) to investigate oligomerization of DnaA in solution. Whereas ADP-DnaA was predominantly monomeric, AMP–PNP–DnaA (a non-hydrolysable ATP-analog bound-DnaA) was oligomeric, primarily dimeric. Functional studies using DnaA mutants revealed that DnaA(H136Q) is defective in initiating replication in vivo. The mutant retains high-affinity ATP binding, but was defective in producing replication-competent initiation complexes. Docking of ATP on a structure of E. coli DnaA, modeled upon the crystallographic structure of Aquifex aeolicus DnaA, predicts a hydrogen bond between ATP and imidazole ring of His136, which is disrupted when Gln is present at position 136. SAXS performed on AMP–PNP–DnaA (H136Q) indicates that the protein has lost its ability to form oligomers. These results show the importance of high ATP in DnaA oligomerization and its dependence on the His136 residue.
Collapse
Affiliation(s)
- Rahul Saxena
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard University, Delhi 110062, India
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Digvijay Patil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jyoti Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA.,Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
16
|
Kivisaar M. Mutation and Recombination Rates Vary Across Bacterial Chromosome. Microorganisms 2019; 8:microorganisms8010025. [PMID: 31877811 PMCID: PMC7023495 DOI: 10.3390/microorganisms8010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteria evolve as a result of mutations and acquisition of foreign DNA by recombination processes. A growing body of evidence suggests that mutation and recombination rates are not constant across the bacterial chromosome. Bacterial chromosomal DNA is organized into a compact nucleoid structure which is established by binding of the nucleoid-associated proteins (NAPs) and other proteins. This review gives an overview of recent findings indicating that the mutagenic and recombination processes in bacteria vary at different chromosomal positions. Involvement of NAPs and other possible mechanisms in these regional differences are discussed. Variations in mutation and recombination rates across the bacterial chromosome may have implications in the evolution of bacteria.
Collapse
Affiliation(s)
- Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
17
|
Huang T, Yuan H, Fan L, Moregen M. H-NS, IHF, and DnaA lead to changes in nucleoid organizations, replication initiation, and cell division. J Basic Microbiol 2019; 60:136-148. [PMID: 32011760 DOI: 10.1002/jobm.201900497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
Histone-like nucleoid-structuring protein (H-NS) and integration host factor (IHF) are major nucleoid-associated proteins, and DnaA, a replication initiator, may also be related with nucleoid compaction. It has been shown that protein-dependent DNA compaction is related with many aspects of bacterial physiology, including transcription, DNA replication, and site-specific recombination. However, the mechanism of bacterial physiology resulting from nucleoid compaction remains unknown. Here, we show that H-NS is important for correct nucleoid compaction in a medium-independent manner. H-NS-mediated nucleoid compaction is not required for correct cell division, but the latter is dependent on H-NS in rich medium. Further, it is found that the IHFα-mediated nucleoid compaction is needed for correct cell division, and the effect is dependent on medium. Also, we show that the effects of H-NS and IHF on nucleoid compaction are cumulative. Interestingly, DnaA also plays an important role in nucleoid compaction, and the effect of DnaA on nucleoid compaction appears to be related to cell division in a medium-dependent manner. The results presented here suggest that scrambled initiation of replication, improper cell division, and slow growth is likely associated with disturbances in nucleoid organization directly or indirectly.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Daban No. 1 Middle School, Chifeng, China
| | - Hong Yuan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Moregen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
18
|
Grimwade JE, Rozgaja TA, Gupta R, Dyson K, Rao P, Leonard AC. Origin recognition is the predominant role for DnaA-ATP in initiation of chromosome replication. Nucleic Acids Res 2019; 46:6140-6151. [PMID: 29800247 PMCID: PMC6158602 DOI: 10.1093/nar/gky457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, initiation of chromosome replication depends on the activity of AAA+ initiator proteins that form complexes with replication origin DNA. In bacteria, the conserved, adenosine triphosphate (ATP)-regulated initiator protein, DnaA, forms a complex with the origin, oriC, that mediates DNA strand separation and recruitment of replication machinery. Complex assembly and origin activation requires DnaA-ATP, which differs from DnaA-ADP in its ability to cooperatively bind specific low affinity sites and also to oligomerize into helical filaments. The degree to which each of these activities contributes to the DnaA-ATP requirement for initiation is not known. In this study, we compared the DnaA-ATP dependence of initiation from wild-type Escherichia coli oriC and a synthetic origin (oriCallADP), whose multiple low affinity DnaA sites bind DnaA-ATP and DnaA-ADP similarly. OriCallADP was fully occupied and unwound by DnaA-ADP in vitro, and, in vivo, oriCallADP suppressed lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, loss of preferential DnaA-ATP binding caused over-initiation and increased sensitivity to replicative stress. The findings indicate both DnaA-ATP and DnaA-ADP can perform most of the mechanical functions needed for origin activation, and suggest that a key reason for ATP-regulation of DnaA is to control replication initiation frequency.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Tania A Rozgaja
- AREVA Inc North America, 6100 Southwest Blvd #400, Benbrook, TX 76109, USA
| | - Rajat Gupta
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Kyle Dyson
- University of Florida College of Medicine, P.O. Box 100215, Gainesville, FL 32610, USA
| | - Prassanna Rao
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| |
Collapse
|
19
|
Reyes-Lamothe R, Sherratt DJ. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 2019; 17:467-478. [DOI: 10.1038/s41579-019-0212-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity. Proc Natl Acad Sci U S A 2019; 116:9333-9339. [PMID: 31019074 PMCID: PMC6511015 DOI: 10.1073/pnas.1814999116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While cellular dNTPases display broad activity toward dNTPs (e.g., SAMHD1), Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. Here, we present methods for highly efficient, fixed-target X-ray free-electron laser data collection, which is broadly applicable to multiple crystal systems including RNA polymerase II complexes, and the free Ec-dGTPase enzyme. Structures of free and bound Ec-dGTPase shed light on the mechanisms of dGTP selectivity, highlighted by a dynamic active site where conformational changes are coupled to dGTP binding. Moreover, despite no sequence homology between Ec-dGTPase and SAMHD1, both enzymes share similar active-site architectures; however, dGTPase residues at the end of the substrate-binding pocket provide dGTP specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP. Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding.
Collapse
|
21
|
Abstract
The causes and consequences of spatiotemporal variation in mutation rates remain to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes: Vibrio fischeri, Vibrio cholerae, and Burkholderia cenocepacia. Following five mutation accumulation experiments with these bacteria conducted in the near absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosomes of V. fischeri and V. cholerae, where concurrently replicated regions experience similar base substitution mutation rates. The base substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates to those in the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base substitution rates, which along with the inferred ~800-kb wave period suggests that the source of the periodicity is not sequence specific but rather a systematic process related to the cell cycle. These results support the notion that base substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load. That mutation rates vary within bacterial genomes is well known, but the detailed study of these biases has been made possible only recently with contemporary sequencing methods. We applied these methods to understand how bacterial genomes with multiple chromosomes, like those of Vibrio and Burkholderia, might experience heterogeneous mutation rates because of their unusual replication and the greater genetic diversity found on smaller chromosomes. This study captured thousands of mutations and revealed wave-like rate variation that is synchronized with replication timing and not explained by sequence context. The scale of this rate variation over hundreds of kilobases of DNA strongly suggests that a temporally regulated cellular process may generate wave-like variation in mutation risk. These findings add to our understanding of how mutation risk is distributed across bacterial and likely also eukaryotic genomes, owing to their highly conserved replication and repair machinery.
Collapse
|
22
|
Wurihan, Gezi, Brambilla E, Wang S, Sun H, Fan L, Shi Y, Sclavi B, Morigen. DnaA and LexA Proteins Regulate Transcription of the uvrB Gene in Escherichia coli: The Role of DnaA in the Control of the SOS Regulon. Front Microbiol 2018; 9:1212. [PMID: 29967594 PMCID: PMC6015884 DOI: 10.3389/fmicb.2018.01212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022] Open
Abstract
The uvrB gene belongs to the SOS network, encoding a key component of the nucleotide excision repair. The uvrB promoter region contains three identified promoters with four LexA binding sites, one consensus and six potential DnaA binding sites. A more than threefold increase in transcription of the chromosomal uvrB gene is observed in both the ΔlexA ΔsulA cells and dnaAA345S cells, and a fivefold increase in the ΔlexA ΔsulA dnaAA345S cells relative to the wild-type cells. The full activity of the uvrB promoter region requires both the uvrBp1-2 and uvrBp3 promoters and is repressed by both the DnaA and LexA proteins. LexA binds tightly to LexA-box1 at the uvrBp1-2 promoter irrespective of the presence of DnaA and this binding is important for the control of the uvrBp1-2 promoter. DnaA and LexA, however, compete for binding to and regulation of the uvrBp3 promoter in which the DnaA-box6 overlaps with LexA-box4. The transcription control of uvrBp3 largely depends on DnaA-box6. Transcription of other SOS regulon genes, such as recN and dinJ, is also repressed by both DnaA and LexA. Interestingly, the absence of LexA in the presence of the DnaAA345S mutant leads to production of elongated cells with incomplete replication, aberrant nucleoids and slow growth. We propose that DnaA is a modulator for maintenance of genome integrity during the SOS response by limiting the expression of the SOS regulon.
Collapse
Affiliation(s)
- Wurihan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gezi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | | | - Shuwen Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hongwei Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yixin Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, Cachan, France
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
23
|
Miller JH. Mutagenesis: Interactions with a parallel universe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:78-81. [PMID: 29807579 DOI: 10.1016/j.mrrev.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular, Biology Institute, and The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Chen PYT, Funk MA, Brignole EJ, Drennan CL. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2018; 293:10404-10412. [PMID: 29700111 DOI: 10.1074/jbc.ra118.002569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a β2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2β2 state allowing for radical transfer from β2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4β4 ring-like state. Here, we investigate whether the α4β4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-β interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4β4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4β4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-β interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-β interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.
Collapse
Affiliation(s)
| | | | - Edward J Brignole
- From the Departments of Chemistry and.,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Catherine L Drennan
- From the Departments of Chemistry and .,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
25
|
Sakiyama Y, Kasho K, Noguchi Y, Kawakami H, Katayama T. Regulatory dynamics in the ternary DnaA complex for initiation of chromosomal replication in Escherichia coli. Nucleic Acids Res 2017; 45:12354-12373. [PMID: 29040689 PMCID: PMC5716108 DOI: 10.1093/nar/gkx914] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
In Escherichia coli, the level of the ATP-DnaA initiator is increased temporarily at the time of replication initiation. The replication origin, oriC, contains a duplex-unwinding element (DUE) flanking a DnaA-oligomerization region (DOR), which includes twelve DnaA-binding sites (DnaA boxes) and the DNA-bending protein IHF-binding site (IBS). Although complexes of IHF and ATP-DnaA assembly on the DOR unwind the DUE, the configuration of the crucial nucleoprotein complexes remains elusive. To resolve this, we analyzed individual DnaA protomers in the complex and here demonstrate that the DUE-DnaA-box-R1-IBS-DnaA-box-R5M region is essential for DUE unwinding. R5M-bound ATP-DnaA predominantly promotes ATP-DnaA assembly on the DUE-proximal DOR, and R1-bound DnaA has a supporting role. This mechanism might support timely assembly of ATP-DnaA on oriC. DnaA protomers bound to R1 and R5M directly bind to the unwound DUE strand, which is crucial in replication initiation. Data from in vivo experiments support these results. We propose that the DnaA assembly on the IHF-bent DOR directly binds to the unwound DUE strand, and timely formation of this ternary complex regulates replication initiation. Structural features of oriC support the idea that these mechanisms for DUE unwinding are fundamentally conserved in various bacterial species including pathogens.
Collapse
Affiliation(s)
- Yukari Sakiyama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunori Noguchi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Phenotypes of dnaXE145A Mutant Cells Indicate that the Escherichia coli Clamp Loader Has a Role in the Restart of Stalled Replication Forks. J Bacteriol 2017; 199:JB.00412-17. [PMID: 28947673 DOI: 10.1128/jb.00412-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading β-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.
Collapse
|
27
|
Kim JS, Nanfara MT, Chodavarapu S, Jin KS, Babu VMP, Ghazy MA, Chung S, Kaguni JM, Sutton MD, Cho Y. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing. Nucleic Acids Res 2017; 45:3888-3905. [PMID: 28168278 PMCID: PMC5397184 DOI: 10.1093/nar/gkx081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda–sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda–β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda–β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda–β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function.
Collapse
Affiliation(s)
- Jin S Kim
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Michael T Nanfara
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mi 48824-1319, USA
| | - Kyeong S Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Mohamed A Ghazy
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Scisung Chung
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| | - Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mi 48824-1319, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14228, USA
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, 35398 Pohang, South Korea
| |
Collapse
|
28
|
|
29
|
Charbon G, Riber L, Løbner-Olesen A. Countermeasures to survive excessive chromosome replication in Escherichia coli. Curr Genet 2017; 64:71-79. [PMID: 28664289 DOI: 10.1007/s00294-017-0725-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023]
Abstract
In Escherichia coli, like all organisms, DNA replication is coordinated with cell cycle progression to ensure duplication of the genome prior to cell division. Chromosome replication is initiated from the replication origin, oriC, by the DnaA protein associated with ATP. Initiations take place once per cell cycle and in synchrony at all cellular origins. DnaA also binds ADP with similar affinity as ATP and in wild-type cells the majority of DnaA molecules are ADP bound. In cells where the DnaAATP/DnaAADP ratio increases or in cells where DnaAATP has increased access to oriC, premature initiations take place, often referred to as overinitiation. Overinitiating cells are generally characterized by their slow growth and in the most severe cases lethal accumulation of DNA strand breaks. Here, we review the different strategies adopted by E. coli to survive overinitiation. We propose a unifying model where all mutations that suppress overinitiation keep replication forks separated in time and, thereby, reduce the formation of strand breaks. One group of mutations does so by lowering the activity of oriC and/or DnaA to reduce the frequency of initiations to an acceptable level. In the other group of mutations, replication forks are kept apart by preventing formation of damages that would otherwise cause replication blocks, by allowing bypass of replication blocks and/or by slowing down replication forks. This group of suppressors restores viability despite excessive chromosome replication and provides new insights into mechanisms that safeguard DNA integrity.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - Leise Riber
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
30
|
Boronat S, Domènech A, Carmona M, García-Santamarina S, Bañó MC, Ayté J, Hidalgo E. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase. PLoS Genet 2017. [PMID: 28640807 PMCID: PMC5501661 DOI: 10.1371/journal.pgen.1006858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth. The essential enzyme ribonucleotide reductase (RNR), the rate-limiting enzyme of deoxyribonucleotide synthesis, relies on the thioredoxin and glutaredoxin electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels. Here, we show that cytosolic thioredoxin Trx1 is the primary electron donor for RNR in fission yeast, and that trx1 transcript and protein levels are up-regulated at G1-to-S phase transition. Genetic depletion of thioredoxins triggers the DNA replication checkpoint up-regulating RNR synthesis. Furthermore, deletion of the genes coding for thioredoxin reductase and dithiol glutaredoxin is synthetic lethal, and we show that a loss-of-function mutation at the peroxiredoxin Tpx1-coding gene acts as a genetic suppressor. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate of redoxins, the peroxiredoxin Tpx1, has been selected as a lethality suppressor to favor channeling of electrons to the essential RNR.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba Domènech
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - M. Carmen Bañó
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| |
Collapse
|
31
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
32
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Charbon G, Campion C, Chan SHJ, Bjørn L, Weimann A, da Silva LCN, Jensen PR, Løbner-Olesen A. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli. PLoS Genet 2017; 13:e1006590. [PMID: 28129339 PMCID: PMC5302844 DOI: 10.1371/journal.pgen.1006590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/10/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022] Open
Abstract
Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. In most bacteria chromosome replication is initiated by the DnaA protein. In Escherichia coli, DnaA binds ATP and ADP with similar affinity but only the ATP bound form is active. An increased level of DnaAATP causes overinitiation and cell death by accumulation of DNA strand breaks. These strand breaks often result from forks encountering gapped DNA formed during repair of oxidative damage. We provide evidence that cell death in overinitiating cells can be prevented by rewiring the metabolism to favor the micro-aerobic respiratory chain with the cytochrome bd-1 as terminal oxidase. Cytochrome bd-1 is found in aerobic as well as anaerobic bacteria. Its role is to reduce O2 in micro-aerobic conditions and work as an electron sink to prevent the formation of reactive oxygen species. Our results suggest that bacteria can cope with replication stress by increasing respiration through cytochrome bd-1 to reduce the formation of reactive oxygen species, and hence oxidative damage to a level that does not interfere with replication fork progression.
Collapse
Affiliation(s)
- Godefroid Charbon
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Campion
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Siu Hung Joshua Chan
- National Food Institute, Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby, Denmark
| | - Louise Bjørn
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Allan Weimann
- Laboratory of Clinical Pharmacology, Rigshospitalet, Section Q7642, Copenhagen Denmark and Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, Copenhagen Denmark
| | - Luís Cláudio Nascimento da Silva
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby, Denmark
| | - Anders Løbner-Olesen
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
34
|
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs. J Bacteriol 2016; 198:2776-83. [PMID: 27457718 DOI: 10.1128/jb.00391-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10(-8)) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent.
Collapse
|
35
|
Riber L, Frimodt-Møller J, Charbon G, Løbner-Olesen A. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli. Front Mol Biosci 2016; 3:29. [PMID: 27446932 PMCID: PMC4924351 DOI: 10.3389/fmolb.2016.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells.
Collapse
Affiliation(s)
- Leise Riber
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Jakob Frimodt-Møller
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Godefroid Charbon
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
36
|
Transcriptome Analysis of Escherichia coli during dGTP Starvation. J Bacteriol 2016; 198:1631-44. [PMID: 27002130 DOI: 10.1128/jb.00218-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growing optA1 gpt cells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to derepress the de novo purine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including the rpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus. IMPORTANCE Control of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the bacterium E. coli during dGTP starvation. The results show increasing DNA replication stress with an increased time of starvation, as evidenced by induction of the bacterial SOS system, as well as a notable lack of induction of other stress responses that could have saved the cells from cell death by slowing down cell growth.
Collapse
|
37
|
Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin. Int J Mol Sci 2015; 16:27897-911. [PMID: 26610483 PMCID: PMC4661922 DOI: 10.3390/ijms161126064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/21/2015] [Accepted: 11/16/2015] [Indexed: 12/05/2022] Open
Abstract
DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC).
Collapse
|
38
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
39
|
Structure and multistate function of the transmembrane electron transporter CcdA. Nat Struct Mol Biol 2015; 22:809-14. [PMID: 26389738 DOI: 10.1038/nsmb.3099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
The mechanism by which transmembrane reductases use a single pair of cysteine residues to relay electrons between protein substrates across biological membranes is a long-standing mystery in thiol-redox biochemistry. Here we show the NMR structure of a reduced-state mimic of archaeal CcdA, a protein that transfers electrons across the inner membrane, by using a redox-active NMR sample. The two cysteine positions in CcdA are separated by 20 Å. Whereas one is accessible to the cytoplasm, the other resides in the protein core, thus implying that conformational exchange is required for periplasmic accessibility. In vivo mixed disulfide-trapping experiments validated the functional positioning of the cysteines, and in vitro accessibility results confirmed conformational exchange. Our NMR and functional data together show the existence of multiple conformational states and suggest a four-state model for relaying electrons from cytosolic to periplasmic redox substrates.
Collapse
|
40
|
The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA. J Bacteriol 2015; 197:3521-32. [PMID: 26324449 DOI: 10.1128/jb.00460-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is not known how diverse bacteria regulate chromosome replication. Based on Escherichia coli studies, DnaA initiates replication and the homolog of DnaA (Hda) inactivates DnaA using the RIDA (regulatory inactivation of DnaA) mechanism that thereby prevents extra chromosome replication cycles. RIDA may be widespread, because the distantly related Caulobacter crescentus homolog HdaA also prevents extra chromosome replication (J. Collier and L. Shapiro, J Bacteriol 191:5706-5715, 2009, http://dx.doi.org/10.1128/JB.00525-09). To further study the HdaA/RIDA mechanism, we created a C. crescentus strain that shuts off hdaA transcription and rapidly clears HdaA protein. We confirm that HdaA prevents extra replication, since cells lacking HdaA accumulate extra chromosome DNA. DnaA binds nucleotides ATP and ADP, and our results are consistent with the established E. coli mechanism whereby Hda converts active DnaA-ATP to inactive DnaA-ADP. However, unlike E. coli DnaA, C. crescentus DnaA is also regulated by selective proteolysis. C. crescentus cells lacking HdaA reduce DnaA proteolysis in logarithmically growing cells, thereby implicating HdaA in this selective DnaA turnover mechanism. Also, wild-type C. crescentus cells remove all DnaA protein when they enter stationary phase. However, cells lacking HdaA retain stable DnaA protein even when they stop growing in nutrient-depleted medium that induces complete DnaA proteolysis in wild-type cells. Additional experiments argue for a distinct HdaA-dependent mechanism that selectively removes DnaA prior to stationary phase. Related freshwater Caulobacter species also remove DnaA during entry to stationary phase, implying a wider role for HdaA as a novel component of programed proteolysis. IMPORTANCE Bacteria must regulate chromosome replication, and yet the mechanisms are not completely understood and not fully exploited for antibiotic development. Based on Escherichia coli studies, DnaA initiates replication, and the homolog of DnaA (Hda) inactivates DnaA to prevent extra replication. The distantly related Caulobacter crescentus homolog HdaA also regulates chromosome replication. Here we unexpectedly discovered that unlike the E. coli Hda, the C. crescentus HdaA also regulates DnaA proteolysis. Furthermore, this HdaA proteolysis acts in logarithmically growing and in stationary-phase cells and therefore in two very different physiological states. We argue that HdaA acts to help time chromosome replications in logarithmically growing cells and that it is an unexpected component of the programed entry into stationary phase.
Collapse
|
41
|
Charbon G, Bjørn L, Mendoza-Chamizo B, Frimodt-Møller J, Løbner-Olesen A. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli. Nucleic Acids Res 2014; 42:13228-41. [PMID: 25389264 PMCID: PMC4245963 DOI: 10.1093/nar/gku1149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Louise Bjørn
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Belén Mendoza-Chamizo
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, E06071 Badajoz, Spain
| | - Jakob Frimodt-Møller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| |
Collapse
|
42
|
Zheng X, Su Y, Chen Y, Wan R, Li M, Wei Y, Huang H. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Sci Rep 2014; 4:5653. [PMID: 25008009 PMCID: PMC4090615 DOI: 10.1038/srep05653] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuanyuan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
43
|
AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle. PLoS One 2014; 9:e92229. [PMID: 24670900 PMCID: PMC3966765 DOI: 10.1371/journal.pone.0092229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences. Methodology/Principle Findings We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (p)ppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant. Conclusion/Significances The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.
Collapse
|
44
|
McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BO, Feist AM. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng 2013; 111:803-15. [PMID: 24249002 DOI: 10.1002/bit.25133] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/30/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Abstract
The advent of model-enabled workflows in systems biology allows for the integration of experimental data types with genome-scale models to discover new features of biology. This work demonstrates such a workflow, aimed at establishing a metabolomics platform applied to study the differences in metabolomes between anaerobic and aerobic growth of Escherichia coli. Constraint-based modeling was utilized to deduce a target list of compounds for downstream method development. An analytical and experimental methodology was developed and tailored to the compound chemistry and growth conditions of interest. This included the construction of a rapid sampling apparatus for use with anaerobic cultures. The resulting genome-scale data sets for anaerobic and aerobic growth were validated by comparison to previous small-scale studies comparing growth of E. coli under the same conditions. The metabolomics data were then integrated with the E. coli genome-scale metabolic model (GEM) via a sensitivity analysis that utilized reaction thermodynamics to reconcile simulated growth rates and reaction directionalities. This analysis highlighted several optimal network usage inconsistencies, including the incorrect use of the beta-oxidation pathway for synthesis of fatty acids. This analysis also identified enzyme promiscuity for the pykA gene, that is critical for anaerobic growth, and which has not been previously incorporated into metabolic models of E coli.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0412
| | | | | | | | | | | | | |
Collapse
|
45
|
Fernandez-Fernandez C, Grosse K, Sourjik V, Collier J. The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. MICROBIOLOGY-SGM 2013; 159:2237-2248. [PMID: 23974073 PMCID: PMC3836487 DOI: 10.1099/mic.0.068577-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live Caulobacter crescentus cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in C. crescentus, probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN in vivo. The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.
Collapse
Affiliation(s)
- Carmen Fernandez-Fernandez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| | - Karin Grosse
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| |
Collapse
|
46
|
González Moreno S, Mata Martín C, Ferrera Guillén E, Guzmán EC. Tuning the replication fork progression by the initiation frequency. Environ Microbiol 2013; 15:3240-51. [PMID: 23607621 DOI: 10.1111/1462-2920.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
Abstract
The thermo-resistant period of the thermo-sensitive ribonucleotide reductase RNR101 encoded by the nrdA101 allele in Escherichia coli is prolonged for 50 min at 42°C, enabling an increase in DNA content of about 45%. Assuming that fork progression in the nrdA101 mutant is impaired, the question whether reduced number of ongoing replication rounds altered the thermo-resistant period in this strain was investigated. Decreases in the oriC/terC ratio and in the number of oriC per cell at 30°C were found in the presence of oriC228, oriC229 and oriC239 alleles in strain nrdA101. Correlated with this effect, increased thermo-resistance period of the RNR101 was allowed, and the detrimental effects on cell division, chromosome segregation and cell viability observed in the nrdA101 mutant at 42°C were suppressed. These results indicate that conditions leading to chromosome initiation deficiency at 30°C enhance the replication fork progression in the nrdA101 mutant at 42°C. We propose that coordination between initiation frequency and replication fork progression could be significant for most of the replication systems with important consequences in their cell cycle regulation.
Collapse
Affiliation(s)
- Sara González Moreno
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | | | | |
Collapse
|
47
|
The tRNA thiolation pathway modulates the intracellular redox state in Escherichia coli. J Bacteriol 2013; 195:2039-49. [PMID: 23457245 DOI: 10.1128/jb.02180-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli K-12. HU inhibits ribonucleotide reductase (RNR), an enzyme that catalyzes the formation of deoxyribonucleotides. Unexpectedly, seven of the mutants lacked genes that are required for the incorporation of sulfur into a specific tRNA modification base, 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), via persulfide relay. We found that the expression of RNR in the mutants was reduced to about one-third both in the absence and presence of HU, while sufficient deoxynucleoside triphosphate (dNTP) was maintained in the mutants in the absence of HU but a shortage occurred in the presence of HU. Trans-supply of an RNR R2 subunit rescued the HU sensitivity of these mutants. The mutants showed high intracellular ATP/ADP ratios, and overexpression of Hda, which catalyzes the conversion of DnaA-ATP to DnaA-ADP, rescued the HU sensitivity of the mutants, suggesting that DnaA-ATP represses RNR expression. The high intracellular ATP/ADP ratios were due to high respiration activity in the mutants. Our data suggested that intracellular redox was inclined toward the reduced state in these mutants, which may explain a change in RNR activity by reduction of the catalytically formed disulfide bond and high respiration activity by the NADH reducing potential. The relation between persulfide relay and intracellular redox is discussed.
Collapse
|
48
|
DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. Proc Natl Acad Sci U S A 2012; 110:936-41. [PMID: 23277577 DOI: 10.1073/pnas.1212070110] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The initiation of chromosomal DNA replication is rigidly regulated to ensure that it occurs in a cell cycle-coordinated manner. To ensure this in Escherichia coli, multiple systems regulate the activity of the replication initiator ATP-DnaA. The level of ATP-DnaA increases before initiation after which it drops via DnaA-ATP hydrolysis, yielding initiation-inactive ADP-DnaA. DnaA-ATP hydrolysis is crucial to regulation of initiation and mainly occurs by a replication-coupled feedback mechanism named RIDA (regulatory inactivation of DnaA). Here, we report a second DnaA-ATP hydrolysis system that occurs at the chromosomal site datA. This locus has been annotated as a reservoir for DnaA that binds many DnaA molecules in a manner dependent upon the nucleoid-associated factor IHF (integration host factor), resulting in repression of untimely initiations; however, there is no direct evidence for the binding of many DnaA molecules at this locus. We reveal that a complex consisting of datA and IHF promotes DnaA-ATP hydrolysis in a manner dependent on specific inter-DnaA interactions. Deletion of datA or the ihf gene increased ATP-DnaA levels to the maximal attainable levels in RIDA-defective cells. Cell-cycle analysis suggested that IHF binds to datA just after replication initiation at a time when RIDA is activated. We propose a model in which cell cycle-coordinated ATP-DnaA inactivation is regulated in a concerted manner by RIDA and datA.
Collapse
|
49
|
Fingland N, Flåtten I, Downey CD, Fossum-Raunehaug S, Skarstad K, Crooke E. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli. Microbiologyopen 2012; 1:450-66. [PMID: 23233230 PMCID: PMC3535390 DOI: 10.1002/mbo3.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 11/22/2022] Open
Abstract
In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant form of DnaA, DnaA(L366K), or by oriC-independent DNA synthesis, suggesting acidic phospholipids are required for DnaA- and oriC-dependent replication. We observe here that when acidic phospholipids were depleted, replication was inhibited with a concomitant reduction of chromosomal content and cell mass prior to growth arrest. This global shutdown of biosynthetic activity was independent of the stringent response. Restoration of acidic phospholipid synthesis resulted in a resumption of DNA replication prior to restored growth, indicating a possible cell-cycle-specific growth arrest had occurred with the earlier loss of acidic phospholipids. Flow cytometry, thymidine uptake, and quantitative polymerase chain reaction data suggest that a deficiency in acidic phospholipids prolonged the time required to replicate the chromosome. We also observed that regardless of the cellular content of acidic phospholipids, expression of mutant DnaA(L366K) altered the DNA content-to-cell mass ratio.
Collapse
Affiliation(s)
- Nicholas Fingland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ozaki S, Noguchi Y, Hayashi Y, Miyazaki E, Katayama T. Differentiation of the DnaA-oriC subcomplex for DNA unwinding in a replication initiation complex. J Biol Chem 2012; 287:37458-71. [PMID: 22942281 DOI: 10.1074/jbc.m112.372052] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|