1
|
Hou Q, Zhong Y, Liao M, Chen C, Li Y, Li X, Liu J. Upregulation of the tumor suppressor gene LIN9 enhances tumorigenesis and predicts poor prognosis of lung adenocarcinoma. Heliyon 2024; 10:e35012. [PMID: 39157309 PMCID: PMC11328102 DOI: 10.1016/j.heliyon.2024.e35012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Background LIN9, a gene associated with various cancers, is considered a tumor suppressor. However, the role of LIN9 in lung adenocarcinoma (LUAD) remains unknown. In this study, we aimed to assess the role of LIN9 in the occurrence and prognosis of LUAD. Methods Using three-tier HTSeq count RNA sequencing data from The Cancer Genome Atlas, we assessed LIN9 expression for the LUAD dataset using the DESeq2 R package and RT-qPCR experiments. Biological functions were assessed using gene set enrichment analysis (clusterProfiler and GOplot). The expression of LIN9 and the infiltration of immune cells were assessed by Single-sample gene set enrichment analysis. We conducted correlation study using clinical characteristics and receiver operating characteristic curve analysis. The predictive value of LIN9 was determined using univariate and multivariate Cox regression as well as Kaplan-Meier analysis. Additionally, functional studies were conducted to validate its role in the progression of LUAD. Results Expression of LIN9 was significantly elevated in LUAD, primarily influencing cell cycle, division, and signaling pathways. High LIN9 expression correlated positively with the infiltration of Th2 cells and inversely with that of plasmacytoid dendritic cells. Furthermore, LIN9 was associated with older age and advanced clinical stages, posing risks to overall, progression-free, and disease-specific survival. LIN9 served as a good diagnostic marker, particularly in females, patients aged over 65, and those with clinical N1-3 and M1 stages. Elevated LIN9 expression enhanced proliferation, migration, and invasion of LUAD cells. Conclusion High LIN9 expression potentially contributes to LUAD occurrence through cell cycle regulation and chromosomal modification. It promotes the malignant characteristics of LUAD cells and holds prognostic value for affected patients.
Collapse
Affiliation(s)
- Qinghua Hou
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Yanfeng Zhong
- Department of Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Mengying Liao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Chao Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Yanling Li
- Department of Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaoqing Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| |
Collapse
|
2
|
Kohler R, Engeland K. A-MYB substitutes for B-MYB in activating cell cycle genes and in stimulating proliferation. Nucleic Acids Res 2024; 52:6830-6849. [PMID: 38747345 PMCID: PMC11229319 DOI: 10.1093/nar/gkae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 07/09/2024] Open
Abstract
A-MYB (MYBL1) is a transcription factor with a role in meiosis in spermatocytes. The related B-MYB protein is a key oncogene and a master regulator activating late cell cycle genes. To activate genes, B-MYB forms a complex with MuvB and is recruited indirectly to cell cycle genes homology region (CHR) promoter sites of target genes. Activation through the B-MYB-MuvB (MMB) complex is essential for successful mitosis. Here, we discover that A-MYB has a function in transcriptional regulation of the mitotic cell cycle and can substitute for B-MYB. Knockdown experiments in cells not related to spermatogenesis show that B-MYB loss alone merely delays cell cycle progression. Only dual knockdown of B-MYB and A-MYB causes G2/M cell cycle arrest, endoreduplication, and apoptosis. A-MYB can substitute for B-MYB in binding to MuvB. The resulting A-MYB-MuvB complex activates genes through CHR sites. We find that A-MYB activates the same target genes as B-MYB. Many of the corresponding proteins are central regulators of the cell division cycle. In summary, we demonstrate that A-MYB is an activator of the mitotic cell cycle by activating late cell cycle genes.
Collapse
Affiliation(s)
- Robin Kohler
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Hoareau M, Rincheval-Arnold A, Gaumer S, Guénal I. DREAM a little dREAM of DRM: Model organisms and conservation of DREAM-like complexes: Model organisms uncover the mechanisms of DREAM-mediated transcription regulation. Bioessays 2024; 46:e2300125. [PMID: 38059789 DOI: 10.1002/bies.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
DREAM complexes are transcriptional regulators that control the expression of hundreds to thousands of target genes involved in the cell cycle, quiescence, differentiation, and apoptosis. These complexes contain many subunits that can vary according to the considered target genes. Depending on their composition and the nature of the partners they recruit, DREAM complexes control gene expression through diverse mechanisms, including chromatin remodeling, transcription cofactor and factor recruitment at various genomic binding sites. This complexity is particularly high in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F, and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans, and plants allowed a deeper understanding of the processes regulated by DREAM-like complexes. Here, we review the conservation of these complexes. We discuss the contribution of model organisms to the study of DREAM-mediated transcriptional regulatory mechanisms and their relevance in characterizing novel activities of DREAM complexes.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, LGBC, Versailles, France
- Université PSL, EPHE, Paris, France
| | | | | | | |
Collapse
|
4
|
Jessen M, Gertzmann D, Liss F, Zenk F, Bähner L, Schöffler V, Schulte C, Maric HM, Ade CP, von Eyss B, Gaubatz S. Inhibition of the YAP-MMB interaction and targeting NEK2 as potential therapeutic strategies for YAP-driven cancers. Oncogene 2024; 43:578-593. [PMID: 38182898 PMCID: PMC10873197 DOI: 10.1038/s41388-023-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.
Collapse
Affiliation(s)
- Marco Jessen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany
| | - Dörthe Gertzmann
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Liss
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Franziska Zenk
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Laura Bähner
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Victoria Schöffler
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Clemens Schulte
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena, 07745, Germany.
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, 97074, Germany.
| |
Collapse
|
5
|
Song P, Chen X, Zhang P, Zhou Y, Zhou R. miR-200b/MYBL2/CDK1 suppresses proliferation and induces senescence through cell cycle arrest in ovine granulosa cells. Theriogenology 2023; 207:19-30. [PMID: 37257219 DOI: 10.1016/j.theriogenology.2023.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Normal growth of granulosa cells (GCs) is essential for follicular development. miR-200b plays a vital role in litter size, estrous cycle, ovulation, and follicular development in sheep. However, it is unclear that the specific effect and regulatory mechanism of miR-200b on ovine GCs. miR-200b mimic inhibited GCs proliferation and induced cellular senescence through downregulating mitochondrial membrane potential (MMP), concentration of ATP and mitochondrial respiratory chain complex Ⅰ, and upregulating SA-β-gal positive rate and ROS production. A total of 597 differentially expressed genes were identified by RNA-Seq in GCs transfected with miR-200b mimic and mimic NC, and they were involved in cell cycle and cellular senescence. miR-200b directly targeted and downregulated MYBL2 and CDK1. Overexpression of MYBL2 promoted GCs proliferation and genes expression (CDK1, CDC20, MAD2L1 and FOXM1), which were suppressed by miR-200b mimic. Furthermore, MYBL2 negatively regulated miR-200b-induced GC senescence. In conclusion, miR-200b/MYBL2/CDK1 regulated proliferation and senescence through cell cycle pathway in ovine granulosa cells. Our study provides a novel insight that miR-200b regulates ovine follicular development.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Peiying Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Ying Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China.
| |
Collapse
|
6
|
Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K, Garinis GA, Schumacher B. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023; 30:475-488. [PMID: 36959262 PMCID: PMC10113156 DOI: 10.1038/s41594-023-00942-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.
Collapse
Affiliation(s)
- Arturo Bujarrabal-Dueso
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georg Sendtner
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Hanselmann S, Gertzmann D, Shin WJ, Ade CP, Gaubatz S. Expression of the cytokinesis regulator PRC1 results in p53-pathway activation in A549 cells but does not directly regulate gene expression in the nucleus. Cell Cycle 2023; 22:419-432. [PMID: 36135961 PMCID: PMC9879178 DOI: 10.1080/15384101.2022.2122258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023] Open
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule-binding protein with essential roles in mitosis and cytokinesis. PRC1 is frequently overexpressed in cancer cells where it could contribute to chromosomal instability. Due to its nuclear localization in interphase, it has been speculated that PRC1 has additional functions that are involved in its pro-tumorigenic functions. In this study we investigated the potential nuclear functions of PRC1 in a lung cancer cell line. Genome wide expression profiling by RNA sequencing revealed that the expression of PRC1 results in activation of the p53 pathway and inhibition of the pro-proliferative E2F-dependent gene expression. A mutant of PRC1 that is unable to enter into the nucleus regulated the same gene sets as wildtype PRC1, suggesting that PRC1 has no nuclear-exclusive functions in A549 cells. Instead, induction of p53 by PRC1 correlates with multinucleation and depends on the localization of PRC1 to the midbody, suggesting that the induction of p53 is a consequence of overexpressed PRC1 to interfere with the normal function of PRC1 during cytokinesis. Activation of p53 by PRC1 results in cellular senescence but not in apoptosis. In conclusion, while PRC1 is frequently overexpressed in many cancers, the p53 pathways may initially protect cancer cells from the negative effects of PRC1 overexpression on cytokinesis. Because depletion of PRC1 also results in p53-pathway activation and senescence, levels of PRC1 need to be tightly regulated to allow unperturbed proliferation. Targeting the expression or function of PRC1 could create a therapeutic vulnerability for the treatment of cancer.
Collapse
Affiliation(s)
- Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Dörthe Gertzmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Woo Jin Shin
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Carsten P. Ade
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
8
|
A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 2023; 30:192-208. [PMID: 36151333 DOI: 10.1038/s41417-022-00538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.
Collapse
|
9
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
10
|
Goetsch PD, Strome S. DREAM interrupted: severing LIN-35-MuvB association in Caenorhabditis elegans impairs DREAM function but not its chromatin localization. Genetics 2022; 221:iyac073. [PMID: 35554539 PMCID: PMC9252284 DOI: 10.1093/genetics/iyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
The mammalian pocket protein family, which includes the Retinoblastoma protein (pRb) and Rb-like pocket proteins p107 and p130, regulates entry into and exit from the cell cycle by repressing cell cycle gene expression. Although pRb plays a dominant role in mammalian systems, p107 and p130 are the ancestral pocket proteins. The Rb-like pocket proteins interact with the highly conserved 5-subunit MuvB complex and an E2F-DP transcription factor heterodimer, forming the DREAM (for Dp, Rb-like, E2F, and MuvB) complex. DREAM complex assembly on chromatin culminates in repression of target genes mediated by the MuvB subcomplex. Here, we examined how the Rb-like pocket protein contributes to DREAM formation and function by disrupting the interaction between the sole Caenorhabditis elegans pocket protein LIN-35 and the MuvB subunit LIN-52 using CRISPR/Cas9 targeted mutagenesis. A triple alanine substitution of LIN-52's LxCxE motif severed LIN-35-MuvB association and caused classical DREAM mutant phenotypes, including synthetic multiple vulvae, high-temperature arrest, and ectopic expression of germline genes in the soma. However, RNA-sequencing revealed limited upregulation of DREAM target genes when LIN-35-MuvB association was severed, as compared with gene upregulation following LIN-35 loss. Based on chromatin immunoprecipitation, disrupting LIN-35-MuvB association did not affect the chromatin localization of E2F-DP, LIN-35, or MuvB components. In a previous study, we showed that in worms lacking LIN-35, E2F-DP, and MuvB chromatin occupancy was reduced genome-wide. With LIN-35 present but unable to associate with MuvB, our study suggests that the E2F-DP-LIN-35 interaction promotes E2F-DP's chromatin localization, which we hypothesize supports MuvB chromatin occupancy indirectly through DNA. Altogether, this study highlights how the pocket protein's association with MuvB supports DREAM function but is not required for DREAM's chromatin occupancy.
Collapse
Affiliation(s)
- Paul D Goetsch
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
12
|
The MuvB complex safeguards embryonic stem cell identity through regulation of the cell cycle machinery. J Biol Chem 2022; 298:101701. [PMID: 35148988 PMCID: PMC8892154 DOI: 10.1016/j.jbc.2022.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Increasing evidences indicate that unlimited capacity for self-renewal and pluripotency, two unique properties of embryonic stem cells (ESCs), are intrinsically linked to cell cycle control. However, the precise mechanisms coordinating cell fate decisions and cell cycle regulation remain to be fully explored. Here, using CRISPR/Cas9-mediated genome editing, we show that in ESCs, deficiency of components of the cell cycle regulatory MuvB complex Lin54 or Lin52, but not Lin9 or Lin37, triggers G2/M arrest, loss of pluripotency, and spontaneous differentiation. Further dissection of these phenotypes demonstrated that this cell cycle arrest is accompanied by the gradual activation of mesoendodermal lineage-specifying genes. Strikingly, the abnormalities observed in Lin54-null ESCs were partially but significantly rescued by ectopic coexpression of genes encoding G2/M proteins Cyclin B1 and Cdk1. Thus, our study provides new insights into the mechanisms by which the MuvB complex determines cell fate through regulation of the cell cycle machinery.
Collapse
|
13
|
Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, Doody MJ, Narasimhan H, Boeger H, Tripathi S, Müller GA, Rubin SM. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun 2022; 13:526. [PMID: 35082292 PMCID: PMC8792015 DOI: 10.1038/s41467-022-28094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. The MuvB protein complex regulates genes that are differentially expressed through the cell cycle, yet its precise molecular function has remained unclear. Here the authors reveal MuvB associates with the nucleosome adjacent to the transcription start site of cell-cycle genes and that the tight positioning of this nucleosome correlates with MuvB-dependent gene repression.
Collapse
Affiliation(s)
- Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Parameshwaran Ramanan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Alexander Hirschi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Robert Shelansky
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael J Doody
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Haritha Narasimhan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
14
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
15
|
Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B, Xu K, Zhu L, Ding Y, Li C, Xie L, Shen J, Xiang X, Shao J. A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 2021; 12:683. [PMID: 34234118 PMCID: PMC8263627 DOI: 10.1038/s41419-021-03969-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boning Hai
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdan Xie
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Blakemore D, Vilaplana‐Lopera N, Almaghrabi R, Gonzalez E, Moya M, Ward C, Murphy G, Gambus A, Petermann E, Stewart GS, García P. MYBL2 and ATM suppress replication stress in pluripotent stem cells. EMBO Rep 2021; 22:e51120. [PMID: 33779025 PMCID: PMC8097389 DOI: 10.15252/embr.202051120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability.
Collapse
Affiliation(s)
- Daniel Blakemore
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Nuria Vilaplana‐Lopera
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Elena Gonzalez
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Miriam Moya
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Carl Ward
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences (CAS)GuangzhouChina
- Chinese Academy of Sciences (CAS)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and regenerative MedicineGuangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - George Murphy
- Department of MedicineBoston University School of MedicineBostonMAUSA
| | - Agnieszka Gambus
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Eva Petermann
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Grant S Stewart
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Paloma García
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
17
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
18
|
MYBL2 amplification in breast cancer: Molecular mechanisms and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188407. [DOI: 10.1016/j.bbcan.2020.188407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
|
19
|
Hou X, Zhang Y, Han S, Hou B. A novel DNA methylation 10-CpG prognostic signature of disease-free survival reveal that MYBL2 is associated with high risk in prostate cancer. Expert Rev Anticancer Ther 2020; 20:1107-1119. [PMID: 33073649 DOI: 10.1080/14737140.2020.1838280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most common non-cutaneous malignancy among men in the western world. However, heterogeneity remains a pressing clinical problem. RESEARCH DESIGN AND METHODS The least absolute shrinkage and selection operator (LASSO) was used to screen the prognostic signature. Weighted correlation network analysis (WGCNA) was used to identify the target genes associated with high-risk characteristics. Gene set enrichment analysis was used to suggest the molecular mechanism of MYBL2 in PC. In addition, in vitro experiments were carried out to validate the role of MYBL2 in PC. RESULTS Ten DNA methylation sites were selected as the prognostic signature. A high expression of MYBL2 was associated with a poor prognosis in PC patients. The effect of MYBL2 in PC was related to KRAS, AKT, IL21, and ATM. MYBL2 facilitates the proliferation, migration, invasion, and metastasis of PC cells. CONCLUSIONS We developed a DNA methylation 10-CpG prognostic signature to predict the prognosis of PC patients. And the high expression of MYBL2 in PC may be related to poor prognosis.
Collapse
Affiliation(s)
- Xueying Hou
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University , Shenyang, Liaoning Province, People's Republic of China.,School of Postgraduate, China Medical University , Shenyang, Liaoning, People's Republic of China
| | - Yuelin Zhang
- School of Postgraduate, China Medical University , Shenyang, Liaoning, People's Republic of China.,China Medical University , Shenyang, People's Republic of China
| | | | - Baoxian Hou
- Department of Orthopedic Surgery, Shenyang Orthopaedics Hospital , Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
20
|
The role of MYB proto-oncogene like 2 in tamoxifen resistance in breast cancer. J Mol Histol 2020; 52:21-30. [PMID: 33141360 DOI: 10.1007/s10735-020-09920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Despite the efficacy of tamoxifen in preventing disease relapse, a large portion of breast cancer patients show intrinsic or acquired resistance to tamoxifen, leading to treatment failure and unfavorable clinical outcome. MYB proto-oncogene like 2 (MYBL2) is a transcription factor implicated in the initiation and progression of various human cancers. However, its role in tamoxifen resistance in breast cancer remained largely unknown. In the present study, by analyzing public transcriptome dataset, we found that MYBL2 is overexpressed in breast cancer and is associated with the poor prognosis of breast cancer patients. By establishing tamoxifen-resistant breast cancer cell lines, we also provided evidence that MYBL2 overexpression contributes to tamoxifen resistance by up-regulating its downstream transcriptional effectors involved in cell proliferation (PLK1, PRC1), survival (BIRC5) and metastasis (HMMR). In contrast, inhibiting those genes via MYBL2 depletion suppresses cancer progression, restores tamoxifen and eventually reduces the risk of disease recurrence. All these findings revealed a critical role of MYBL2 in promoting tamoxifen resistance and exacerbating the progression of breast cancer, which may serve as a novel therapeutic target to overcome drug resistance and improve the prognosis of breast cancer patients.
Collapse
|
21
|
Werwein E, Biyanee A, Klempnauer KH. Intramolecular interaction of B-MYB is regulated through Ser-577 phosphorylation. FEBS Lett 2020; 594:4266-4279. [PMID: 32979888 DOI: 10.1002/1873-3468.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 02/02/2023]
Abstract
The transcription factor B-MYB is an important regulator of cell cycle-related processes that is activated by step-wise phosphorylation of multiple sites by cyclin-dependent kinases (CDKs) and conformational changes induced by the peptidylprolyl cis/trans isomerase Pin1. Here, we show that a conserved amino acid sequence around Ser-577 in the C-terminal part of B-MYB is able to interact with the B-MYB DNA-binding domain. Phosphorylation of Ser-577 disrupts this interaction and is regulated by the interplay of CDKs and the phosphatase CDC14B. Deletion of sequences surrounding Ser-577 hyperactivates the transactivation potential of B-MYB, decreases its proteolytic stability, and causes cell cycle defects. Overall, we show for the first time that B-MYB can undergo an intramolecular interaction that is controlled by the phosphorylation state of Ser-577.
Collapse
Affiliation(s)
- Eugen Werwein
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
22
|
Pattschull G, Walz S, Gründl M, Schwab M, Rühl E, Baluapuri A, Cindric-Vranesic A, Kneitz S, Wolf E, Ade CP, Rosenwald A, von Eyss B, Gaubatz S. The Myb-MuvB Complex Is Required for YAP-Dependent Transcription of Mitotic Genes. Cell Rep 2020; 27:3533-3546.e7. [PMID: 31216474 DOI: 10.1016/j.celrep.2019.05.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.
Collapse
Affiliation(s)
- Grit Pattschull
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Marco Gründl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Melissa Schwab
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Eva Rühl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg 97074, Germany
| | | | - Susanne Kneitz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Carsten P Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Jena 07745, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany.
| |
Collapse
|
23
|
Schade AE, Fischer M, DeCaprio JA. RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res 2020; 47:11197-11208. [PMID: 31667499 PMCID: PMC6868438 DOI: 10.1093/nar/gkz961] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cell cycle gene expression occurs in two waves. The G1/S genes encode factors required for DNA synthesis and the G2/M genes contribute to mitosis. The Retinoblastoma protein (RB) and DREAM complex (DP, RB-like, E2F4 and MuvB) cooperate to repress all cell cycle genes during G1 and inhibit entry into the cell cycle. DNA damage activates p53 leading to increased levels of p21 and inhibition of cell cycle progression. Whether the G1/S and G2/M genes are differentially repressed by RB and the RB-like proteins p130 and p107 in response to DNA damage is not known. We performed gene expression profiling of primary human fibroblasts upon DNA damage and assessed the effects on G1/S and G2/M genes. Upon p53 activation, p130 and RB cooperated to repress the G1/S genes. In addition, in the absence of RB and p130, p107 contributed to repression of G1/S genes. In contrast, G2/M genes were repressed by p130 and p107 after p53 activation. Furthermore, repression of G2/M genes by p107 and p130 led to reduced entry into mitosis. Our data demonstrates specific roles for RB, p130-DREAM, and p107-DREAM in p53 and p21 mediated repression of cell cycle genes.
Collapse
Affiliation(s)
- Amy E Schade
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Fischer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Gründl M, Walz S, Hauf L, Schwab M, Werner KM, Spahr S, Schulte C, Maric HM, Ade CP, Gaubatz S. Interaction of YAP with the Myb-MuvB (MMB) complex defines a transcriptional program to promote the proliferation of cardiomyocytes. PLoS Genet 2020; 16:e1008818. [PMID: 32469866 PMCID: PMC7286521 DOI: 10.1371/journal.pgen.1008818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/10/2020] [Accepted: 05/01/2020] [Indexed: 01/14/2023] Open
Abstract
The Hippo signalling pathway and its central effector YAP regulate proliferation of cardiomyocytes and growth of the heart. Using genetic models in mice we show that the increased proliferation of embryonal and postnatal cardiomyocytes due to loss of the Hippo-signaling component SAV1 depends on the Myb-MuvB (MMB) complex. Similarly, proliferation of postnatal cardiomyocytes induced by constitutive active YAP requires MMB. Genome studies revealed that YAP and MMB regulate an overlapping set of cell cycle genes in cardiomyocytes. Protein-protein interaction studies in cell lines and with recombinant proteins showed that YAP binds directly to B-MYB, a subunit of MMB, in a manner dependent on the YAP WW domains and a PPXY motif in B-MYB. Disruption of the interaction by overexpression of the YAP binding domain of B-MYB strongly inhibits the proliferation of cardiomyocytes. Our results point to MMB as a critical downstream effector of YAP in the control of cardiomyocyte proliferation. YAP, the major downstream transducer of the Hippo pathway, is a potent inducer of proliferation. Here we show that the Myb-MuvB complex (MMB) mediates cardiomyocyte proliferation by YAP. We find that YAP and MMB regulate an overlapping set of pro-proliferative genes which involves binding of MMB to the promoters of these genes. We also identified a direct interaction between the B-MYB subunit of MMB and YAP. Based on the binding studies, we created a tool called MY-COMP that interferes with the association YAP to B-MYB and strongly inhibits proliferation of cardiomyocytes. Together, our data suggests that the YAP-MMB interaction is essential for division of cardiomyocytes, underscoring the functional relevance of the crosstalk between these two pathways for proper heart development.
Collapse
Affiliation(s)
- Marco Gründl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Laura Hauf
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Melissa Schwab
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Marcela Werner
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Spahr
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Clemens Schulte
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Wuerzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Wuerzburg, Germany
| | - Carsten P. Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Cibis H, Biyanee A, Dörner W, Mootz HD, Klempnauer KH. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci Rep 2020; 10:8390. [PMID: 32439918 PMCID: PMC7242444 DOI: 10.1038/s41598-020-65443-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
B-MYB, a highly conserved member of the MYB transcription factor family, is expressed ubiquitously in proliferating cells and plays key roles in important cell cycle-related processes, such as control of G2/M-phase transcription, cytokinesis, G1/S-phase progression and DNA-damage reponse. Deregulation of B-MYB function is characteristic of several types of tumor cells, underlining its oncogenic potential. To gain a better understanding of the functions of B-MYB we have employed affinity purification coupled to mass spectrometry to discover novel B-MYB interacting proteins. Here we have identified the zinc-finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. ZMYM4 is a poorly studied protein whose initial characterization reported here shows that it is highly SUMOylated and that its interaction with B-MYB is stimulated upon induction of DNA damage. Unlike knockdown of B-MYB, which causes G2/M arrest and defective cytokinesis in HEK293 cells, knockdown of ZMYM2 or ZMYM4 have no obvious effects on the cell cycle of these cells. By contrast, knockdown of ZMYM2 strongly impaired the G1/S-phase progression of HepG2 cells, suggesting that ZMYM2, like B-MYB, is required for entry into S-phase in these cells. Overall, our work identifies two novel B-MYB binding partners with possible functions in the DNA-damage response and the G1/S-transition.
Collapse
Affiliation(s)
- Hannah Cibis
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
26
|
Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, Larson BJ, Rubin SM, Strome S, Lipsick JS. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 2020; 9:bio051508. [PMID: 32295830 PMCID: PMC7225089 DOI: 10.1242/bio.051508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 01/14/2023] Open
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Collapse
Affiliation(s)
- Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul Goetsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Braden J Larson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
27
|
|
28
|
Lai H, Wang R, Li S, Shi Q, Cai Z, Li Y, Liu Y. LIN9 confers paclitaxel resistance in triple negative breast cancer cells by upregulating CCSAP. SCIENCE CHINA-LIFE SCIENCES 2019; 63:419-428. [DOI: 10.1007/s11427-019-9581-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
|
29
|
Schade AE, Oser MG, Nicholson HE, DeCaprio JA. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene 2019; 38:4962-4976. [PMID: 30833638 PMCID: PMC6586519 DOI: 10.1038/s41388-019-0767-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022]
Abstract
The Retinoblastoma protein (RB) restricts cell cycle gene expression and entry into the cell cycle. The RB-related protein p130 forms the DREAM (DP, RB-like, E2F and MuvB) complex and contributes to repression of cell cycle dependent genes during quiescence. Although both RB and DREAM bind and repress an overlapping set of E2F dependent gene promoters, it remains unclear if they cooperate to restrict cell cycle entry. To test the specific contributions of RB and DREAM, we generated RB and p130 knockout cells in primary human fibroblasts. Knockout of both p130 and RB yielded higher levels of cell cycle gene expression in G0 and G1 cells compared to cells with knockout of RB alone, indicating a role for DREAM and RB in repression of cell cycle genes. We observed that RB played a dominant role in E2F dependent gene repression during mid to late G1 while DREAM activity was more prominant during G0 and early G1. Cyclin D - Cyclin Dependent Kinase 4 (CDK4) dependent phosphorylation of p130 occurred during early G1 and led to the release of p130 and MuvB from E2F4 and decreased p130 and MuvB binding to cell cycle promoters. Specific inhibition of CDK4 activity by palbociclib blocked DREAM complex disassembly during cell cycle entry. In addition, sensitivity to CDK4 inhibition was dependent on RB and an intact DREAM complex in both normal cells as well as in palbociclib-sensitive cancer cell lines. Although RB knockout cells were partially resistant to CDK4 inhibition, RB and p130 double knockout cells were significantly more resistant to palbociclib treatment. These results indicate that DREAM cooperates with RB in repressing E2F dependent gene expression and cell cycle entry and supports a role for DREAM as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Amy E Schade
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA, 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA, 02115, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Bainor AJ, Saini S, Calderon A, Casado-Polanco R, Giner-Ramirez B, Moncada C, Cantor DJ, Ernlund A, Litovchick L, David G. The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Rep 2018; 25:2797-2807.e8. [PMID: 30517867 PMCID: PMC6324198 DOI: 10.1016/j.celrep.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
The mammalian DREAM complex is responsible for the transcriptional repression of hundreds of cell-cycle-related genes in quiescence. How the DREAM complex recruits chromatin-modifying entities to aid in its repression remains unknown. Using unbiased proteomics analysis, we have uncovered a robust association between the chromatin-associated Sin3B protein and the DREAM complex. We have determined that genetic inactivation of Sin3B results in the de-repression of DREAM target genes during quiescence but is insufficient to allow quiescent cells to resume proliferation. However, inactivation of APC/CCDH1 was sufficient for Sin3B-/- cells, but not parental cells, to re-enter the cell cycle. These studies identify Sin3B as a transcriptional corepressor associated with the DREAM complex in quiescence and reveals a functional cooperation between E2F target repression and APC/CCDH1 in the negative regulation of cell-cycle progression.
Collapse
Affiliation(s)
- Anthony J Bainor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Raquel Casado-Polanco
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Belén Giner-Ramirez
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Claudia Moncada
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David J Cantor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA; Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA; NYU Cancer Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
31
|
Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis. Cell Death Dis 2018; 9:1035. [PMID: 30305611 PMCID: PMC6180101 DOI: 10.1038/s41419-018-1086-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/25/2023]
Abstract
Glioma is the most common and malignant form of primary brain tumour, and is characterised by high proliferation and extensive invasion and neurological destruction. Demethylzeylasteral (T-96), which is extracted from Tripterygium wilfordii, is considered to have immunosuppressive, anti-inflammatory and anti-angiogenic effects. Here, the anti-tumour effect of T-96 on glioma was evaluated. Our results demonstrated that T-96 significantly inhibited glioma cell growth and induced cell cycle arrest in G1 phase but did not induce apoptosis. Cell invasion and migration were dramatically suppressed after treatment with T-96. Almost all genes related to cell cycle and DNA replication were downregulated after treatment with T-96. Our results showed that miR-30e-5p was noticeably upregulated after T-96 treatment, and MYBL2, which is involved in cell cycle progression and is a target gene of miR-30e-5p, was significantly reduced in synchrony. Overexpression of MYBL2 partially rescued the T-96-induced inhibition of cell growth and proliferation. Moreover, a miR-30e-5p antagomir significantly reduced the upregulation of miR-30e-5p expression induced by T-96, leading to recovery of MYBL2 expression, and partially rescued the T-96-induced inhibition of cell growth and proliferation. More important, T-96 effectively upregulated miR-30e-5p expression and downregulated MYBL2 expression, thus inhibiting LN-229 cell tumour growth in a mouse model. These results indicated that T-96 might inhibit glioma cell growth by regulating the miR-30e-5p/MYBL2 axis. Our study demonstrated that T-96 might act as a promising agent for malignant glioma therapy.
Collapse
|
32
|
Abstract
The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb-MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.
Collapse
|
33
|
Bayley R, Blakemore D, Cancian L, Dumon S, Volpe G, Ward C, Almaghrabi R, Gujar J, Reeve N, Raghavan M, Higgs MR, Stewart GS, Petermann E, García P. MYBL2 Supports DNA Double Strand Break Repair in Hematopoietic Stem Cells. Cancer Res 2018; 78:5767-5779. [PMID: 30082276 DOI: 10.1158/0008-5472.can-18-0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/22/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by blood cytopenias that occur as a result of somatic mutations in hematopoietic stem cells (HSC). MDS leads to ineffective hematopoiesis, and as many as 30% of patients progress to acute myeloid leukemia (AML). The mechanisms by which mutations accumulate in HSC during aging remain poorly understood. Here we identify a novel role for MYBL2 in DNA double-strand break (DSB) repair in HSC. In patients with MDS, low MYBL2 levels associated with and preceded transcriptional deregulation of DNA repair genes. Stem/progenitor cells from these patients display dysfunctional DSB repair kinetics after exposure to ionizing radiation (IR). Haploinsufficiency of Mybl2 in mice also led to a defect in the repair of DSBs induced by IR in HSC and was characterized by unsustained phosphorylation of the ATM substrate KAP1 and telomere fragility. Our study identifies MYBL2 as a crucial regulator of DSB repair and identifies MYBL2 expression levels as a potential biomarker to predict cellular response to genotoxic treatments in MDS and to identify patients with defects in DNA repair. Such patients with worse prognosis may require a different therapeutic regimen to prevent progression to AML.Significance: These findings suggest MYBL2 levels may be used as a biological biomarker to determine the DNA repair capacity of hematopoietic stem cells from patients with MDS and as a clinical biomarker to inform decisions regarding patient selection for treatments that target DNA repair.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5767/F1.large.jpg Cancer Res; 78(20); 5767-79. ©2018 AACR.
Collapse
Affiliation(s)
- Rachel Bayley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Blakemore
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laila Cancian
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Dumon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Giacomo Volpe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jidnyasa Gujar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natasha Reeve
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, United Kingdom
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paloma García
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
34
|
Iness AN, Litovchick L. MuvB: A Key to Cell Cycle Control in Ovarian Cancer. Front Oncol 2018; 8:223. [PMID: 29942794 PMCID: PMC6004728 DOI: 10.3389/fonc.2018.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer cells are characterized by uncontrolled proliferation, whereas the ability to enter quiescence or dormancy is important for cancer cell survival and disease recurrence. Therefore, understanding the mechanisms regulating cell cycle progression and exit is essential for improving patient outcomes. The MuvB complex of five proteins (LIN9, LIN37, LIN52, RBBP4, and LIN54), also known as LINC (LIN complex), is important for coordinated cell cycle gene expression. By participating in the formation of three distinct transcriptional regulatory complexes, including DREAM (DP, RB-like, E2F, and MuvB), MMB (Myb-MuvB), and FoxM1–MuvB, MuvB represents a unique regulator mediating either transcriptional activation (during S–G2 phases) or repression (during quiescence). With no known enzymatic activities in any of the MuvB-associated complexes, studies have focused on the therapeutic potential of protein kinases responsible for initiating DREAM assembly or downstream enzymatic targets of MMB. Furthermore, the mechanisms governing the formation and activity of each complex (DREAM, MMB, or FoxM1–MuvB) may have important consequences for therapeutic response. The MMB complex is associated with prognostic markers of aggressiveness in several cancers, whereas the DREAM complex is tied to disease recurrence through its role in maintaining quiescence. Here, we review recent developments in our understanding of MuvB function in the context of cancer. We specifically highlight the rationale for additional investigation of MuvB in high-grade serous ovarian cancer and the need for further translational research.
Collapse
Affiliation(s)
- Audra N Iness
- Division of Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Division of Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
35
|
Hanselmann S, Wolter P, Malkmus J, Gaubatz S. The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer. Oncotarget 2017; 9:4985-4997. [PMID: 29435157 PMCID: PMC5797028 DOI: 10.18632/oncotarget.23577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated whether proteins that are involved in cytokinesis are potential targets for therapy of lung cancer. We find that the microtubule-associated protein PRC1 (protein required for cytokinesis 1), which plays a key role in organizing anti-parallel microtubule in the central spindle in cytokinesis, is overexpressed in lung cancer cell lines compared to normal cells. Increased expression of PRC1 is correlated with a poor prognosis of human lung adenocarcinoma patients. Lentiviral delivered, inducible RNAi of PRC1 demonstrated that proliferation of lung cancer cell lines strongly depends on PRC1. Significantly, we also show that PRC1 is required for tumorigenesis in vivo using a mouse model for non-small cell lung cancer driven by oncogenic K-RAS and loss of p53. When PRC1 is depleted by in vivo RNA interference, lung tumor formation is significantly reduced. Although PRC1 has been suggested to regulate Wnt/ß-catenin signaling in cancer cells, we find no evidence for a role of PRC1 in this pathway in lung cancer. Instead, we show that the depletion of PRC1 results in a strong increase in bi- and multinuclear cells due to defects in cytokinesis. This ultimately leads to apoptosis and senescence. Together these data establish PRC1 as a potential target for therapy of lung cancer.
Collapse
Affiliation(s)
- Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Patrick Wolter
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Malkmus
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
36
|
Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2017; 25:114-132. [PMID: 29125603 PMCID: PMC5729532 DOI: 10.1038/cdd.2017.172] [Citation(s) in RCA: 475] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV. Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia. Importantly, when DREAM function is lost, CDK inhibitor drugs employed in cancer treatment such as Palbociclib, Abemaciclib and Ribociclib can compensate for defects in early steps in the pathway upstream from cyclin/CDK complexes. In summary, the p53–p21–DREAM–E2F/CHR pathway controls a plethora of cell cycle genes, can contribute to cell cycle arrest and is a target for cancer therapy.
Collapse
|
37
|
Goetsch PD, Garrigues JM, Strome S. Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB's innate function as the repressor of DREAM target genes. PLoS Genet 2017; 13:e1007088. [PMID: 29091720 PMCID: PMC5683655 DOI: 10.1371/journal.pgen.1007088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/13/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022] Open
Abstract
The DREAM (Dp/Retinoblastoma(Rb)-like/E2F/MuvB) transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM’s three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression. We tested this model by assessing how the conserved yet less redundant DREAM system in Caenorhabditis elegans is affected by absence of the sole C. elegans pocket protein LIN-35. Using a LIN-35 protein null mutant, we analyzed the assembly of E2F-DP and MuvB at promoters that are bound by DREAM and the level of expression of those "DREAM target genes" in embryos. We report that LIN-35 indeed mediates the association of E2F-DP and MuvB, a function that stabilizes DREAM subunit occupancy at target genes. In the absence of LIN-35, the occupancy of E2F-DP and MuvB at most DREAM target genes decreases dramatically and many of those genes become upregulated. The retention of E2F-DP and MuvB at some target gene promoters in lin-35 null embryos allowed us to test their contribution to DREAM target gene repression. Depletion of MuvB, but not E2F-DP, in the sensitized lin-35 null background caused further upregulation of DREAM target genes. We conclude that the pocket protein functions primarily to support MuvB-mediated repression of DREAM targets and that transcriptional repression is the innate function of the evolutionarily conserved MuvB complex. Our findings provide important insights into how mammalian DREAM assembly and disassembly may regulate gene expression and the cell cycle. The 8-subunit DREAM transcriptional repressor complex contains 3 functional components that together control expression of cell cycle and developmental genes. How the E2F-DP transcription factor heterodimer, the pocket protein, and the highly conserved MuvB complex coalesce on chromatin and repress DREAM target genes has yet to be determined. We directly tested the prevailing model that the DREAM pocket protein links E2F-DP to MuvB and is required for gene repression. Using a protein null mutant of the sole C. elegans pocket protein LIN-35, we demonstrate that the pocket protein indeed links E2F-DP and MuvB, which aids in the stable occupancy of DREAM components near target genes. Depletion of additional DREAM components in lin-35 null worms revealed that the remaining chromatin-bound MuvB represses target genes. We conclude that the MuvB subcomplex mediates DREAM’s critical repressive function. Our functional genomics approach in the simplified C. elegans system reveals that the ancestral function of the pocket protein is to stabilize the innate repressive activity of MuvB, ensuring proper regulation of DREAM target genes through development.
Collapse
Affiliation(s)
- Paul D. Goetsch
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jacob M. Garrigues
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sahni JM, Gayle SS, Webb BM, Weber-Bonk KL, Seachrist DD, Singh S, Sizemore ST, Restrepo NA, Bebek G, Scacheri PC, Varadan V, Summers MK, Keri RA. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors. Cancer Res 2017; 77:5395-5408. [PMID: 28807940 DOI: 10.1158/0008-5472.can-17-1571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancers (TNBC) are highly aggressive, lack FDA-approved targeted therapies, and frequently recur, making the discovery of novel therapeutic targets for this disease imperative. Our previous analysis of the molecular mechanisms of action of bromodomain and extraterminal protein inhibitors (BETi) in TNBC revealed these drugs cause multinucleation, indicating BET proteins are essential for efficient mitosis and cytokinesis. Here, using live cell imaging, we show that BET inhibition prolonged mitotic progression and induced mitotic cell death, both of which are indicative of mitotic catastrophe. Mechanistically, the mitosis regulator LIN9 was a direct target of BET proteins that mediated the effects of BET proteins on mitosis in TNBC. Although BETi have been proposed to function by dismantling super-enhancers (SE), the LIN9 gene lacks an SE but was amplified or overexpressed in the majority of TNBCs. In addition, its mRNA expression predicted poor outcome across breast cancer subtypes. Together, these results provide a mechanism for cancer selectivity of BETi that extends beyond modulation of SE-associated genes and suggest that cancers dependent upon LIN9 overexpression may be particularly vulnerable to BETi. Cancer Res; 77(19); 5395-408. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer M Sahni
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Sylvia S Gayle
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryan M Webb
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | | | - Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Nicole A Restrepo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio
| | - Peter C Scacheri
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Matthew K Summers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Department General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
39
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
40
|
Wolter P, Hanselmann S, Pattschull G, Schruf E, Gaubatz S. Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget 2017; 8:11160-11172. [PMID: 28061449 PMCID: PMC5355254 DOI: 10.18632/oncotarget.14466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
The MuvB multiprotein complex, together with B-MYB and FOXM1 (MMB-FOXM1), plays an essential role in cell cycle progression by regulating the transcription of genes required for mitosis and cytokinesis. In many tumors, B-MYB and FOXM1 are overexpressed as part of the proliferation signature. However, the transcriptional targets that are important for oncogenesis have not been identified. Given that mitotic kinesins are highly expressed in cancer cells and that selected kinesins have been reported as target genes of MMB-FOXM1, we sought to determine which mitotic kinesins are directly regulated by MMB-FOXM1. We demonstrate that six mitotic kinesins and two microtubule-associated non-motor proteins (MAPs) CEP55 and PRC1 are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cells. Suppression of KIF23 and PRC1 strongly suppressed proliferation of MDA-MB-231 cells. The set of MMB-FOXM1 regulated kinesins genes and 4 additional kinesins which we referred to as the mitotic kinesin signature (MKS) is linked to poor outcome in breast cancer patients. Thus, mitotic kinesins could be used as prognostic biomarker and could be potential therapeutic targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Patrick Wolter
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Grit Pattschull
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Schruf
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
41
|
Deletion of Gas2l3 in mice leads to specific defects in cardiomyocyte cytokinesis during development. Proc Natl Acad Sci U S A 2017; 114:8029-8034. [PMID: 28698371 DOI: 10.1073/pnas.1703406114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
GAS2L3 is a recently identified cytoskeleton-associated protein that interacts with actin filaments and tubulin. The in vivo function of GAS2L3 in mammals remains unknown. Here, we show that mice deficient in GAS2L3 die shortly after birth because of heart failure. Mammalian cardiomyocytes lose the ability to proliferate shortly after birth, and further increase in cardiac mass is achieved by hypertrophy. The proliferation arrest of cardiomyocytes is accompanied by binucleation through incomplete cytokinesis. We observed that GAS2L3 deficiency leads to inhibition of cardiomyocyte proliferation and to cardiomyocyte hypertrophy during embryonic development. Cardiomyocyte-specific deletion of GAS2L3 confirmed that the phenotype results from the loss of GAS2L3 in cardiomyocytes. Cardiomyocytes from Gas2l3-deficient mice exhibit increased expression of a p53-transcriptional program including the cell cycle inhibitor p21. Furthermore, loss of GAS2L3 results in premature binucleation of cardiomyocytes accompanied by unresolved midbody structures. Together these results suggest that GAS2L3 plays a specific role in cardiomyocyte cytokinesis and proliferation during heart development.
Collapse
|
42
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
43
|
Henrich SM, Usadel C, Werwein E, Burdova K, Janscak P, Ferrari S, Hess D, Klempnauer KH. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling. Sci Rep 2017; 7:41663. [PMID: 28128338 PMCID: PMC5269693 DOI: 10.1038/srep41663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Collapse
Affiliation(s)
- Sarah Marie Henrich
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
- Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Clemens Usadel
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Eugen Werwein
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Kamila Burdova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
44
|
Kang MK, Mehrazarin S, Park NH, Wang CY. Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 2016; 23:709-720. [PMID: 27514027 DOI: 10.1111/odi.12569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.
Collapse
Affiliation(s)
- M K Kang
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - S Mehrazarin
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - N-H Park
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
45
|
An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma. Oncogene 2016; 36:110-121. [PMID: 27212033 DOI: 10.1038/onc.2016.181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer.
Collapse
|
46
|
Fischer M, Quaas M, Nickel A, Engeland K. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 2015; 6:41402-17. [PMID: 26595675 PMCID: PMC4747163 DOI: 10.18632/oncotarget.6356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana–Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Annina Nickel
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Rashid NN, Rothan HA, Yusoff MSM. The association of mammalian DREAM complex and HPV16 E7 proteins. Am J Cancer Res 2015; 5:3525-3533. [PMID: 26885443 PMCID: PMC4731628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023] Open
Abstract
The mammalian DREAM (Drosophila, RB, E2F, and Myb) complex was discovered in 2004 by several research groups. It was initially identified in Drosophila followed by Caenorhaditis elegans and later in mammalian cells. The composition of DREAM is temporally regulated during cell cycle; being associated with E2F-4 and either p107 or p130 in G0/G1 (repressive DREAM complexes) and with B-myb transcription factor in S/G2 (activator DREAM complex). High risk human papillomavirus (HPV) E6 and E7 oncoproteins expression are important for malignant transformation of cervical cancer cells. In particular, the E7 of high risk HPV binds to pRB family members (pRB, p107 and p130) for degradation. It has recently been discovered that the p107 and p130 'pocket proteins' are members of mammalian DREAM complexes. With this understanding, we would like to hypothesise the mammalian DREAM complex could plays a critical role for malignant transformation in cervical cancer cells.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Hussin A Rothan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | | |
Collapse
|
48
|
Ren F, Wang L, Shen X, Xiao X, Liu Z, Wei P, Wang Y, Qi P, Shen C, Sheng W, Du X. MYBL2 is an independent prognostic marker that has tumor-promoting functions in colorectal cancer. Am J Cancer Res 2015; 5:1542-1552. [PMID: 26101717 PMCID: PMC4473330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023] Open
Abstract
The MYBL2 gene plays an important role in the genesis and progression of tumors; however, few studies to date have defined the role of this gene in colorectal cancer (CRC). The aim of this study was to determine the relationship between MYBL2 and the prognosis of patients with CRC and to determine the possible effect of MYBL2 on colorectal carcinogenesis. Solid CRC tissues (n=180) preserved with RNAlater were collected to examine the mRNA levels of MYBL2 by real-time quantitative PCR (RT-qPCR). Formalin-fixed, paraffin-embedded (FFPE) blocks of CRC tissues (n=97) and adjacent noncancerous tissues (ANCTs, n=104) were obtained to detect MYBL2 protein levels by immunohistochemistry (IHC). siRNA was used to downregulate MYBL2 expression in the SW480 cell line to detect changes in proliferation, cell cycle progression, apoptosis, migration and invasion. The protein levels of MYBL2 were significantly higher in CRC tissues compared with ANCTs (P<0.05). Kaplan-Meier survival curves indicated that disease-free survival (DFS) was significantly worse in CRC patients in whom MYBL2 was overexpressed (at both the mRNA and protein levels) compared with patients not overexpressing MYBL2. Cox multivariate analysis revealed MYBL2 overexpression as an independent prognostic factor for poor patient survival. In addition, siRNA downregulation of MYBL2 suppressed SW480 cell proliferation, delayed cell cycle progression and induced apoptosis; however, changes in cell migration were minor. Western blot analysis demonstrated an association between MYBL2 expression and that of MMP9, Vimentin, and E-cadherin. MYBL2 is overexpressed in CRC and may therefore play an important role in tumourigenesis.
Collapse
Affiliation(s)
- Fei Ren
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Lisha Wang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiaohan Shen
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200127, China
| | - Zebing Liu
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Yiqin Wang
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Chen Shen
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Institute of Pathology, Fudan UniversityShanghai 200032, China
- Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
| |
Collapse
|
49
|
Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne) 2015; 6:60. [PMID: 25999914 PMCID: PMC4419714 DOI: 10.3389/fendo.2015.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Research over the past few decades has well established the molecular functioning of mitosis. Deregulation of these functions has also been attributed to the generation of aneuploidy in different tumor types. Numerous studies have given insight into the regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins have been reported in different cancer types. Several post-transcriptional mechanisms and their interplay have subsequently been identified that control the level of mitotic proteins. However, to date, infrequent incidences of cancer-associated mutations have been reported for the genes expressing these proteins. Therefore, altered expression of these mitotic regulators in tumor samples can largely be attributed to transcriptional deregulation. This review discusses the biology of transcriptional control for mitosis and evaluates its role in the generation of aneuploidy and tumorigenesis.
Collapse
Affiliation(s)
- Somsubhra Nath
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Present address: Somsubhra Nath, Genetics, Cell Biology and Anatomy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Susanta Roychoudhury, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India, ;
| |
Collapse
|
50
|
Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res 2014; 42:10331-50. [PMID: 25106871 PMCID: PMC4176359 DOI: 10.1093/nar/gku696] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB.
Collapse
Affiliation(s)
- Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Axel Wintsche
- Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Konstanze Stangner
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany Center for Non-coding RNA in Technology and Health, Department of Basic Veterinary and Animal Sciences, Faculty of Life Sciences University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C Denmark Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| |
Collapse
|