1
|
Aruna K, Pal S, Khanna A, Bhattacharyya S. Postsynaptic Density Proteins and Their Role in the Trafficking of Group I Metabotropic Glutamate Receptors. J Membr Biol 2024; 257:257-268. [PMID: 39369356 DOI: 10.1007/s00232-024-00326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that regulates multiple different forms of synaptic plasticity, including learning and memory. Glutamate transduces its signal by activating ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). Group I mGluRs belong to the G protein-coupled receptor (GPCR) family. Regulation of cell surface expression and trafficking of the glutamate receptors represents an important mechanism that assures proper transmission of information at the synapses. There is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. The postsynaptic density (PSD) region consists of many specialized proteins which are assembled beneath the postsynaptic membrane of dendritic spines. Many of these proteins interact with group I mGluRs and have essential roles in group I mGluR-mediated synaptic function and plasticity. This review provides up-to-date information on the molecular determinants regulating cell surface expression and trafficking of group I mGluRs and discusses the role of few of these PSD proteins in these processes. As substantial evidences link mGluR dysfunction and maladaptive functioning of many PSD proteins to the pathophysiology of various neuropsychiatric disorders, understanding the role of the PSD proteins in group I mGluR trafficking may provide opportunities for the development of novel therapeutics in multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Subhajit Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Ankita Khanna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|
2
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
3
|
Genera M, Colcombet-Cazenave B, Croitoru A, Raynal B, Mechaly A, Caillet J, Haouz A, Wolff N, Caillet-Saguy C. Interactions of the protein tyrosine phosphatase PTPN3 with viral and cellular partners through its PDZ domain: insights into structural determinants and phosphatase activity. Front Mol Biosci 2023; 10:1192621. [PMID: 37200868 PMCID: PMC10185773 DOI: 10.3389/fmolb.2023.1192621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. We solved the X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE). We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein's phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.
Collapse
Affiliation(s)
- Mariano Genera
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Baptiste Colcombet-Cazenave
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Anastasia Croitoru
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform-C2RT, CNRS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ariel Mechaly
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Joël Caillet
- CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Célia Caillet-Saguy
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- *Correspondence: Célia Caillet-Saguy,
| |
Collapse
|
4
|
Proteomic identification and structural basis for the interaction between sorting nexin SNX17 and PDLIM family proteins. Structure 2022; 30:1590-1602.e6. [DOI: 10.1016/j.str.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
|
5
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
6
|
Hámor PU, Schwendt M. Metabotropic Glutamate Receptor Trafficking and its Role in Drug-Induced Neurobehavioral Plasticity. Brain Plast 2021; 7:61-76. [PMID: 34868874 PMCID: PMC8609495 DOI: 10.3233/bpl-210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that guides developmental and experience-dependent changes in many cellular substrates and brain circuits, through the process collectively referred to as neurobehavioral plasticity. Regulation of cell surface expression and membrane trafficking of glutamate receptors represents an important mechanism that assures optimal excitatory transmission, and at the same time, also allows for fine-tuning neuronal responses to glutamate. On the other hand, there is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. This review provides up-to-date information on the molecular determinants regulating trafficking and surface expression of metabotropic glutamate (mGlu) receptors in the rodent and human brain and discusses the role of mGluR trafficking in maladaptive synaptic plasticity produced by addictive drugs. As substantial evidence links glutamatergic dysfunction to the progression and the severity of drug addiction, advances in our understanding of mGluR trafficking may provide opportunities for the development of novel pharmacotherapies of addiction and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peter U. Hámor
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Pandey S, Ramsakha N, Sharma R, Gulia R, Ojha P, Lu W, Bhattacharyya S. The post-synaptic scaffolding protein tamalin regulates ligand-mediated trafficking of metabotropic glutamate receptors. J Biol Chem 2020; 295:8575-8588. [PMID: 32376687 DOI: 10.1074/jbc.ra119.011979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/04/2020] [Indexed: 11/06/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play important roles in various neuronal functions and have also been implicated in multiple neuropsychiatric disorders like fragile X syndrome, autism, and others. mGluR trafficking not only plays important roles in controlling the spatiotemporal localization of these receptors in the cell but also regulates the activity of these receptors. Despite this obvious significance, the cellular machineries that control the trafficking of group I metabotropic glutamate receptors in the central nervous system have not been studied in detail. The post-synaptic scaffolding protein tamalin has been shown to interact with group I mGluRs and also with many other proteins involved in protein trafficking in neurons. Using a molecular replacement approach in mouse hippocampal neurons, we show here that tamalin plays a critical role in the ligand-dependent internalization of mGluR1 and mGluR5, members of the group I mGluR family. Specifically, knockdown of endogenous tamalin inhibited the ligand-dependent internalization of these two receptors. Both N-terminal and C-terminal regions of tamalin played critical roles in mGluR1 endocytosis. Furthermore, we found that tamalin regulates mGluR1 internalization by interacting with S-SCAM, a protein that has been implicated in vesicular trafficking. Finally, we demonstrate that tamalin plays a critical role in mGluR-mediated internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, a process believed to be the cellular correlate for mGluR-dependent synaptic plasticity. Taken together, these findings reveal a mechanistic role of tamalin in the trafficking of group I mGluRs and suggest its physiological implications in the brain.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| | - Namrata Ramsakha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| | - Rohan Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| | - Ravinder Gulia
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| | - Prachi Ojha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
8
|
Schintu N, Zhang X, Stroth N, Mathé AA, Andrén PE, Svenningsson P. Non-dopaminergic Alterations in Depression-Like FSL Rats in Experimental Parkinsonism and L-DOPA Responses. Front Pharmacol 2020; 11:304. [PMID: 32265703 PMCID: PMC7099513 DOI: 10.3389/fphar.2020.00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Depression is a common comorbid condition in Parkinson’s disease (PD). Patients with depression have a two-fold increased risk to develop PD. Further, depression symptoms often precede motor symptoms in PD and are frequent at all stages of the disease. However, the influence of a depressive state on the responses to antiparkinson treatments is largely unknown. In this study, the genetically inbred depression-like flinders sensitive line (FSL) rats and control flinders resistant line (FRL) rats were studied in models of experimental parkinsonism. FSL rats showed a potentiated tremorgenic response to tacrine, a cholinesterase inhibitor used experimentally to induce 6 Hz resting tremor reminiscent of parkinsonian tremor. We also studied rats lesioned with 6-OHDA to induce hemiparkinsonism. No baseline differences in dopaminergic response to acute apomorphine or L-DOPA was found. However, following chronic treatment with L-DOPA, FRL rats developed sensitization of turning and abnormal involuntary movements (AIMs); these effects were counteracted by the anti-dyskinetic 5-HT1A agonist/D2 partial agonist sarizotan. In contrast, FSL rats did not develop sensitization of turning and only minor AIMs in response to L-DOPA treatment. The roles of several non-dopamine systems underlying this discrepancy were studied. Unexpectedly, no differences of opioid neuropeptides or serotonin markers were found between FRL and FSL rats. The marked behavioral difference between the FRL and FSL rats was paralleled with the striatal expression of the established marker, c-fos, but also the GABAergic transporter (vGAT), and a hitherto unknown marker, tamalin, that is known to regulate mGluR5 receptor function and postsynaptic organization. This study demonstrates that behavioral and transcriptional responses of non-dopaminergic systems to experimental parkinsonism and L-DOPA are modified in a genetic rat model of depression.
Collapse
Affiliation(s)
- Nicoletta Schintu
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nikolas Stroth
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
10
|
Neyman S, Braunewell KH, O'Connell KE, Dev KK, Manahan-Vaughan D. Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation. Front Synaptic Neurosci 2019; 11:13. [PMID: 31057390 PMCID: PMC6482240 DOI: 10.3389/fnsyn.2019.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
The group I metabotropic glutamate (mGlu) receptor subtypes, mGlu1 and mGlu5, strongly regulate hippocampal synaptic plasticity. Both harbor PSD-95/discs-large/ZO-1 (PDZ) motifs at their extreme carboxyl terminals, which allow interaction with the PDZ domain of Tamalin, regulate the cell surface expression of group I mGlu receptors, and may modulate their coupling to signaling proteins. We investigated the functional role of this interaction in hippocampal long-term depression (LTD). Acute intracerebral treatment of adult rats with a cell-permeable PDZ-blocking peptide (pep-mGluR-STL), designed to competitively inhibit the interaction between Tamalin and group 1 mGlu receptors, prevented expression of LTD in the hippocampal CA1 region without affecting long-term potentiation (LTP) or basal synaptic transmission. Pep-mGluR-STL prevented facilitation by the group I mGlu receptor agonist, (S)-3,5-Dihydroxyphenylglycine (DHPG), and the mGlu5 agonist, (R,S)-2-chloro-5-Hydroxyphenylglycine (CHPG), of short-term depression (STD) into LTD, suggesting that Tamalin preferentially acts by mediating signaling through mGlu5. These data support that Tamalin is essential for the persistent expression of LTD and that it subserves the effective signaling of group 1 mGlu receptors.
Collapse
Affiliation(s)
- Sergey Neyman
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Karl-Heinz Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Kara E O'Connell
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
11
|
Suh YH, Chang K, Roche KW. Metabotropic glutamate receptor trafficking. Mol Cell Neurosci 2018; 91:10-24. [PMID: 29604330 DOI: 10.1016/j.mcn.2018.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/14/2023] Open
Abstract
The metabotropic glutamate receptors (mGlu receptors) are G protein-coupled receptors that bind to the excitatory neurotransmitter glutamate and are important in the modulation of neuronal excitability, synaptic transmission, and plasticity in the central nervous system. Trafficking of mGlu receptors in and out of the synaptic plasma membrane is a fundamental mechanism modulating excitatory synaptic function through regulation of receptor abundance, desensitization, and signaling profiles. In this review, we cover the regulatory mechanisms determining surface expression and endocytosis of mGlu receptors, with particular focus on post-translational modifications and receptor-protein interactions. The literature we review broadens our insight into the precise events defining the expression of functional mGlu receptors at synapses, and will likely contribute to the successful development of novel therapeutic targets for a variety of developmental, neurological, and psychiatric disorders.
Collapse
Affiliation(s)
- Young Ho Suh
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Kai Chang
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Abstract
Khoo and Pless examine new work that provides mechanistic insight into the role of the intrinsic ligand in KCNH ion channels.
Collapse
Affiliation(s)
- Keith K Khoo
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
MAGI Proteins Regulate the Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1 via a Compensatory Mechanism. J Mol Signal 2016; 11:5. [PMID: 31051013 PMCID: PMC5345131 DOI: 10.5334/1750-2187-11-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Corticotropin-releasing factor (CRF) receptor1 (CRFR1) is associated with psychiatric illness and is a proposed target for the treatment of anxiety and depression. Similar to many G protein-coupled receptors (GPCRs), CRFR1 harbors a PDZ (PSD-95/Disc Large/Zona Occludens)-binding motif at the end of its carboxyl-terminal tail. The interactions of PDZ proteins with GPCRs are crucial for the regulation of receptor function. In the present study, we characterize the interaction of all members of the membrane-associated guanylate kinase with inverted orientation PDZ (MAGI) proteins with CRFR1. We show using co-immunoprecipitation that CRFR1 interacts with MAGI-1 and MAGI-3 in human embryonic kidney (HEK293) cells in a PDZ motif-dependent manner. We find that overexpression as well as knockdown of MAGI proteins result in a significant reduction in CRFR1 endocytosis. This effect is dependent on an intact PDZ binding motif for MAGI-2 and MAGI-3 but not MAGI-1. We show that the alteration in expression levels of MAGI-1, MAGI-2 or MAGI-3 can interfere with β-arrestin recruitment to CRFR1. This could explain the effects observed with receptor internalization. We also find that knockdown of endogenous MAGI-1, MAGI-2 or MAGI-3 in HEK293 cells can lead to an enhancement in ERK1/2 signaling but has no effect on cAMP formation. Interestingly, we observe a compensation effect between MAGI-1 and MAGI-3. Taken together, our data suggest that the MAGI proteins, MAGI-1, MAGI-2 and MAGI-3 can regulate β-arrestin-mediated internalization of CRFR1 as well as its signaling and that there is a compensatory mechanism involved in regulating the function of the MAGI subfamily.
Collapse
|
14
|
Yamada N, Yasui K, Dohi O, Gen Y, Tomie A, Kitaichi T, Iwai N, Mitsuyoshi H, Sumida Y, Moriguchi M, Yamaguchi K, Nishikawa T, Umemura A, Naito Y, Tanaka S, Arii S, Itoh Y. Genome-wide DNA methylation analysis in hepatocellular carcinoma. Oncol Rep 2016; 35:2228-2236. [PMID: 26883180 DOI: 10.3892/or.2016.4619] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/03/2015] [Indexed: 11/05/2022] Open
Abstract
Epigenetic changes as well as genetic changes are mechanisms of tumorigenesis. We aimed to identify novel genes that are silenced by DNA hypermethylation in hepatocellular carcinoma (HCC). We screened for genes with promoter DNA hypermethylation using a genome-wide methylation microarray analysis in primary HCC (the discovery set). The microarray analysis revealed that there were 2,670 CpG sites that significantly differed in regards to the methylation level between the tumor and non-tumor liver tissues; 875 were significantly hypermethylated and 1,795 were significantly hypomethylated in the HCC tumors compared to the non‑tumor tissues. Further analyses using methylation-specific PCR, combined with expression analysis, in the validation set of primary HCC showed that, in addition to three known tumor-suppressor genes (APC, CDKN2A, and GSTP1), eight genes (AKR1B1, GRASP, MAP9, NXPE3, RSPH9, SPINT2, STEAP4, and ZNF154) were significantly hypermethylated and downregulated in the HCC tumors compared to the non-tumor liver tissues. Our results suggest that epigenetic silencing of these genes may be associated with HCC.
Collapse
Affiliation(s)
- Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hironori Mitsuyoshi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshio Sumida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
15
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [PMID: 25808930 DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 02/14/2025] Open
Abstract
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27.
Collapse
Affiliation(s)
- Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
17
|
Deciphering the unconventional peptide binding to the PDZ domain of MAST2. Biochem J 2015; 469:159-68. [DOI: 10.1042/bj20141198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/05/2015] [Indexed: 11/17/2022]
Abstract
Peptide binding on to microtubule-associated serine threonine kinase 2 (MAST2)—PDZ (PSD-95, Dlg1, Zo-1) prevents dimerization of the domain without directly competing with the monomer interface. Peptide binding affects positions distal from the binding groove through a network of residues undergoing subtle changes of conformation and dynamics.
Collapse
|
18
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
19
|
The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans. PLoS One 2014; 9:e113060. [PMID: 25422944 PMCID: PMC4244091 DOI: 10.1371/journal.pone.0113060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu) and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic) and survival-promoting (neuroprotective) signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS) cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3) in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.
Collapse
|
20
|
Chen Q, Zou J, Shen Z, Zhang W, Yang J. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem 2014; 289:36070-88. [PMID: 25406310 DOI: 10.1074/jbc.m114.610535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy.
Collapse
Affiliation(s)
- Qian Chen
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Junhuang Zou
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Zuolian Shen
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Weiping Zhang
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Jun Yang
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, the Department of Neurobiology and Anatomy, and the Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
21
|
Venkataraman A, Coleman DJ, Nevrivy DJ, Long T, Kioussi C, Indra AK, Leid M. Grp1-associated scaffold protein regulates skin homeostasis after ultraviolet irradiation. Photochem Photobiol Sci 2014; 13:531-40. [PMID: 24407555 DOI: 10.1039/c3pp50351h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Grp1-associated scaffold protein (Grasp), the product of a retinoic acid-induced gene in P19 embryonal carcinoma cells, is expressed primarily in brain, heart, and lung of the mouse. We report herein that Grasp transcripts are also found in mouse skin in which the Grasp gene is robustly induced following acute ultraviolet-B (UVB) exposure. Grasp(-/-) mice were found to exhibit delayed epidermal proliferation and a blunted apoptotic response after acute UVB exposure. Immunohistochemical analyses revealed that the nuclear residence time of the tumor suppressor protein p53 was reduced in Grasp(-/-) mice after UVB exposure. Taken together, our results suggest that a physiological role of Grasp may be to regulate skin homeostasis after UVB exposure, potentially by influencing p53-mediated apoptotic responses in skin.
Collapse
Affiliation(s)
- Anand Venkataraman
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J 2013; 455:1-14. [DOI: 10.1042/bj20130783] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PDZ domains are highly abundant protein–protein interaction modules and are often found in multidomain scaffold proteins. PDZ-domain-containing scaffold proteins regulate multiple biological processes, including trafficking and clustering receptors and ion channels at defined membrane regions, organizing and targeting signalling complexes at specific cellular compartments, interfacing cytoskeletal structures with membranes, and maintaining various cellular structures. PDZ domains, each with ~90-amino-acid residues folding into a highly similar structure, are best known to bind to short C-terminal tail peptides of their target proteins. A series of recent studies have revealed that, in addition to the canonical target-binding mode, many PDZ–target interactions involve amino acid residues beyond the regular PDZ domain fold, which we refer to as extensions. Such extension sequences often form an integral structural and functional unit with the attached PDZ domain, which is defined as a PDZ supramodule. Correspondingly, PDZ-domain-binding sequences from target proteins are frequently found to require extension sequences beyond canonical short C-terminal tail peptides. Formation of PDZ supramodules not only affords necessary binding specificities and affinities demanded by physiological functions of PDZ domain targets, but also provides regulatory switches to be built in the PDZ–target interactions. At the 20th anniversary of the discovery of PDZ domain proteins, we try to summarize structural features and target-binding properties of such PDZ supramodules emerging from studies in recent years.
Collapse
|
23
|
Van Roey K, Dinkel H, Weatheritt RJ, Gibson TJ, Davey NE. The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 2013; 6:rs7. [PMID: 23550212 DOI: 10.1126/scisignal.2003345] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short linear motifs (SLiMs) are protein interaction sites that play an important role in cell regulation by controlling protein activity, localization, and local abundance. The functionality of a SLiM can be modulated in a context-dependent manner to induce a gain, loss, or exchange of binding partners, which will affect the function of the SLiM-containing protein. As such, these conditional interactions underlie molecular decision-making in cell signaling. We identified multiple types of pre- and posttranslational switch mechanisms that can regulate the function of a SLiM and thereby control its interactions. The collected examples of experimentally characterized SLiM-based switch mechanisms were curated in the freely accessible switches.ELM resource (http://switches.elm.eu.org). On the basis of these examples, we defined and integrated rules to analyze SLiMs for putative regulatory switch mechanisms. We applied these rules to known validated SLiMs, providing evidence that more than half of these are likely to be pre- or posttranslationally regulated. In addition, we showed that posttranslationally modified sites are enriched around SLiMs, which enables cooperative and integrative regulation of protein interaction interfaces. We foresee switches.ELM complementing available resources to extend our knowledge of the molecular mechanisms underlying cell signaling.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Hansen G, Hilgenfeld R. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 2013; 70:761-75. [PMID: 22806565 PMCID: PMC11113883 DOI: 10.1007/s00018-012-1076-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/24/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany.
| | | |
Collapse
|
25
|
Enz R. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Front Mol Neurosci 2012; 5:52. [PMID: 22536173 PMCID: PMC3332230 DOI: 10.3389/fnmol.2012.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/02/2012] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning, and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds, and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g., night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson's disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors' C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.
Collapse
Affiliation(s)
- Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
26
|
Abstract
The molecular mechanisms underlying the effects of electroconvulsive shock (ECS) therapy, a fast-acting and very effective antidepressant therapy, are poorly understood. Changes related to neuroplasticity, including enhanced adult hippocampal neurogenesis and neuronal arborization, are believed to play an important role in mediating the effects of ECS. Here we show a dynamic upregulation of the scaffold protein tamalin, selectively in the hippocampus of animals subjected to ECS. Interestingly, this gene upregulation is functionally significant because tamalin deletion in mice abrogated ECS-induced neurogenesis in the adult mouse hippocampus. Furthermore, loss of tamalin blunts mossy fiber sprouting and dendritic arborization caused by ECS. These data suggest an essential role for tamalin in ECS-induced adult neuroplasticity and provide new insight into the pathways that are involved in mediating ECS effects.
Collapse
|
27
|
Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 2012; 586:2638-47. [PMID: 22576124 PMCID: PMC7094393 DOI: 10.1016/j.febslet.2012.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Chimura T, Launey T, Ito M. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif. BMC Genomics 2011; 12:300. [PMID: 21649932 PMCID: PMC3138430 DOI: 10.1186/1471-2164-12-300] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Background The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.
Collapse
Affiliation(s)
- Takahiko Chimura
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
29
|
Amacher JF, Cushing PR, Weiner JA, Madden DR. Crystallization and preliminary diffraction analysis of the CAL PDZ domain in complex with a selective peptide inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:600-3. [PMID: 21543871 PMCID: PMC3087650 DOI: 10.1107/s1744309111009985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the CFTR-associated ligand (CAL) has a negative effect on apical-membrane expression levels of the most common disease-associated mutant ΔF508-CFTR, making CAL a candidate target for the treatment of CF. A selective peptide inhibitor of the CAL PDZ domain (iCAL36) has recently been developed and shown to stabilize apical expression of ΔF508-CFTR, enhancing net chloride-channel activity, both alone and in combination with the folding corrector corr-4a. As a basis for structural studies of the CAL-iCAL36 interaction, a purification protocol has been developed that increases the oligomeric homogeneity of the protein. Here, the cocrystallization of the complex in space group P2(1)2(1)2(1), with unit-cell parameters a = 35.9, b = 47.7, c = 97.3 Å, is reported. The crystals diffracted to 1.4 Å resolution. Based on the calculated Matthews coefficient (1.96 Å(3) Da(-1)), it appears that the asymmetric unit contains two complexes.
Collapse
Affiliation(s)
- Jeanine F. Amacher
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | - Patrick R. Cushing
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | - Joshua A. Weiner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | - Dean R. Madden
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 2010; 8:8. [PMID: 20509869 PMCID: PMC2891790 DOI: 10.1186/1478-811x-8-8] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023] Open
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St, Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
31
|
Elkins JM, Gileadi C, Shrestha L, Phillips C, Wang J, Muniz JRC, Doyle DA. Unusual binding interactions in PDZ domain crystal structures help explain binding mechanisms. Protein Sci 2010; 19:731-41. [PMID: 20120020 PMCID: PMC2867013 DOI: 10.1002/pro.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PDZ domains most commonly bind the C-terminus of their protein targets. Typically the C-terminal four residues of the protein target are considered as the binding motif, particularly the C-terminal residue (P0) and third-last residue (P-2) that form the major contacts with the PDZ domain's "binding groove". We solved crystal structures of seven human PDZ domains, including five of the seven PDLIM family members. The structures of GRASP, PDLIM2, PDLIM5, and PDLIM7 show a binding mode with only the C-terminal P0 residue bound in the binding groove. Importantly, in some cases, the P-2 residue formed interactions outside of the binding groove, providing insight into the influence of residues remote from the binding groove on selectivity. In the GRASP structure, we observed both canonical and noncanonical binding in the two molecules present in the asymmetric unit making a direct comparison of these binding modes possible. In addition, structures of the PDZ domains from PDLIM1 and PDLIM4 also presented here allow comparison with canonical binding for the PDLIM PDZ domain family. Although influenced by crystal packing arrangements, the structures nevertheless show that changes in the positions of PDZ domain side-chains and the alpha B helix allow noncanonical binding interactions. These interactions may be indicative of intermediate states between unbound and fully bound PDZ domain and target protein. The noncanonical "perpendicular" binding observed potentially represents the general form of a kinetic intermediate. Comparison with canonical binding suggests that the rearrangement during binding involves both the PDZ domain and its ligand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Declan A Doyle
- *Correspondence to: Declan A. Doyle, Trinity College Dublin, School of Biochemistry and Immunology, College Green, Dublin 2, Ireland. E-mail:
| |
Collapse
|
32
|
Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural Diversity of PDZ-Lipid Interactions. Chembiochem 2010; 11:456-67. [DOI: 10.1002/cbic.200900616] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Feng W, Zhang M. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 2009; 10:87-99. [DOI: 10.1038/nrn2540] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Gene duplication in early vertebrates results in tissue-specific subfunctionalized adaptor proteins: CASP and GRASP. J Mol Evol 2008; 67:168-78. [PMID: 18600293 DOI: 10.1007/s00239-008-9136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 06/09/2008] [Indexed: 01/12/2023]
Abstract
CASP and GRASP are small cytoplasmic adaptor proteins that share highly similar protein structures as well as an association with the cytohesin/ARNO family of guanine nucleotide exchange factors within the immune and nervous systems respectively. Each contains an N-terminal PDZ domain, a central coiled-coil motif, and a carboxy-terminal PDZ-binding motif (PDZbm). We set out to further characterize the relationship between CASP and GRASP by comparing both their gene structures and their functional motifs across several vertebrate organisms. CASP and GRASP not only share significant protein structure but also share remarkably similar gene structure, with six of eight exons of equal length and relative position. We report on the addition of a unique amino acid within the coiled-coil motif of CASP proteins in several species. We also examine the Class I PDZbm, which is highly conserved across all classes of vertebrates but shows a functionally relevant mutation in the CASP proteins of several species of fish. Further, we determine the evolutionary relationship of these proteins both by use of phylogenetics and by comparative analysis of the conservation of genes near each locus in various chordates including amphioxus. We conclude that CASP and GRASP are the products of a relatively recent gene duplication event in early vertebrate organisms and that the evolution of the adaptive immune system and complex brain most likely contributed to the apparent subfunctionalization of these proteins into tissue-specific roles.
Collapse
|
36
|
Sugi T, Oyama T, Morikawa K, Jingami H. Structural insights into the PIP2 recognition by syntenin-1 PDZ domain. Biochem Biophys Res Commun 2008; 366:373-8. [DOI: 10.1016/j.bbrc.2007.11.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
37
|
MacNeil AJ, Mansour M, Pohajdak B. Sorting nexin 27 interacts with the Cytohesin associated scaffolding protein (CASP) in lymphocytes. Biochem Biophys Res Commun 2007; 359:848-53. [PMID: 17577583 DOI: 10.1016/j.bbrc.2007.05.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
CASP is a small cytokine-inducible protein, primarily expressed in hematopoetic cells, which associates with members of the Cytohesin/ARNO family of guanine nucleotide-exchange factors. Cytohesins activate ARFs, a group of GTPases involved in vesicular initiation. Functionally, CASP is an adaptor protein containing a PDZ domain, a coiled-coil, and a potential carboxy terminal PDZ-binding motif that we sought to characterize here. Using GST pulldowns and mass spectrometry we identified the novel interaction of CASP and sorting nexin 27 (SNX27). In lymphocytes, CASP's PDZ-binding motif interacts with the PDZ domain of SNX27. This protein is a unique member of the sorting nexin family of proteins, a group generally involved in the endocytic and intracellular sorting machinery. Endogenous SNX27 and CASP co-localize at the early endosomal compartment in lymphocytes and also in transfection studies. These results suggest that endosomal SNX27 may recruit CASP to orchestrate intracellular trafficking and/or signaling complexes.
Collapse
Affiliation(s)
- Adam J MacNeil
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | | | |
Collapse
|