1
|
Sampath R, Vaeth K, Mikalayeva V, Skeberdis VA, Prekeris R, Han KJ. Rab40 GTPases regulate AMBRA1-mediated transcription and cell migration. J Cell Sci 2025; 138:jcs263707. [PMID: 40110710 PMCID: PMC12045048 DOI: 10.1242/jcs.263707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
The Rab40 subfamily of proteins consists of unique small monomeric GTPases that form CRL5-based ubiquitin E3 ligase complexes and regulate ubiquitylation of specific target proteins. Recent studies have shown that Rab40 proteins play an important role in regulating cell migration, but the underlying mechanisms of how the Rab40-CRL5 complex functions are still not fully understood. In this study, we identified AMBRA1 as a novel binding partner of Rab40 GTPases and show that this interaction mediates a bidirectional crosstalk between the CRL4 and CRL5 E3 ligases. Importantly, we found that Rab40-CRL5 ubiquitylates AMBRA1, which does not result in AMBRA1 degradation but, instead, appears to induce AMBRA1-dependent regulation of gene transcription. The global transcriptional profiles identified by RNA sequencing showed that AMBRA1 regulates transcription of genes related to cell adhesion and migration. Additionally, we show that AMBRA1-dependent transcription regulation does not require the enzymatic activity of AMBRA1-CRL4, and that Rab40-induced AMBRA1 ubiquitylation leads to dissociation of the AMBRA1-CRL4 complex. Taken together, our findings reveal a novel function of the Rab40-CRL5 complex as an important regulator of AMBRA1-dependent transcription of genes involved in cell migration.
Collapse
Affiliation(s)
- Revathi Sampath
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Valeryia Mikalayeva
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
| | | | - Rytis Prekeris
- The Laboratory of Cell Culture, Lithuanian University of Health Sciences, Kaunas, 50103, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
3
|
Sampath R, Vaeth K, Mikalayeva V, Skeberdis VA, Prekeris R, Han KJ. Rab40 GTPases regulate AMBRA1-mediated transcription and cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622540. [PMID: 39574679 PMCID: PMC11580987 DOI: 10.1101/2024.11.07.622540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The Rab40 subfamily are unique small monomeric GTPases that form CRL5-based ubiquitin E3 ligase complex and regulate ubiquitylation of specific target proteins. Recent studies have shown that Rab40s play an important role in regulating cell migration, but the underlying mechanisms of Rab40/CRL5 complex function are still not fully understood. In this study we identified AMBRA1 as a novel binding partner of Rab40 GTPases and showed that this interaction mediates a bi-directional crosstalk between CRL4 and CRL5 E3 ligases. Importantly, we found that Rab40/CRL5 ubiquitylates AMBRA1, which does not result in AMBRA1 degradation, but instead it seems to induce AMBRA1-dependent regulation of gene transcription. The global transcriptional profiles identified by RNA-seq showed that AMBRA1 regulates transcription of genes related to cell adhesion and migration. Additionally, we have shown that AMBRA1-dependent transcription regulation does not require the enzymatic activity of AMBRA1/CRL4, and that Rab40-induced AMBRA1 ubiquitylation leads to dissociation of AMBRA1/CRL4 complex. Taken together, our findings reveal a novel function of Rab40/CRL5 complex as an important regulator for AMBRA1-dependent transcription of genes involved in cell migration.
Collapse
Affiliation(s)
- Revathi Sampath
- Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katherine Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
4
|
Neumann AJ, Prekeris R. A Rab-bit hole: Rab40 GTPases as new regulators of the actin cytoskeleton and cell migration. Front Cell Dev Biol 2023; 11:1268922. [PMID: 37736498 PMCID: PMC10509765 DOI: 10.3389/fcell.2023.1268922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The regulation of machinery involved in cell migration is vital to the maintenance of proper organism function. When migration is dysregulated, a variety of phenotypes ranging from developmental disorders to cancer metastasis can occur. One of the primary structures involved in cell migration is the actin cytoskeleton. Actin assembly and disassembly form a variety of dynamic structures which provide the pushing and contractile forces necessary for cells to properly migrate. As such, actin dynamics are tightly regulated. Classically, the Rho family of GTPases are considered the major regulators of the actin cytoskeleton during cell migration. Together, this family establishes polarity in the migrating cell by stimulating the formation of various actin structures in specific cellular locations. However, while the Rho GTPases are acknowledged as the core machinery regulating actin dynamics and cell migration, a variety of other proteins have become established as modulators of actin structures and cell migration. One such group of proteins is the Rab40 family of GTPases, an evolutionarily and functionally unique family of Rabs. Rab40 originated as a single protein in the bilaterians and, through multiple duplication events, expanded to a four-protein family in higher primates. Furthermore, unlike other members of the Rab family, Rab40 proteins contain a C-terminally located suppressor of cytokine signaling (SOCS) box domain. Through the SOCS box, Rab40 proteins interact with Cullin5 to form an E3 ubiquitin ligase complex. As a member of this complex, Rab40 ubiquitinates its effectors, controlling their degradation, localization, and activation. Because substrates of the Rab40/Cullin5 complex can play a role in regulating actin structures and cell migration, the Rab40 family of proteins has recently emerged as unique modulators of cell migration machinery.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Zheng W, Wu F, Ye Y, Li T, Zhang Z, Zhang H. Small GTPase Rab40C is upregulated by 20-hydroxyecdysone and insulin pathways to regulate ovarian development and fecundity. INSECT SCIENCE 2022; 29:1583-1600. [PMID: 35349758 DOI: 10.1111/1744-7917.13026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect vitellogenesis and ovarian development. However, the detailed molecular mechanisms such as the genes mediating the cooperation of the interaction of these 2 pathways in regulating insect reproductive development are not well understood. In the present study, a small GTPase, Rab40C, was identified from the notorious agricultural pest Bactrocera dorsalis. In addition to the well-known RAB domain, it also has a unique SOCS-box domain, which is different from other Rab-GTPases. Moreover, we found that Rab40C was enriched in the ovaries of sexually mature females. RNA interference (RNAi)-mediated knockdown of BdRab40C resulted in a decrease in vitellogenin synthesis, underdeveloped ovaries, and low fertility. Furthermore, depletion of insulin receptor InR or the heterodimer receptor of 20E (EcR or USP) by RNAi significantly decreased the transcription of BdRab40C and resulted in lower fecundity. Further studies revealed that the transcription of BdRab40C could be upregulated by the injection of insulin or 20E. These results indicate that Rab40C participates in the insulin and 20E pathways to coordinately regulate reproduction in B. dorsalis. Our results not only provide new insights into the insulin- and 20E-stimulated regulatory pathways controlling female reproduction in insects but also contribute to the development of potential eco-friendly strategies for pest control.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangyu Wu
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Wu H, Dong X, Liao L, Huang L. An Integrative Analysis Identifying RAB40C as an Oncogenic Immune Protein and Prognostic Marker of Lung Squamous Cell Carcinoma. Pharmgenomics Pers Med 2022; 15:525-537. [PMID: 35645578 PMCID: PMC9135582 DOI: 10.2147/pgpm.s357166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background RAB40C, a member of the Ras oncogene family, is a protein with GTPase and GTP-binding activity and is also predicted to be important in immunomodulation. However, the link between RAB40C and lung squamous cell carcinoma (LUSC) has not yet been elucidated. Exploring the relationship between RAB40C and LUSC could help expand the repertoire of immunotherapeutic targets for LUSC and provide more effective therapeutic options for LUSC patients, which behalf of our aim for our study. Methods We analyzed the RAB40C expression in different tumor types and stages based on the TCGA database. Subsequently, we explored the differences in RAB40C expression in LUSC versus paracancerous tissues through immunohistochemical analysis. The prognostic value of RAB40C was assessed by Cox regression and Kaplan-Meier analysis. Gene set enrichment analysis-based RAB40C impact pathways and the correlation between RAB40C expression and immune infiltration were obtained using the TIMER2.0 and the CIBERSORT analytical tools. Tumor mutational load and microsatellite instability (MSI) were assessed by the Spearman correlation analysis. Finally, the close association of RAB40C with LUSC was explored by correlating immune cell infiltration with immunomodulator expression, assessing risk scores in combination with other factors, and analyzing prognostic nomogram. Results The expression of RAB40C was significantly elevated in LUSC. RAB40C expression was significantly associated with immune factors, immune-related pathways, and MSI. Moreover, RAB40C significantly negatively correlated with LUSC-associated immune infiltrating cells, CD4 memory-activated cells, γδ T cells, M1-like macrophages, and the immune regulator CD28, while it positively associated with the activation of Tregs and natural killer cells. Further, a risk model constructed from RAB40C and its associated immune genes showed that RAB40C might be an independent prognostic factor for LUSC. Conclusion RAB40C can be used as an effective prognostic biomarker and a potential immunotherapeutic target for the treatment of LUSC.
Collapse
Affiliation(s)
- Hong Wu
- Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China
- Correspondence: Hong Wu, Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China, Email
| | - Xuhui Dong
- Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China
| | - Lixian Liao
- Department of Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Lihaoyun Huang
- Department of Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
7
|
Caswell PT. Non-canonical ubiquitylation makes its mark on Rap2 and cell motility. J Cell Biol 2022; 221:e202203029. [PMID: 35333280 PMCID: PMC8961291 DOI: 10.1083/jcb.202203029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitin modification controls protein stability and cargo trafficking, and in this issue Duncan et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202107114) reveal a unique mechanism through which Rab40b/Cul5-mediated ubiquitylation of Rap2 regulates its activity and recycling to the leading edge to control cell migration and invasion.
Collapse
Affiliation(s)
- Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Duncan ED, Han KJ, Trout MA, Prekeris R. Ubiquitylation by Rab40b/Cul5 regulates Rap2 localization and activity during cell migration. J Cell Biol 2022; 221:213068. [PMID: 35293963 PMCID: PMC8931537 DOI: 10.1083/jcb.202107114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Emily D Duncan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Margaret A Trout
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Regulation of GTPase function by autophosphorylation. Mol Cell 2022; 82:950-968.e14. [PMID: 35202574 PMCID: PMC8986090 DOI: 10.1016/j.molcel.2022.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Moon-Hee Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jimit Lakhani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Duan X, Xu L, Li Y, Jia L, Liu W, Shao W, Bayat V, Shang W, Wang L, Liu JP, Tong C. Regulation of lipid homeostasis by the TBC protein dTBC1D22 via modulation of the small GTPase Rab40 to facilitate lipophagy. Cell Rep 2021; 36:109541. [PMID: 34469730 DOI: 10.1016/j.celrep.2021.109541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/11/2021] [Accepted: 07/24/2021] [Indexed: 12/01/2022] Open
Abstract
The regulation of lipid homeostasis is not well understood. Using forward genetic screening, we demonstrate that the loss of dTBC1D22, an essential gene that encodes a Tre2-Bub2-Cdc16 (TBC) domain-containing protein, results in lipid droplet accumulation in multiple tissues. We observe that dTBC1D22 interacts with Rab40 and exhibits GTPase activating protein (GAP) activity. Overexpression of either the GTP- or GDP-binding-mimic form of Rab40 results in lipid droplet accumulation. We observe that Rab40 mutant flies are defective in lipid mobilization. The lipid depletion induced by overexpression of Brummer, a triglyceride lipase, is dependent on Rab40. Rab40 mutant flies exhibit decreased lipophagy and small size of autolysosomal structures, which may be due to the defective Golgi functions. Finally, we demonstrate that Rab40 physically interacts with Lamp1, and Rab40 is required for the distribution of Lamp1 during starvation. We propose that dTBC1D22 functions as a GAP for Rab40 to regulate lipophagy.
Collapse
Affiliation(s)
- Xiuying Duan
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingna Xu
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yawen Li
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lijun Jia
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxia Shao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liquan Wang
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Tong
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
11
|
Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview. Methods Mol Biol 2021. [PMID: 34453706 DOI: 10.1007/978-1-0716-1346-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The conserved Ypt/Rab GTPases regulate all major intracellular protein traffic pathways, including secretion, endocytosis and autophagy. These GTPases undergo distinct changes in conformation between their GTP- and GDP-bound forms and cycle between the cytoplasm and membranes with the aid of their upstream regulators. When activated on the membrane in the GTP-bound form, they recruit their downstream effectors, which include components of vesicular transport. Progress in the past 5 years regarding mechanisms of Rab action, functions, and the effects of disruption of these functions on the well-being of cells and organisms has been propelled by advances in methodologies in molecular and cellular biology. Here, we highlight methods used recently to analyze regulation, localization, interactions, and function of Rab GTPases and their roles in human disease. We discuss contributions of these methods to new insights into Rabs, as well as their future use in addressing open questions in the field of Rab biology.
Collapse
|
12
|
Duncan ED, Lencer E, Linklater E, Prekeris R. Methods to Study the Unique SOCS Box Domain of the Rab40 Small GTPase Subfamily. Methods Mol Biol 2021; 2293:163-179. [PMID: 34453716 PMCID: PMC8455146 DOI: 10.1007/978-1-0716-1346-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Despite the critical role of Rab GTPases for intracellular transport, the vast majority of proteins within this family remain poorly characterized, including the Rab40 subfamily. Often recognized as atypical Rabs, the Rab40 family of proteins are unlike any other small GTPase because they contain a C-terminal suppressor of cytokine signaling (SOCS) box. It is well established that this SOCS domain in other proteins mediates an interaction with the scaffold protein Cullin5 in order to form a E3 ubiquitin ligase complex critical for protein ubiquitylation and turnover. Although the function of SOCS/Cullin5 complexes has been well defined in several of these other proteins, this is not yet the case for the Rab40 family of proteins. We have previously shown that the Rab40b family member plays an important role during three-dimensional (3D) breast cancer cell migration. To further this knowledge, we began to investigate the SOCS-dependent role of Rab40b during cell migration. Here, we describe an unbiased approach to identify potential Rab40b/Cullin5 substrates. We anticipate that this method will be useful for studying the function of other Rab40 family members as well as other SOCS box containing proteins.
Collapse
Affiliation(s)
- Emily D Duncan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Erik Linklater
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Kreis J, Bonß R, Vick P. The tetraspanin Cd63 is required for eye morphogenesis in Xenopus. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000335. [PMID: 33274331 PMCID: PMC7704261 DOI: 10.17912/micropub.biology.000335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer Kreis
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ramona Bonß
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Philipp Vick
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany,
Correspondence to: Philipp Vick ()
| |
Collapse
|
14
|
Kreis J, Bonß R, Feistel K, Vick P. Expression of an endosome-excluded Cd63 prevents axis elongation in Xenopus. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000334. [PMID: 33274330 PMCID: PMC7704260 DOI: 10.17912/micropub.biology.000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer Kreis
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ramona Bonß
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Kerstin Feistel
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Philipp Vick
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
15
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. J Mol Biol 2018; 430:3545-3564. [DOI: 10.1016/j.jmb.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
|
17
|
Kunkler B, Salamango D, DeBruine ZJ, Ploch C, Dean S, Grossens D, Hledin MP, Marquez GA, Madden J, Schnell A, Short M, Burnatowska-Hledin MA. CUL5 is required for thalidomide-dependent inhibition of cellular proliferation. PLoS One 2018; 13:e0196760. [PMID: 29746508 PMCID: PMC5944951 DOI: 10.1371/journal.pone.0196760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is essential for cancer metastasis, thus the discovery and characterization of molecules that inhibit this process is important. Thalidomide is a teratogenic drug which is known to inhibit angiogenesis and effectively inhibit cancer metastasis, yet the specific cellular targets for its effect are not well known. We discovered that CUL5 (previously identified as VACM-1), a scaffold protein in E3 ligase complexes, is involved in thalidomide-dependent inhibition of endothelial cell growth. Our results show that in human endothelial cells (HUVEC), thalidomide-dependent decrease in cell growth was associated with decreased nuclear localization of CUL5. In HUVEC transfected with anti-VACM-1 siRNA, thalidomide failed to decrease cell growth. Previously it was established that the antiproliferative effect of CUL5 is inhibited in rat endothelial cells (RAMEC) transfected with mutated CUL5 which is constitutively modified by NEDD8, a ubiquitin-like protein. In this study, the antiproliferative response to thalidomide was compromised in RAMEC expressing mutated CUL5. These results suggest that CUL5 protein is involved in the thalidomide-dependent regulation of cellular proliferation in vitro. Consequently, CUL5 may be an important part of the mechanism for thalidomide-dependent inhibition of cellular proliferation, as well as a novel biomarker for predicting a response to thalidomide for the treatment of disorders such as multiple myeloma and HIV infection.
Collapse
Affiliation(s)
- Bryan Kunkler
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Daniel Salamango
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Zachary J DeBruine
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Caitlin Ploch
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Shirley Dean
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - David Grossens
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael P Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Gabriel A Marquez
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Julie Madden
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Abigayle Schnell
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael Short
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Maria A Burnatowska-Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America.,Department of Biology, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| |
Collapse
|
18
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
19
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
20
|
Luo X, Li C, Tan R, Xu X, Wu WKK, Satoh A, Wang T, Yu S. A RasGAP, DAB2IP, regulates lipid droplet homeostasis by serving as GAP toward RAB40C. Oncotarget 2017; 8:85415-85427. [PMID: 29156729 PMCID: PMC5689619 DOI: 10.18632/oncotarget.19960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Lipid droplet (LD) homeostasis involves activities of various RAB small GTPases. Recently, we found RAB40C was one of the RAB proteins regulating LD homeostasis. RAB40C contains a unique SOCS domain that is required for clustering of LDs. However, its precise functional role in LD homeostasis and mechanism of regulation remain largely unknown. In this study, we observed over-accumulation of LDs in cells with RAB40C deleted by Crispr-Cas9 editing. RAB40C appeared to reduce LD accumulation after long term incubation of cells with oleic acid (24 hours). Unexpectedly, we found that Ras GTPase activating protein (GAP), DAB2IP, bound to RAB40C mainly via its GAP domain and could serve as RAB40C GAP. Studies involving overexpression of DAB2IP and its GAP defective mutant and siRNA depletion of DAB2IP all confirmed that DAB2IP negatively regulated the effect of RAB40C on LD homeostasis. These results provide a novel perspective on the regulation of RAB40C and implicate various signalling pathways regulated by DAB2IP, which may play a role in LD homeostasis via RAB40C.
Collapse
Affiliation(s)
- Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, P.R. China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chunman Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Ran Tan
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Xiaohui Xu
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - William K K Wu
- School of Pharmaceutical Sciences, Xiamen University, Fujian, P.R. China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tuanlao Wang
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
21
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
22
|
A newly identified Rab-GDI paralogue has a role in neural development in amphibia. Gene 2017; 599:78-86. [DOI: 10.1016/j.gene.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
23
|
Li C, Yu SSB. Rab proteins as regulators of lipid droplet formation and lipolysis. Cell Biol Int 2016; 40:1026-32. [PMID: 27453349 DOI: 10.1002/cbin.10650] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are highly dynamic organelles that not only store neutral lipids but also are involved in multiple cellular processes. Dysregulation of lipogenesis or lipolysis greatly contributes to the pathogenesis of several human diseases, including obesity, diabetes, and fatty liver disease. Rab proteins have been found to be associated with LDs in proteomic studies and are also known to extensively regulate intracellular membrane traffic, suggesting that LDs actively communicate with other membrane compartments to maintain energy homeostasis. This review discusses recent studies that provide mechanistic insights into the regulation of LD formation and catabolism by Rab proteins in mammalian cells.
Collapse
Affiliation(s)
- Chunman Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Sidney S B Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China. .,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
24
|
Li Y, Wang Y, Zou L, Tang X, Yang Y, Ma L, Jia Q, Ni Q, Liu S, Tang L, Lin R, Wong E, Sun W, Wang L, Wei Q, Ran H, Zhang L, Lian H, Huang W, Wu Y, Li QJ, Wan Y. Analysis of the Rab GTPase Interactome in Dendritic Cells Reveals Anti-microbial Functions of the Rab32 Complex in Bacterial Containment. Immunity 2016; 44:422-37. [PMID: 26885862 DOI: 10.1016/j.immuni.2016.01.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) orchestrate complex membrane trafficking through an interconnected transportation network linked together by Rab GTPases. Through a tandem affinity purification strategy and mass spectrometry, we depicted an interactomic landscape of major members of the mammalian Rab GTPase family. When complemented with imaging tools, this proteomic analysis provided a global view of intracellular membrane organization. Driven by this analysis, we investigated dynamic changes to the Rab32 subnetwork in DCs induced by L. monocytogenes infection and uncovered an essential role of this subnetwork in controlling the intracellular proliferation of L. monocytogenes. Mechanistically, Rab32 formed a persistent complex with two interacting proteins, PHB and PHB2, to encompass bacteria both during early phagosome formation and after L. monocytogenes escaped the original containment vacuole. Collectively, we have provided a functional compartmentalization overview and an organizational framework of intracellular Rab-mediated vesicle trafficking that can serve as a resource for future investigations.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Yu Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiangyu Tang
- Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300000 China
| | - Yi Yang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Li Ma
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Qingzhu Jia
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Qingshan Ni
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Siqi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lizhang Tang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Regina Lin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth Wong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Wei Sun
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Quanfang Wei
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Haiying Ran
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liqun Zhang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Hengning Lian
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Wei Huang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Yuzhang Wu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qi-Jing Li
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China.
| |
Collapse
|
25
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
26
|
Dart AE, Box GM, Court W, Gale ME, Brown JP, Pinder SE, Eccles SA, Wells CM. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol 2016; 211:863-79. [PMID: 26598620 PMCID: PMC4657161 DOI: 10.1083/jcb.201501072] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PAK4, via a novel kinase-independent mechanism, protects RhoU from a Rab40A/Cullin 5 ubiquitin ligase complex–driven K48 ubiquitination to regulate breast cancer cell adhesion. P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration.
Collapse
Affiliation(s)
- Anna E Dart
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| | - Gary M Box
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - William Court
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - Madeline E Gale
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| | - John P Brown
- Breast Research Pathology, Department of Research Oncology, Division of Cancer Studies, School of Medicine, Guy's Hospital, King's College London, London SE1 9RT, England, UK
| | - Sarah E Pinder
- Breast Research Pathology, Department of Research Oncology, Division of Cancer Studies, School of Medicine, Guy's Hospital, King's College London, London SE1 9RT, England, UK
| | - Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| |
Collapse
|
27
|
Mignon-Grasteau S, Chantry-Darmon C, Boscher MY, Sellier N, Chabault-Dhuit M, Le Bihan-Duval E, Narcy A. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study. Bone Rep 2016; 5:43-50. [PMID: 28326346 PMCID: PMC4926819 DOI: 10.1016/j.bonr.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Agnès Narcy
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| |
Collapse
|
28
|
Rab40b upregulation correlates with the prognosis of gastric cancer by promoting migration, invasion, and metastasis. Med Oncol 2015; 32:126. [DOI: 10.1007/s12032-015-0562-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
29
|
Yatsu A, Shimada H, Ohbayashi N, Fukuda M. Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes. Biol Open 2015; 4:267-75. [PMID: 25661869 PMCID: PMC4359733 DOI: 10.1242/bio.201411114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Varp (VPS9-ankyrin repeat protein) was originally identified as an activator of small GTPase Rab21 through its VPS9 domain, but it has subsequently been shown to function as a Rab32/38 effector through its first ANKR1 domain. Although these functions of Varp are important for melanogenesis, Varp contains a second ANKR2 domain, whose function remained completely unknown. Here we identified Rab40C, an atypical Rab containing a SOCS box that recruits a ubiquitin ligase complex, as a novel ANKR2-binding protein and investigated its involvement in melanogenic enzyme trafficking in melanocytes. The results showed that overexpression of Rab40C in melanocytes caused a dramatic reduction in melanogenic enzyme Tyrp1 signals by promoting proteasomal degradation of Varp in a SOCS-box-dependent manner and that knockdown of Rab40C in melanocytes caused an increase in the amount of Varp. Intriguingly, Rab40C knockdown also caused a dramatic reduction in Tyrp1 signals, the same as Varp overexpression did. These findings indicated that Rab40C is a previously unexpected regulator of Tyrp1 trafficking in melanocytes through controlling the proteasomal degradation of Varp.
Collapse
Affiliation(s)
- Ayaka Yatsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hikaru Shimada
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
30
|
Kai M, Ueno N, Kinoshita N. Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements. PLoS One 2015; 10:e0115111. [PMID: 25580871 PMCID: PMC4291225 DOI: 10.1371/journal.pone.0115111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023] Open
Abstract
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- * E-mail:
| |
Collapse
|
31
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
32
|
A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol 2014; 24:389-99. [PMID: 24630736 DOI: 10.1016/j.tcb.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Mulitmeric cullin-RING ubiquitin ligases (CRLs) represent the largest class of ubiquitin ligases in eukaryotes. However, most CRL ubiquitylation pathways remain uncharacterized. CRLs control a myriad of functions by catalyzing mono- or poly-ubiquitylation of target proteins. Recently, novel CRLs have been identified along the secretory pathway where they modify substrates involved in diverse cellular processes such as vesicle coat assembly and cell cycle progression. This review discusses our current understanding of CRL ubiquitylation within the secretory pathway, with special emphasis on the emerging role of the Golgi as a ubiquitylation platform. CRLs are also implicated in endosome function, where their specific roles are less well understood.
Collapse
|
33
|
Park DS, Seo JH, Hong M, Choi SC. Role of the Rap2/TNIK kinase pathway in regulation of LRP6 stability for Wnt signaling. Biochem Biophys Res Commun 2013; 436:338-43. [PMID: 23743195 DOI: 10.1016/j.bbrc.2013.05.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 01/17/2023]
Abstract
The Wnt/β-catenin signaling pathway plays critical roles in early embryonic development, stem cell biology and human diseases including cancers. Although Rap2, a member of Ras GTPase family, is essential for the Wnt/β-catenin pathway during the body axis specification in Xenopus embryo, the mechanism underlying its regulation of Wnt signaling remains poorly understood. Here, we show that Rap2 is implicated in control of the stability of Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6). Knockdown of Rap2 resulted in the proteasome and/or lysosome-dependent degradation of LRP6 both in the presence and absence of Wnt ligand stimulation. In line with this, constitutively active LRP6 lacking its extracellular domain, which is constitutively phosphorylated and resides in intracellular vesicles, was also degraded in the Rap2-silenced cells. In addition, Rap2 and LRP6 associated physically with each other. Furthermore, we found that TRAF2/Nck-interacting kinase (TNIK), a member of the Ste20 protein family, acts as a downstream effector of Rap2 in control of LRP6 stabilization. Consistently, TNIK could rescue the inhibitory effects of Rap2 depletion on Wnt-dependent gene transcription, reporter activation and neural crest induction. Taken together, these results suggest that Rap2 acts via TNIK to regulate the stability of LRP6 receptor for Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets. PLoS One 2013; 8:e63213. [PMID: 23638186 PMCID: PMC3640056 DOI: 10.1371/journal.pone.0063213] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/31/2013] [Indexed: 11/20/2022] Open
Abstract
The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets.
Collapse
|
35
|
Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A, Babushekar A, Bargoma E, Bokhari A, Chava SK, Das P, Desai M, Decena D, Saramma SDD, Dey B, Doss AL, Gor N, Gudiputi L, Guo C, Hande S, Jensen M, Jones S, Jones N, Jorgens D, Karamchedu P, Kamrani K, Kolora LD, Kristensen L, Kwan K, Lau H, Maharaj P, Mander N, Mangipudi K, Menakuru H, Mody V, Mohanty S, Mukkamala S, Mundra SA, Nagaraju S, Narayanaswamy R, Ndungu-Case C, Noorbakhsh M, Patel J, Patel P, Pendem SV, Ponakala A, Rath M, Robles MC, Rokkam D, Roth C, Sasidharan P, Shah S, Tandon S, Suprai J, Truong TQN, Uthayaruban R, Varma A, Ved U, Wang Z, Yu Z. The C. elegans rab family: identification, classification and toolkit construction. PLoS One 2012; 7:e49387. [PMID: 23185324 PMCID: PMC3504004 DOI: 10.1371/journal.pone.0049387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
Collapse
Affiliation(s)
- Maria E Gallegos
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bedoyan JK, Schaibley VM, Peng W, Bai Y, Mondal K, Shetty AC, Durham M, Micucci JA, Dhiraaj A, Skidmore JM, Kaplan JB, Skinner C, Schwartz CE, Antonellis A, Zwick ME, Cavalcoli JD, Li JZ, Martin DM. Disruption of RAB40AL function leads to Martin--Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder. J Med Genet 2012; 49:332-40. [PMID: 22581972 PMCID: PMC3350147 DOI: 10.1136/jmedgenet-2011-100575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIM Martin--Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. METHODS AND RESULTS Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. CONCLUSIONS This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.
Collapse
|
37
|
Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling. PLoS One 2012; 7:e43330. [PMID: 22984420 PMCID: PMC3439448 DOI: 10.1371/journal.pone.0043330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/19/2012] [Indexed: 12/03/2022] Open
Abstract
Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.
Collapse
|
38
|
Johnson AE, Le IP, Andresen BT, Stodola J, Dewey GL, Dean SB, Resau J, Haak P, Ruch T, Sartor A, Lazdins I, Barney CC, Burnatowska-Hledin MA. VACM-1/cul5 expression in vascular tissue in vivo is induced by water deprivation and its expression in vitro regulates aquaporin-1 concentrations. Cell Tissue Res 2012; 349:527-39. [PMID: 22581383 DOI: 10.1007/s00441-012-1419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/28/2012] [Indexed: 11/24/2022]
Abstract
VACM-1, a cul5 gene product, when overexpressed in vitro, has an antiproliferative effect. In vivo, VACM-1/cul5 is present in tissues involved in the regulation of water balance. Neither proteins targeted for VACM-1/cul5-specific degradation nor factors that may regulate its expression in those tissues have been studied. To identify genes that may be misregulated by VACM-1 cDNA, we performed microarray analysis. Our results indicate that in cos-1 cells transfected with VACM-1 cDNA, mRNA levels for several genes, including AQP1, were decreased when compared to the control group. Our results also indicate that in cos-1 cells transfected with VACM-1 cDNA, endogenous AQP1 protein was decreased about 6-fold when compared to the controls. To test the hypothesis that VACM-1/cul5 may be regulated by conditions that compromise water homeostasis in vivo, we determined if 24 h of water deprivation affects VACM-1/cul5 levels or the effect of VACM-1/cul5 on AQP1. VACM-1 mRNA and protein levels were significantly higher in rat mesenteric arteries, skeletal muscle and the heart ventricle but not in the heart atrium from 24-h water-deprived rats when compared to the controls. Interestingly, 24 h of water deprivation increased modification of VACM-1 by an ubiquitin-like protein, Nedd8, essential for cullin-dependent E3 ligase activity. Although water deprivation did not significantly change AQP1 levels in the mesenteric arteries, AQP1 protein concentrations were inversely correlated with the ratio of the VACM-1 to Nedd8-modified VACM-1. These results suggest that VACM-1/cul5 may regulate endothelial AQP1 concentration both in vivo and in vitro.
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Biology, Hope College, Holland, MI 49422-9000, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 2012; 69:4093-106. [PMID: 22581368 DOI: 10.1007/s00018-012-1021-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Saccharomyces cerevisiae, the Golgi cisternae are physically separated from one another, while in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells, many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi-associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18, and Rab43. In yeast, these include Ypt1, Ypt32, and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
40
|
Sundberg TB, Darricarrere N, Cirone P, Li X, McDonald L, Mei X, Westlake CJ, Slusarski DC, Beynon RJ, Crews CM. Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. ACTA ACUST UNITED AC 2012; 18:1300-11. [PMID: 22035799 DOI: 10.1016/j.chembiol.2011.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
Identification of methionine aminopeptidase-2 (MetAP-2) as the molecular target of the antiangiogenic compound TNP-470 has sparked interest in N-terminal Met excision's (NME) role in endothelial cell biology. In this regard, we recently demonstrated that MetAP-2 inhibition suppresses Wnt planar cell polarity (PCP) signaling and that endothelial cells depend on this pathway for normal function. Despite this advance, the substrate(s) whose activity is altered upon MetAP-2 inhibition, resulting in loss of Wnt PCP signaling, is not known. Here we identify the small G protein Rab37 as a MetAP-2-specific substrate that accumulates in the presence of TNP-470. A functional role for aberrant Rab37 accumulation in TNP-470's mode of action is demonstrated using a Rab37 point mutant that is resistant to NME, because expression of this mutant phenocopies the effects of MetAP-2 inhibition on Wnt PCP signaling-dependent processes.
Collapse
Affiliation(s)
- Thomas B Sundberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mink1 regulates β-catenin-independent Wnt signaling via Prickle phosphorylation. Mol Cell Biol 2011; 32:173-85. [PMID: 22037766 DOI: 10.1128/mcb.06320-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Catenin-independent Wnt signaling pathways have been implicated in the regulation of planar cell polarity (PCP) and convergent extension (CE) cell movements. Prickle, one of the core proteins of these pathways, is known to asymmetrically localize proximally at the adherens junction of Drosophila melanogaster wing cells and to locally accumulate within plasma membrane subdomains in cells undergoing CE movements during vertebrate development. Using mass spectrometry, we have identified the Ste20 kinase Mink1 as a Prickle-associated protein and found that they genetically interact during the establishment of PCP in the Drosophila eye and CE in Xenopus laevis embryos. We show that Mink1 phosphorylates Prickle on a conserved threonine residue and regulates its Rab5-dependent endosomal trafficking, a process required for the localized plasma membrane accumulation and function of Prickle. Mink1 also was found to be important for the clustering of Vangl within plasma membrane puncta. Our results provide a link between Mink and the Vangl-Prickle complex and highlight the importance of Prickle phosphorylation and endosomal trafficking for its function during Wnt-PCP signaling.
Collapse
|
42
|
Gloerich M, Bos JL. Regulating Rap small G-proteins in time and space. Trends Cell Biol 2011; 21:615-23. [PMID: 21820312 DOI: 10.1016/j.tcb.2011.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
Abstract
Signaling by the small G-protein Rap is under tight regulation by its GEFs and GAPs. These are multi-domain proteins that are themselves controlled by distinct upstream pathways, and thus couple different extra- and intracellular cues to Rap. The individual RapGEFs and RapGAPs are, in addition, targeted to specific cellular locations by numerous anchoring mechanisms and, consequently, may control different pools of Rap. Here, we review the various activating signals and targeting mechanisms of these proteins and discuss their contribution to the spatiotemporal regulation and biological functions of the Rap proteins.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
43
|
de la Vega M, Burrows JF, Johnston JA. Ubiquitination: Added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2:192-201. [PMID: 22145091 DOI: 10.4161/sgtp.2.4.16707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022] Open
Abstract
The regulation of the small GTPases leading to their membrane localization has long been attributed to processing of their C-terminal CAAX box. As deregulation of many of these GTPases have been implicated in cancer and other disorders, prenylation and methylation of this CAAX box has been studied in depth as a possibility for drug targeting, but unfortunately, to date no drug has proved clinically beneficial. However, these GTPases also undergo other modifications that may be important for their regulation. Ubiquitination has long been demonstrated to regulate the fate of numerous cellular proteins and recently it has become apparent that many GTPases, along with their GAPs, GeFs and GDis, undergo ubiquitination leading to a variety of fates such as re-localization or degradation. in this review we focus on the recent literature demonstrating that the regulation of small GTPases by ubiquitination, either directly or indirectly, plays a considerable role in controlling their function and that targeting these modifications could be important for disease treatment.
Collapse
Affiliation(s)
- Michelle de la Vega
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University; Belfast, UK
| | | | | |
Collapse
|
44
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
45
|
Wansleeben C, Meijlink F. The planar cell polarity pathway in vertebrate development. Dev Dyn 2011; 240:616-26. [PMID: 21305650 DOI: 10.1002/dvdy.22564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2010] [Indexed: 12/29/2022] Open
Abstract
Directing the orientation of cells in three dimensions is a fundamental aspect of many of the processes underlying the generation of the appropriate shape and function of tissues and organs during embryonic development. In an epithelium, this requires not only the establishment of apicobasal polarity, but also cell arrangement in a specific direction in the plane of the cell sheet. The molecular pathway central to regulating this planar cell polarity (PCP) was originally discovered in the fruit fly Drosophila melanogaster and has more recently been shown to act in a highly analogous way in vertebrates, involving a strongly overlapping set of genes. Mutant studies and molecular analyses have led to insights into the role of ordered planar cell polarity in the development of a wide variety of organs and tissues. In this review, we give an overview of recent developments in the study of planar polarity signaling in vertebrates.
Collapse
|
46
|
Gene expression profiles of colonic mucosa in healthy young adult and senior dogs. PLoS One 2010; 5:e12882. [PMID: 20877568 PMCID: PMC2943922 DOI: 10.1371/journal.pone.0012882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/11/2010] [Indexed: 01/06/2023] Open
Abstract
Background We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. Methodology/Principal Findings Colonic mucosa samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed one of two diets (animal protein-based vs. plant protein-based) for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes) rather than diet (66 genes). In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. Conclusion Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiological changes and highlight potential targets for dietary intervention to limit their progression.
Collapse
|
47
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|
48
|
Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta Rev Cancer 2009; 1795:110-6. [PMID: 19425190 DOI: 10.1016/j.bbcan.2008.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Member of the Ras-associated binding (Rab) family of small GTPases function as molecular switches regulating vesicular transport in eukaryotes cells. Their pathophysiological roles in human malignancies are less well-known compared to members of Ras and Rho families. Several members of the Rab family have, however, been shown to be aberrantly expressed in various cancer tissues. Recent findings have also revealed , in particular, Rab25 as a determinant of tumor progression and aggressiveness of epithelial cancers. Rab25 associates with alpha5beta1 integrin, and enhances tumor cell invasion by directing the localization of integrin-containing vesicles to the leading edge of matrix invading pseudopodia. We summarized here recent integrin on Rab25 and other Rabs implicated to be involved in a variety of human cancers, and discussed plausible mechanisms of how dysregulation of Rab expression could be tumorigenic or tumor suppressive.
Collapse
Affiliation(s)
- Wan Jie Chia
- Department of Biochemistry,Yong Loo Lin School of Medicine, national University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
49
|
Nonaka H, Takei K, Umikawa M, Oshiro M, Kuninaka K, Bayarjargal M, Asato T, Yamashiro Y, Uechi Y, Endo S, Suzuki T, Kariya KI. MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun 2008; 377:573-578. [PMID: 18930710 DOI: 10.1016/j.bbrc.2008.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/18/2022]
Abstract
Rap1 and Rap2 are similar Ras-like G proteins but perform distinct functions. By the affinity chromatography/mass-spectrometry approach and the yeast two-hybrid screening, we identified Misshapen/NIKs-related kinase (MINK) as a novel Rap2-interacting protein that does not interact with Rap1 or Ras. MINK is a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases. The interaction between MINK and Rap2 was GTP-dependent and required Phe39 within the effector region of Rap2; the corresponding residue in Rap1 and Ras is Ser. MINK was enriched in the brain, and both MINK and its close relative, Traf2- and Nck-interacting kinase (TNIK), interacted with a postsynaptic scaffold protein containing tetratricopeptide repeats, ankyrin repeats and a coiled-coil region (TANC1) and induced its phosphorylation, under control of Rap2 in cultured cells. These are novel actions of MINK and TNIK, and consistent with a role of MINK as a Rap2 effector in the brain.
Collapse
Affiliation(s)
- Hideo Nonaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kimiko Takei
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Masato Umikawa
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Minoru Oshiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kouichi Kuninaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Maitsetseg Bayarjargal
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Tsuyoshi Asato
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yoshito Yamashiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yukiko Uechi
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Shogo Endo
- Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Shinshu University Graduate School of Medicine, Japan
| | - Ken-Ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| |
Collapse
|