1
|
Seki Y, Yasuda SP, Hou X, Tahara K, Prakhongcheep O, Takahashi A, Miyasaka Y, Takebayashi H, Kikkawa Y. Dominant effect of a single amino acid mutation in the motor domain of myosin VI on hearing in mice. Exp Anim 2025; 74:251-263. [PMID: 39694491 PMCID: PMC12044356 DOI: 10.1538/expanim.24-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
An unconventional myosin, myosin VI gene (MYO6), contributes to recessive and dominant hearing loss in humans and mice. The Kumamoto shaker/waltzer (ksv) mouse is a model of deafness resulting from a splice-site mutation in Myo6. While ksv/ksv homozygous mice are deaf due to cochlear hair cell stereocilia fusion at the neonatal stage, the hearing phenotypes of ksv/+ heterozygous mice have been less clear. Due to this splicing error, most MYO6 protein expression is lost in ksv mice; however, MYO6 with a single amino acid mutation (p.E461K) remains expressed. In this study, we investigated the hearing phenotypes and effect of a p.E461K mutation in ksv/+ heterozygous mice. Hearing tests indicated that hearing loss in ksv/+ mice arises concurrently at both low and high frequencies. In the low-frequency region, stereocilia fusions were detected in the inner hair cells of ksv/+ mice. Expression analysis revealed abnormal MYO6 expression and localization, along with atypical expression of proteins in the basal region of the stereocilia, suggesting that these abnormalities may contribute to stereocilia fusion in ksv/+ mice. Conversely, although the expression patterns of MYO6 and stereociliary basal-region proteins appeared normal in the cochlear area corresponding to high-frequency sounds, stereocilia loss in the outer hair cells was observed in ksv/+ mice. These findings suggest that the ksv/+ mice exhibit distinct mechanisms underlying hearing loss across areas responsible for low- and high-frequency hearing, differing from those previously reported in heterozygous Myo6 mice with loss-of-function and missense mutant alleles.
Collapse
Affiliation(s)
- Yuta Seki
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shumpei P Yasuda
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Xuehan Hou
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kayoko Tahara
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Ornjira Prakhongcheep
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Ai Takahashi
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yuki Miyasaka
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8510, Japan
- Center for Anatomical Sciences, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
2
|
Halder R, Chu ZT, Ti R, Zhu L, Warshel A. On the Control of Directionality of Myosin. J Am Chem Soc 2024. [PMID: 39367841 DOI: 10.1021/jacs.4c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
3
|
Blanc FEC, Houdusse A, Cecchini M. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. PLoS Comput Biol 2024; 20:e1012005. [PMID: 38662764 PMCID: PMC11086841 DOI: 10.1371/journal.pcbi.1012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Niu F, Li L, Wang L, Xiao J, Xu S, Liu Y, Lin L, Yu C, Wei Z. Autoinhibition and activation of myosin VI revealed by its cryo-EM structure. Nat Commun 2024; 15:1187. [PMID: 38331992 PMCID: PMC10853514 DOI: 10.1038/s41467-024-45424-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Myosin VI is the only molecular motor that moves towards the minus end along actin filaments. Numerous cellular processes require myosin VI and tight regulations of the motor's activity. Defects in myosin VI activity are known to cause genetic diseases such as deafness and cardiomyopathy. However, the molecular mechanisms underlying the activity regulation of myosin VI remain elusive. Here, we determined the high-resolution cryo-electron microscopic structure of myosin VI in its autoinhibited state. Our structure reveals that autoinhibited myosin VI adopts a compact, monomeric conformation via extensive interactions between the head and tail domains, orchestrated by an elongated single-α-helix region resembling a "spine". This autoinhibited structure effectively blocks cargo binding sites and represses the motor's ATPase activity. Certain cargo adaptors such as GIPC can release multiple inhibitory interactions and promote motor activity, pointing to a cargo-mediated activation of the processive motor. Moreover, our structural findings allow rationalization of disease-associated mutations in myosin VI. Beyond the activity regulation mechanisms of myosin VI, our study also sheds lights on how activities of other myosin motors such as myosin VII and X might be regulated.
Collapse
Affiliation(s)
- Fengfeng Niu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China
| | - Lingxuan Li
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinman Xiao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Shun Xu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Leishu Lin
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Zhiyi Wei
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proc Natl Acad Sci U S A 2018; 115:6213-6218. [PMID: 29844196 DOI: 10.1073/pnas.1711512115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins form a class of actin-based, ATPase motor proteins that mediate important cellular functions such as cargo transport and cell motility. Their functional cycle involves two large-scale swings of the lever arm: the force-generating powerstroke, which takes place on actin, and the recovery stroke during which the lever arm is reprimed into an armed configuration. Previous analyses of the prerecovery (postrigor) and postrecovery (prepowerstroke) states predicted that closure of switch II in the ATP binding site precedes the movement of the converter and the lever arm. Here, we report on a crystal structure of myosin VI, called pretransition state (PTS), which was solved at 2.2 Å resolution. Structural analysis and all-atom molecular dynamics simulations are consistent with PTS being an intermediate along the recovery stroke, where the Relay/SH1 elements adopt a postrecovery conformation, and switch II remains open. In this state, the converter appears to be largely uncoupled from the motor domain and explores an ensemble of partially reprimed configurations through extensive, reversible fluctuations. Moreover, we found that the free energy cost of hydrogen-bonding switch II to ATP is lowered by more than 10 kcal/mol compared with the prerecovery state. These results support the conclusion that closing of switch II does not initiate the recovery stroke transition in myosin VI. Rather, they suggest a mechanism in which lever arm repriming would be mostly driven by thermal fluctuations and eventually stabilized by the switch II interaction with the nucleotide in a ratchet-like fashion.
Collapse
|
6
|
Complementary Use of Electron Cryomicroscopy and X-Ray Crystallography: Structural Studies of Actin and Actomyosin Filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:25-42. [DOI: 10.1007/978-981-13-2200-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gurel PS, Kim LY, Ruijgrok PV, Omabegho T, Bryant Z, Alushin GM. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. eLife 2017; 6:e31125. [PMID: 29199952 PMCID: PMC5762158 DOI: 10.7554/elife.31125] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/02/2017] [Indexed: 11/30/2022] Open
Abstract
Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI motor domain in rigor (4.6 Å) and Mg-ADP (5.5 Å) states bound to F-actin. Comparison to the myosin IIC-F-actin rigor complex reveals an almost complete lack of conservation of residues at the actin-myosin interface despite preservation of the primary sequence regions composing it, suggesting an evolutionary path for motor specialization. Additionally, analysis of the transition from ADP to rigor provides a structural rationale for force sensitivity in this step of the mechanochemical cycle. Finally, we observe reciprocal rearrangements in actin and myosin accompanying the transition between these states, supporting a role for actin structural plasticity during force generation by myosin VI.
Collapse
Affiliation(s)
- Pinar S Gurel
- Laboratory of Structural Biophysics and MechanobiologyThe Rockefeller UniversityNew YorkUnited States
- Cell Biology and Physiology CenterNational Heart, Blood, and Lung Institute, National Institutes of HealthBethesdaUnited States
| | - Laura Y Kim
- Cell Biology and Physiology CenterNational Heart, Blood, and Lung Institute, National Institutes of HealthBethesdaUnited States
| | - Paul V Ruijgrok
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Tosan Omabegho
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Zev Bryant
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Structural BiologyStanford UniversityStanfordUnited States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and MechanobiologyThe Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
8
|
Banerjee C, Hu Z, Huang Z, Warrington JA, Taylor DW, Trybus KM, Lowey S, Taylor KA. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. J Struct Biol 2017; 200:325-333. [PMID: 29038012 DOI: 10.1016/j.jsb.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Myosin-based motility utilizes catalysis of ATP to drive the relative sliding of F-actin and myosin. The earliest detailed model based on cryo-electron microscopy (cryoEM) and X-ray crystallography postulated that higher actin affinity and lever arm movement were coupled to closure of a feature of the myosin head dubbed the actin-binding cleft. Several studies since then using crystallography of myosin-V and cryoEM structures of F-actin bound myosin-I, -II and -V have provided details of this model. The smooth muscle myosin II interaction with F-actin may differ from those for striated and non-muscle myosin II due in part to different lengths of important surface loops. Here we report a ∼6 Å resolution reconstruction of F-actin decorated with the nucleotide-free recombinant smooth muscle myosin-II motor domain (MD) from images recorded using a direct electron detector. Resolution is highest for F-actin and the actin-myosin interface (3.5-4 Å) and lowest (∼6-7 Å) for those parts of the MD at the highest radius. Atomic models built into the F-actin density are quite comparable to those previously reported for rabbit muscle actin and show density from the bound ADP. The atomic model of the MD, is quite similar to a recently published structure of vertebrate non-muscle myosin II bound to F-actin and a crystal structure of nucleotide free myosin-V. Larger differences are observed when compared to the cryoEM structure of F-actin decorated with rabbit skeletal muscle myosin subfragment 1. The differences suggest less closure of the 50 kDa domain in the actin bound skeletal muscle myosin structure.
Collapse
Affiliation(s)
- Chaity Banerjee
- Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530, United States
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Zhong Huang
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - J Anthony Warrington
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Kathleen M Trybus
- Health Science Research Facility 130, 149 Beaumont Avenue, Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Susan Lowey
- Health Science Research Facility 130, 149 Beaumont Avenue, Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405, United States
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Kasha Laboratory, Florida State University, Tallahassee, FL 32306-4380, United States.
| |
Collapse
|
9
|
Seki Y, Miyasaka Y, Suzuki S, Wada K, Yasuda SP, Matsuoka K, Ohshiba Y, Endo K, Ishii R, Shitara H, Kitajiri SI, Nakagata N, Takebayashi H, Kikkawa Y. A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells. PLoS One 2017; 12:e0183477. [PMID: 28832620 PMCID: PMC5568226 DOI: 10.1371/journal.pone.0183477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/04/2017] [Indexed: 01/03/2023] Open
Abstract
An unconventional myosin encoded by the myosin VI gene (MYO6) contributes to hearing loss in humans. Homozygous mutations of MYO6 result in nonsyndromic profound congenital hearing loss, DFNB37. Kumamoto shaker/waltzer (ksv) mice harbor spontaneous mutations, and homozygous mutants exhibit congenital defects in balance and hearing caused by fusion of the stereocilia. We identified a Myo6c.1381G>A mutation that was found to be a p.E461K mutation leading to alternative splicing errors in Myo6 mRNA in ksv mutants. An analysis of the mRNA and protein expression in animals harboring this mutation suggested that most of the abnormal alternatively spliced isoforms of MYO6 are degraded in ksv mice. In the hair cells of ksv/ksv homozygotes, the MYO6 protein levels were significantly decreased in the cytoplasm, including in the cuticular plates. MYO6 and stereociliary taper-specific proteins were mislocalized along the entire length of the stereocilia of ksv/ksv mice, thus suggesting that MYO6 attached to taper-specific proteins at the stereociliary base. Histological analysis of the cochlear hair cells showed that the stereociliary fusion in the ksv/ksv mutants, developed through fusion between stereociliary bundles, raised cuticular plate membranes in the cochlear hair cells and resulted in incorporation of the bundles into the sheaths of the cuticular plates. Interestingly, the expression of the stereociliary rootlet-specific TRIO and F-actin binding protein (TRIOBP) was altered in ksv/ksv mice. The abnormal expression of TRIOBP suggested that the rootlets in the hair cells of ksv/ksv mice had excessive growth. Hence, these data indicated that decreased MYO6 levels in ksv/ksv mutants disrupt actin networks in the apical region of hair cells, thereby maintaining the normal structure of the cuticular plates and rootlets, and additionally provided a cellular basis for stereociliary fusion in Myo6 mutants.
Collapse
Affiliation(s)
- Yuta Seki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki Miyasaka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Sari Suzuki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenta Wada
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Animal Biotechnology, Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Endo
- Histology Laboratory, Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rie Ishii
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Fujii T, Namba K. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat Commun 2017; 8:13969. [PMID: 28067235 PMCID: PMC5227740 DOI: 10.1038/ncomms13969] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2016] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction is driven by cyclic association and dissociation of myosin head of the thick filament with thin actin filament coupled with ATP binding and hydrolysis by myosin. However, because of the absence of actomyosin rigour structure at high resolution, it still remains unclear how the strong binding of myosin to actin filament triggers the release of hydrolysis products and how ATP binding causes their dissociation. Here we report the structure of mammalian skeletal muscle actomyosin rigour complex at 5.2 Å resolution by electron cryomicroscopy. Comparison with the structures of myosin in various states shows a distinctly large conformational change, providing insights into the ATPase-coupled reaction cycle of actomyosin. Based on our observations, we hypothesize that asymmetric binding along the actin filament could function as a Brownian ratchet by favouring directionally biased thermal motions of myosin and actin.
Collapse
Affiliation(s)
- Takashi Fujii
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, and Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
How actin initiates the motor activity of Myosin. Dev Cell 2015; 33:401-12. [PMID: 25936506 DOI: 10.1016/j.devcel.2015.03.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/23/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022]
Abstract
Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.
Collapse
|
13
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
14
|
Myosin VI deafness mutation prevents the initiation of processive runs on actin. Proc Natl Acad Sci U S A 2015; 112:E1201-9. [PMID: 25751888 DOI: 10.1073/pnas.1420989112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.
Collapse
|
15
|
Cochran JC. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Biophys Rev 2015; 7:269-299. [PMID: 28510227 DOI: 10.1007/s12551-014-0150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Molecular motors are enzymes that convert chemical potential energy into controlled kinetic energy for mechanical work inside cells. Understanding the biophysics of these motors is essential for appreciating life as well as apprehending diseases that arise from motor malfunction. This review focuses on kinesin motor enzymology with special emphasis on the literature that reports the chemistry, structure and physics of several different kinesin superfamily members.
Collapse
Affiliation(s)
- J C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Simon Hall Room 405C, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|
16
|
Preller M, Holmes KC. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 2013; 70:651-60. [PMID: 23852739 DOI: 10.1002/cm.21125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/05/2022]
Abstract
We propose that on binding to actin at the start of the power stroke the myosin cross-bridge takes on the rigor configuration at the actin interface. Starting from the prepower stroke state, this can be achieved by a small movement (16° rotation) of the lower 50K domain without twisting the central β-sheet or opening switch-1 or switch-2. The movement of the lower 50K domain puts a strain on the W-helix. This strain tries to twist the β-sheet, which could drive the power stroke. This would provide a coupling between actin binding and the execution of the power stroke. During the power stroke the β-sheet twists, moving the P-loop away from switch-2, which opens the nucleotide binding pocket and separates ADP from Pi . The power stroke is different from the recovery stroke because the upper and lower 50K domains are tethered in the rigor configuration.
Collapse
Affiliation(s)
- Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | | |
Collapse
|
17
|
Ikezaki K, Komori T, Yanagida T. Spontaneous detachment of the leading head contributes to myosin VI backward steps. PLoS One 2013; 8:e58912. [PMID: 23527046 PMCID: PMC3601099 DOI: 10.1371/journal.pone.0058912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/08/2013] [Indexed: 11/23/2022] Open
Abstract
Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level. The forward stepping rate was proportional to the ATP concentration, whereas the backward stepping rate was independent. Using these data, we proposed that spontaneous detachment of the leading head is uncoupled from ATP binding and is responsible for the backward steps of myosin VI.
Collapse
Affiliation(s)
- Keigo Ikezaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
| | - Tomotaka Komori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
- * E-mail: (TK); (TY)
| | - Toshio Yanagida
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), Suita, Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- * E-mail: (TK); (TY)
| |
Collapse
|
18
|
Ikezaki K, Komori T, Sugawa M, Arai Y, Nishikawa S, Iwane AH, Yanagida T. Simultaneous observation of the lever arm and head explains myosin VI dual function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3035-3040. [PMID: 22777889 DOI: 10.1002/smll.201200765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Indexed: 06/01/2023]
Abstract
Myosin VI is an adenosine triphosphate (ATP)-driven dimeric molecular motor that has dual function as a vesicle transporter and a cytoskeletal anchor. Recently, it was reported that myosin VI generates three types of steps by taking either a distant binding or adjacent binding state (noncanonical hand-over-hand step pathway). The adjacent binding state, in which both heads bind to an actin filament near one another, is unique to myosin VI and therefore may help explain its distinct features. However, detailed information of the adjacent binding state remains unclear. Here simultaneous observations of the head and tail domain during stepping are presented. These observations show that the lever arms tilt forward in the adjacent binding state. Furthermore, it is revealed that either head could take the subsequent step with equal probability from this state. Together with previous results, a comprehensive stepping scheme is proposed; it includes the tail domain motion to explain how myosin VI achieves its dual function.
Collapse
Affiliation(s)
- Keigo Ikezaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI. Mol Cell 2012; 48:75-86. [PMID: 22940248 DOI: 10.1016/j.molcel.2012.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
Abstract
Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.
Collapse
|
20
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
21
|
|
22
|
Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse AM. How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009. FEBS J 2012; 279:551-62. [PMID: 22171985 PMCID: PMC3269445 DOI: 10.1111/j.1742-4658.2011.08449.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular motors such as myosins are allosteric enzymes that power essential motility functions in the cell. Structural biology is an important tool for deciphering how these motors work. Myosins produce force upon the actin-driven conformational changes controlling the sequential release of the hydrolysis products of ATP (Pi followed by ADP). These conformational changes are amplified by a 'lever arm', which includes the region of the motor known as the converter and the adjacent elongated light chain binding region. Analysis of four structural states of the motor provides a detailed understanding of the rearrangements and pathways of communication in the motor that are necessary for detachment from the actin track and repriming of the motor. However, the important part of the cycle in which force is produced remains enigmatic and awaits new high-resolution structures. The value of a structural approach is particularly evident from clues provided by the structural states of the reverse myosin VI motor. Crystallographic structures have revealed that rearrangements within the converter subdomain occur, which explains why this myosin can produce a large stroke in the opposite direction to all other myosins, despite a very short lever arm. By providing a detailed understanding of the motor rearrangements, structural biology will continue to reveal essential information and help solve current enigma, such as how actin promotes force production, how motors are tuned for specific cellular roles or how motor/cargo interactions regulate the function of myosin in the cell.
Collapse
Affiliation(s)
- Paola Llinas
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Olena Pylypenko
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Tatiana Isabet
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Monalisa Mukherjea
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - H. Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - Anne M. Houdusse
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| |
Collapse
|
23
|
Ovchinnikov V, Karplus M, Vanden-Eijnden E. Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. J Chem Phys 2011; 134:085103. [PMID: 21361558 DOI: 10.1063/1.3544209] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A set of techniques developed under the umbrella of the string method is used in combination with all-atom molecular dynamics simulations to analyze the conformation change between the prepowerstroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific to the application of these techniques to such a large and complex biomolecule are addressed in detail. These challenges include (i) identifying a proper set of collective variables to apply the string method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the mean first passage time of the transition. A detailed description of the PPS↔R transition in the converter domain of myosin VI is obtained, including the transition path, the free energy along the path, and the rates of interconversion. The methodology developed here is expected to be useful more generally in studies of conformational transitions in complex biomolecules.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
24
|
Elting MW, Bryant Z, Liao JC, Spudich JA. Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI. Biophys J 2011; 100:430-9. [PMID: 21244839 DOI: 10.1016/j.bpj.2010.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 11/28/2022] Open
Abstract
Dimeric myosin VI moves processively hand-over-hand along actin filaments. We have characterized the mechanism of this processive motion by measuring the impact of structural and chemical perturbations on single-molecule processivity. Processivity is maintained despite major alterations in lever arm structure, including replacement of light chain binding regions and elimination of the medial tail. We present kinetic models that can explain the ATP concentration-dependent processivities of myosin VI constructs containing either native or artificial lever arms. We conclude that detailed tuning of structure and intramolecular communication are dispensable for processive motion, and further show theoretically that one proposed type of nucleotide gating can be detrimental rather than beneficial for myosin processivity.
Collapse
|
25
|
Nucleotide-dependent shape changes in the reverse direction motor, myosin VI. Biophys J 2011; 99:3336-44. [PMID: 21081082 DOI: 10.1016/j.bpj.2010.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/26/2010] [Accepted: 09/09/2010] [Indexed: 11/22/2022] Open
Abstract
We have studied the shape of myosin VI, the actin minus-end directed motor, by negative stain and metal shadow electron microscopy. Single particle processing was used to make two-dimensional averages of the stain images, which greatly increases the clarity and allows detailed comparisons with crystal structures. A total of 169,964 particle images were obtained from two different constructs in six different states (four nucleotide states and with and without Ca(2+)). The shape of truncated apo myosin VI was very similar to the apo crystal structure, with the lever arm bent strongly backward and around the motor domain. In the full-length molecule, the C-terminal part of the tail has an additional bend taking it back across the motor domain, which may reflect a regulated state. Addition of ATP, ADP, or ATP-γS resulted in a large change, straightening the molecule from the bent shape and swinging the lever by ∼140°. Although these nucleotides would not be expected to produce the pre-powerstroke state, myosin VI in their presence was most similar to the truncated crystal structure with bound ADP-VO(4), which is thought to show the pre-powerstroke shape. The nucleotide data were therefore substantially different from expectation based on crystal structures. The full-length molecule was almost completely monomeric; only ∼1% were dimers, joined through the ends of the tail. Addition of calcium ions appeared to result in release of the second calmodulin light chain. In negatively stained molecules there was little indication of extended α-helical structure in the tail, but molecules viewed by metal shadowing had a tail ∼3× longer, 29 vs. 9 nm, part of which is likely to be a single α-helix.
Collapse
|
26
|
Pylypenko O, Song L, Squires G, Liu X, Zong AB, Houdusse A, Sweeney HL. Role of insert-1 of myosin VI in modulating nucleotide affinity. J Biol Chem 2011; 286:11716-23. [PMID: 21278381 DOI: 10.1074/jbc.m110.200626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is unique in its directionality among myosin superfamily members and also displays a slow and strain-dependent rate of ATP binding that allows for gating between its heads. In this study we demonstrate that leucine 310 is positioned by a class VI-specific insert, insert-1, so as to account for the selective hindrance of ATP versus ADP binding. Mutation of leucine 310 to glycine removes all influence of insert-1 on ATP binding. Furthermore, by analyzing myosin VI structures with either leucine 310 substituted to a glycine or complete removal of insert-1, we conclude that nucleotides may initially bind to myosin by their purine rings before docking their phosphate moieties. Otherwise, insert-1 could not exert a differential influence on ATP versus ADP binding.
Collapse
Affiliation(s)
- Olena Pylypenko
- Structural Motility, Institut Curie CNRS, UMR144, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Nishikawa S, Arimoto I, Ikezaki K, Sugawa M, Ueno H, Komori T, Iwane AH, Yanagida T. Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 2010; 142:879-88. [PMID: 20850010 DOI: 10.1016/j.cell.2010.08.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 08/05/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were attributed to an extended and relatively rigid lever arm; their variability to two stepsizes, one large (72 nm) and one small (44 nm). These results suggest that there exist two tilt angles during myosin-VI stepping, which correspond to the pre- and postpowerstroke states and regulate the leading head. The large steps are consistent with the previously reported hand-over-hand mechanism, while the small steps follow an inchworm-like mechanism and increase in frequency with ADP. Switching between these two mechanisms in a strain-sensitive, ADP-dependent manner allows myosin VI to fulfill its multiple cellular tasks including vesicle transport and membrane anchoring.
Collapse
Affiliation(s)
- So Nishikawa
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M. Myosin VI Undergoes Cargo-Mediated Dimerization. Cell 2009; 138:537-48. [DOI: 10.1016/j.cell.2009.05.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/02/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
29
|
Sugimoto Y, Sato O, Watanabe S, Ikebe R, Ikebe M, Wakabayashi K. Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering. J Mol Biol 2009; 392:420-35. [PMID: 19607837 DOI: 10.1016/j.jmb.2009.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/04/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022]
Abstract
We used small-angle X-ray solution scattering (SAXS) technique to investigate the nucleotide-mediated conformational changes of the head domains [subfragment 1 (S1)] of myosin V and VI processive motors that govern their directional preference for motility on actin. Recombinant myosin V-S1 with two IQ motifs (MV-S1IQ2) and myosin VI-S1 (MVI-S1) were engineered from Sf9 cells using a baculovirus expression system. The radii of gyration (R(g)) of nucleotide-free MV-S1IQ2 and MVI-S1 were 48.6 and 48.8 A, respectively. In the presence of ATP, the R(g) value of MV-S1IQ2 decreased to 46.7 A, while that of MVI-S1 increased to 51.7 A, and the maximum chord length of the molecule decreased by ca 9% for MV-S1IQ2 and increased by ca 6% for MVI-S1. These opposite directional changes were consistent with those occurring in S1s with ADP and Vi or AlF(4)(-2) bound (i.e., in states mimicking the ADP/Pi-bound state of ATP hydrolysis). Binding of AMPPNP induced R(g) changes of both constructs similar to those in the presence of ATP, suggesting that the timing of the structural changes for their motion on actin is upon binding of ATP (the pre-hydrolysis state) during the ATPase cycle. Binding of ADP to MV-S1IQ2 and MVI-S1 caused their R(g) values to drop below those in the nucleotide-free state. Thus, upon the release of Pi, the reverse conformational change could occur, coupling to drive the directional motion on actin. The amount of R(g) change upon the release of Pi was ca 6.4 times greater in MVI-S1 than in MV-S1IQ2, relating to the production of the large stroke of the MVI motor during its translocation on actin. Atomic structural models for these S1s based upon the ab initio shape reconstruction from X-ray scattering data were constructed, showing that MVI-S1 has the light-chain-binding domain positioned in the opposite direction to MV-S1IQ2 in both the pre- and post-powerstroke transition. The angular change between the light chain-binding domains of MV-S1IQ2 in the pre- to post-powerstroke transition was approximately 50 degrees, comparable to that of MII-S1. On the other hand, that of MVI-S1 was approximately 100 degrees or approximately 130 degrees much less than the currently postulated changes to allow the maximal stroke size of myosin VI-S1 but still significantly larger than those of other myosins reported so far. The results suggest that some additional alterations or elements are required for MVI-S1 to take maximal working strokes along the actin filament.
Collapse
Affiliation(s)
- Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Structure of the complex of a mitotic kinesin with its calcium binding regulator. Proc Natl Acad Sci U S A 2009; 106:8175-9. [PMID: 19416847 DOI: 10.1073/pnas.0811131106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the transport, tension, and movement in mitosis depends on kinesins, the ATP-powered microtubule-based motors. We report the crystal structure of a kinesin complex, the mitotic kinesin KCBP bound to its principal regulator KIC. Shown to be a Ca(2+) sensor, KIC works as an allosteric trap. Extensive intermolecular interactions with KIC stabilize kinesin in its ADP-bound conformation. A critical component of the kinesin motile mechanism, called the neck mimic, switches its association from kinesin to KIC, stalling the motor. KIC denies access of the motor to its track by steric interference. Two major features of this regulation, allosteric trapping and steric blocking, are likely to be general for all kinesins.
Collapse
|