1
|
Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Nat Commun 2020; 11:4263. [PMID: 32848132 PMCID: PMC7450096 DOI: 10.1038/s41467-020-18067-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2–7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC’s ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2–7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2–7 loading site selection in metazoans. The origin recognition complex (ORC) is essential for loading the Mcm2–7 replicative helicase onto DNA during DNA replication initiation. Here, the authors describe several cryo-electron microscopy structures of Drosophila ORC bound to DNA and its cofactor Cdc6 and also report an in vitro reconstitution system for Drosophila Mcm2–7 loading, revealing unexpected features of ORC’s DNA binding and remodeling mechanism during Mcm2–7 loading.
Collapse
|
2
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
3
|
Löb D, Lengert N, Chagin VO, Reinhart M, Casas-Delucchi CS, Cardoso MC, Drossel B. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Nat Commun 2016; 7:11207. [PMID: 27052359 PMCID: PMC4829661 DOI: 10.1038/ncomms11207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/02/2016] [Indexed: 01/02/2023] Open
Abstract
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.
Collapse
Affiliation(s)
- D. Löb
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - N. Lengert
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - V. O. Chagin
- Laboratory of Chromosome Stability, Institute of Cytology, St Petersburg 194064, Russia
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. Reinhart
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - C. S. Casas-Delucchi
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. C. Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - B. Drossel
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Tomic B, Kusic-Tisma J. HsOrc4-Dependent Dna Remodeling of the ori-β Dhfr Replicator. Cell Mol Biol Lett 2015; 20:549-61. [PMID: 26124052 DOI: 10.1515/cmble-2015-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/18/2015] [Indexed: 11/15/2022] Open
Abstract
Replication of DNA in multicellular organisms initiates from origin of replication (ori) sequences, which significantly differ in length and complexity. One of the best characterized is hamster dihydrofolate reductase (DHFR), which contains the ori-β sequence with several functionally relevant domains, such as an AT-rich region, dinucleotide repeat element (DNR), sequence-induced bend DNA (BEND) and a RIP60 protein-binding site (RIP60). Prior to initiation, ori sequences are recognized by origin recognition complex (ORC), which is a hetero hexamer complex that serves as the landing pad for proteins of the pre-replication complex. The function of each ORC subunit is still unclear. In this study, we analyze the function of subunit 4 of the human ORC complex (HsOrc4) in interaction with a plasmid bearing the ori-β DHFR sequence. We show that the topologically closed DHFR ori-β replicator contains a bubble-like structure within its AT-rich region and that it is reversibly modified in the interaction with HsOrc4. The non-canonical structure of the AT-rich region in the topologically closed ori sequence is recognized and changed by HsOrc4 using the energy of supercoiled DNA. These findings could help to further elucidate DNA replication and its possible association with human genetic diseases.
Collapse
|
5
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
6
|
Foulk MS, Urban JM, Casella C, Gerbi SA. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res 2015; 25:725-35. [PMID: 25695952 PMCID: PMC4417120 DOI: 10.1101/gr.183848.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023]
Abstract
Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - John M Urban
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Cinzia Casella
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
7
|
Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Proteomic dissection of DNA polymerization. Expert Rev Proteomics 2014; 3:197-211. [PMID: 16608433 DOI: 10.1586/14789450.3.2.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.
Collapse
Affiliation(s)
- Jennifer L Beck
- Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
8
|
Mesner LD, Valsakumar V, Cieślik M, Pickin R, Hamlin JL, Bekiranov S. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 2013; 23:1774-88. [PMID: 23861383 PMCID: PMC3814878 DOI: 10.1101/gr.155218.113] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
Abstract
We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin "density" falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands.
Collapse
Affiliation(s)
| | | | - Marcin Cieślik
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Rebecca Pickin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Joyce L. Hamlin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
9
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
10
|
Valenzuela MS. Initiation of DNA Replication in the Human Genome. HEREDITARY GENETICS : CURRENT RESEARCH 2012; Suppl 1:4903. [PMID: 24511453 PMCID: PMC3915928 DOI: 10.4172/2161-1041.s1-003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Replication of the human genome relies on the presence of thousands of origins distributed along each of the chromosomes. The activation of these origins occurs in a highly regulated manner to ensure that chromosomes are faithfully duplicated only once during each cell cycle. Failure in this regulation can lead to abnormal cell proliferation, or/and genomic instability, the hallmarks of cancer cells. The mechanisms determining how, when, and where origins are activated remains still a mystery. However recent technological advances have facilitated the study of DNA replication in a genome-wide scale, and have provided a wealth of information on several features of this process. Here we present an overview of the current progress on our understanding of the initiation step of DNA replication in human cells, and its relationship to abnormal cell proliferation.
Collapse
Affiliation(s)
- Manuel S. Valenzuela
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| |
Collapse
|
11
|
Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2011; 34:119-25. [PMID: 22086495 DOI: 10.1002/bies.201100126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cellular identity and its response to external or internal signalling variations are encoded in a cell's genome as regulatory information. The genomic regions that specify this type of information are highly variable and degenerated in their sequence determinants, as it is becoming increasingly evident through the application of genome-scale methods to study gene expression. Here, we speculate that the same scenario applies to the regulatory regions controlling where DNA replication starts in the metazoan genome. We propose that replication origins cannot be defined as unique genomic features, but rather that DNA synthesis initiates opportunistically from accessible DNA sites, making cells highly robust and adaptable to environmental or developmental changes.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
12
|
Martin MM, Ryan M, Kim R, Zakas AL, Fu H, Lin CM, Reinhold WC, Davis SR, Bilke S, Liu H, Doroshow JH, Reimers MA, Valenzuela MS, Pommier Y, Meltzer PS, Aladjem MI. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 2011; 21:1822-32. [PMID: 21813623 DOI: 10.1101/gr.124644.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This report investigates the mechanisms by which mammalian cells coordinate DNA replication with transcription and chromatin assembly. In yeast, DNA replication initiates within nucleosome-free regions, but studies in mammalian cells have not revealed a similar relationship. Here, we have used genome-wide massively parallel sequencing to map replication initiation events, thereby creating a database of all replication initiation sites within nonrepetitive DNA in two human cell lines. Mining this database revealed that genomic regions transcribed at moderate levels were generally associated with high replication initiation frequency. In genomic regions with high rates of transcription, very few replication initiation events were detected. High-resolution mapping of replication initiation sites showed that replication initiation events were absent from transcription start sites but were highly enriched in adjacent, downstream sequences. Methylation of CpG sequences strongly affected the location of replication initiation events, whereas histone modifications had minimal effects. These observations suggest that high levels of transcription interfere with formation of pre-replication protein complexes. Data presented here identify replication initiation sites throughout the genome, providing a foundation for further analyses of DNA-replication dynamics and cell-cycle progression.
Collapse
Affiliation(s)
- Melvenia M Martin
- Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dorn ES, Cook JG. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 2011; 6:552-9. [PMID: 21364325 DOI: 10.4161/epi.6.5.15082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.
Collapse
Affiliation(s)
- Elizabeth Suzanne Dorn
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
14
|
Mesner LD, Valsakumar V, Karnani N, Dutta A, Hamlin JL, Bekiranov S. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res 2010; 21:377-89. [PMID: 21173031 DOI: 10.1101/gr.111328.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.4%, and 21.8% of the genome in the ENCODE regions, respectively. Approximately half of the origin fragments cluster into zones, and their signals are generally higher than those of isolated fragments. Interestingly, initiation events are distributed about equally between genic and intergenic template sequences. While only 13.2% and 14.0% of genes within the ENCODE regions are actually transcribed in HeLa and GM06990 cells, 54.5% and 25.6% of zonal origin fragments overlap transcribed genes, most with activating chromatin marks in their promoters. Our data suggest that cell synchronization activates a significant number of inchoate origins. In addition, HeLa and GM06990 cells activate remarkably different origin populations. Finally, there is only moderate concordance between the log-phase HeLa bubble map and published maps of small nascent strands for this cell line.
Collapse
Affiliation(s)
- Larry D Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kusic J, Tomic B, Divac A, Kojic S. Human initiation protein Orc4 prefers triple stranded DNA. Mol Biol Rep 2010; 37:2317-22. [PMID: 19690980 DOI: 10.1007/s11033-009-9735-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 12/18/2022]
Abstract
In higher eukaryotes mechanism of DNA replication origin recognition and binding by origin recognition complex (ORC) is still unknown. Origin transfer studies have shown that origin sites are genetically determined, containing functionally interchangeable modules. One of such modules from the human lamin B2 origin of replication has the ability to adopt unorthodox structure partly composed of intramolecular triplex. Sequences involved in triplex formation coincide with ORC binding sites both in vitro and in vivo. To explore potential significance of unorthodox DNA structures in origin recognition by ORC, we tested DNA binding properties of human ORC subunit 4 (HsOrc4) which has independent DNA binding activity in vitro and similar binding characteristics as ORC holocomplex. Our results demonstrated that DNA binding activity of HsOrc4 depends on length and structure of DNA with triplex being the protein's preferred binding target. Such feature could play part in origin selection through directing ORC to DNA sequence prone to adopt unorthodox structure.
Collapse
Affiliation(s)
- J Kusic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | | | | | | |
Collapse
|
16
|
Liachko I, Bhaskar A, Lee C, Chung SCC, Tye BK, Keich U. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 2010; 6:e1000946. [PMID: 20485513 PMCID: PMC2869322 DOI: 10.1371/journal.pgen.1000946] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Anand Bhaskar
- Department of Computer Science, Cornell University, Ithaca, New York, United States of America
| | - Chanmi Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shau Chee Claire Chung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Uri Keich
- School of Mathematics and Statistics F07, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
MacAlpine HK, Gordân R, Powell SK, Hartemink AJ, MacAlpine DM. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 2010; 20:201-11. [PMID: 19996087 PMCID: PMC2813476 DOI: 10.1101/gr.097873.109] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 11/23/2009] [Indexed: 12/11/2022]
Abstract
The origin recognition complex (ORC) is an essential DNA replication initiation factor conserved in all eukaryotes. In Saccharomyces cerevisiae, ORC binds to specific DNA elements; however, in higher eukaryotes, ORC exhibits little sequence specificity in vitro or in vivo. We investigated the genome-wide distribution of ORC in Drosophila and found that ORC localizes to specific chromosomal locations in the absence of any discernible simple motif. Although no clear sequence motif emerged, we were able to use machine learning approaches to accurately discriminate between ORC-associated sequences and ORC-free sequences based solely on primary sequence. The complex sequence features that define ORC binding sites are highly correlated with nucleosome positioning signals and likely represent a preferred nucleosomal landscape for ORC association. Open chromatin appears to be the underlying feature that is deterministic for ORC binding. ORC-associated sequences are enriched for the histone variant, H3.3, often at transcription start sites, and depleted for bulk nucleosomes. The density of ORC binding along the chromosome is reflected in the time at which a sequence replicates, with early replicating sequences having a high density of ORC binding. Finally, we found a high concordance between sites of ORC binding and cohesin loading, suggesting that, in addition to DNA replication, ORC may be required for the loading of cohesin on DNA in Drosophila.
Collapse
Affiliation(s)
- Heather K. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Sara K. Powell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
18
|
|
19
|
Das-Bradoo S, Bielinsky AK. Replication initiation point mapping: approach and implications. Methods Mol Biol 2009; 521:105-20. [PMID: 19563103 DOI: 10.1007/978-1-60327-815-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Duplication of eukaryotic chromosomes begins from multiple sites called origins of replication, with DNA synthesis proceeding bidirectionally away from the origin. There is little detailed information available pertaining to whether replication initiates at specific sites or anywhere within a given origin. The development of replication initiation point (RIP) mapping has made it possible to map start sites for DNA synthesis at the nucleotide level. The key step in RIP mapping is the purification of nascent DNA, which is initiated by small RNA primers. For the removal of broken DNA fragments, we utilize lambda-exonuclease, which digests DNA, but leaves nascent strands intact as long as they have the RNA primer still attached. RIP mapping is a sensitive technique and has been successfully applied to single copy loci in both budding and fission yeast, archaebacteria, and human cells. Studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Here, we present a detailed step-by-step protocol for RIP mapping of replication origins in budding yeast.
Collapse
Affiliation(s)
- Sapna Das-Bradoo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
20
|
Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem 2009; 284:24320-7. [PMID: 19617622 DOI: 10.1074/jbc.m109.008128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously found that a plasmid bearing a replication initiation region efficiently initiates gene amplification in mammalian cells and that it generates extrachromosomal double minutes and/or chromosomal homogeneously staining regions. During analysis of the underlying mechanism, we serendipitously found that hairpin-capped linear DNA was stably maintained as numerous extrachromosomal tiny episomes for more than a few months in a human cancer cell line. Generation of such episomes depended on the presence of the replication initiation region in the original plasmid. Despite extrachromosomal maintenance, episomal gene expression was epigenetically suppressed. The Southern blot analysis of the DNA of cloned cells revealed that the region around the hairpin end was diversified between the clones. Furthermore, the bisulfite-modified PCR and the sequencing analyses revealed that the palindrome sequence that derived from the original hairpin end or its end-resected structure were well preserved during clonal long term growth. From these data, we propose a model that explains the formation and maintenance of these episomes, in which replication of the hairpin-capped DNA and cruciform formation and its resolution play central roles. Our findings may be relevant for the dissection of mammalian replicator sequences.
Collapse
Affiliation(s)
- Seiyu Harada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
21
|
Donti TR, Datta S, Sandoval PY, Kapler GM. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J 2009; 28:223-33. [PMID: 19153611 DOI: 10.1038/emboj.2008.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0.8 kb) and ARS1-B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA-independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non-rDNA ARS1 chromosome changed across the cell cycle. In G(2) phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1-A/B. Remarkably, ORC and Mcm6 associated with just the ARS1-A replicator in G(1) phase when pre-replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non-rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | | | | | |
Collapse
|
22
|
Behar DM, Blue-Smith J, Soria-Hernanz DF, Tzur S, Hadid Y, Bormans C, Moen A, Tyler-Smith C, Quintana-Murci L, Wells RS. A novel 154-bp deletion in the human mitochondrial DNA control region in healthy individuals. Hum Mutat 2009; 29:1387-91. [PMID: 18629826 PMCID: PMC2697596 DOI: 10.1002/humu.20835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The biological role of the mitochondrial DNA (mtDNA) control region in mtDNA replication remains unclear. In a worldwide survey of mtDNA variation in the general population, we have identified a novel large control region deletion spanning positions 16154 to 16307 (m.16154_16307del154). The population prevalence of this deletion is low, since it was only observed in 1 out of over 120,000 mtDNA genomes studied. The deletion is present in a nonheteroplasmic state, and was transmitted by a mother to her two sons with no apparent past or present disease conditions. The identification of this large deletion in healthy individuals challenges the current view of the control region as playing a crucial role in the regulation of mtDNA replication, and supports the existence of a more complex system of multiple or epigenetically-determined replication origins.
Collapse
Affiliation(s)
- Doron M Behar
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herrick J, Bensimon A. Introduction to molecular combing: genomics, DNA replication, and cancer. Methods Mol Biol 2009; 521:71-101. [PMID: 19563102 DOI: 10.1007/978-1-60327-815-7_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sequencing of the human genome inaugurated a new era in both fundamental and applied genetics. At the same time, the emergence of new technologies for probing the genome has transformed the field of pharmaco-genetics and made personalized genomic profiling and high-throughput screening of new therapeutic agents all but a matter of routine. One of these technologies, molecular combing, has served to bridge the technical gap between the examination of gross chromosomal abnormalities and sequence-specific alterations. Molecular combing provides a new perspective on the structure and dynamics of the human genome at the whole genome and sub-chromosomal levels with a resolution ranging from a few kilobases up to a megabase and more. Originally developed to study genetic rearrangements and to map genes for positional cloning, recent advances have extended the spectrum of its applications to studying the real-time dynamics of the replication of the genome. Understanding how the genome is replicated is essential for elucidating the mechanisms that both maintain genome integrity and result in the instabilities leading to human genetic disease and cancer. In the following, we will examine recent discoveries and advances due to the application of molecular combing to new areas of research in the fields of molecular cytogenetics and cancer genomics.
Collapse
|
24
|
Fanning E, Zhao K. SV40 DNA replication: from the A gene to a nanomachine. Virology 2008; 384:352-9. [PMID: 19101707 DOI: 10.1016/j.virol.2008.11.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022]
Abstract
Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance.
Collapse
Affiliation(s)
- Ellen Fanning
- Department of Biological Sciences, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235-1634, USA.
| | | |
Collapse
|
25
|
Stefanovic D, Kusic J, Divac A, Tomic B. Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 2008; 47:8760-7. [PMID: 18652488 DOI: 10.1021/bi800684f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many genomic sequences, DNA replication origins included, contain specific structural motifs prone to alternative base pairing. Structural rearrangements of DNA require specific environmental conditions and could be favored by chemical agents or proteins. To improve our understanding of alternative conformations of origins and the manner in which they form, we have investigated the effect of DNA-binding, AAA+ protein human ORC4 on single-stranded origin DNA or various oligonucleotides. Here we demonstrate that human ORC4 stimulated formation of inter- and intramolecular T.A.T triplexes and created novel structures, such as homoadenine duplexes. Adenine-based structures were held together by Hoogsteen hydrogen bonds, as demonstrated on 7-deaza-dAMP- or dAMP-containing substrates, and characterized by increased thermal stability. Adenine pairing occurred only in the presence of human ORC4, in a neutral buffer supplemented with ATP and Mg (2+) ions. The protein mutant that could not bind ATP was inactive in this reaction. Since the action of human ORC4 could be biologically important, its potential impact on DNA replication is discussed.
Collapse
Affiliation(s)
- Dragana Stefanovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | |
Collapse
|
26
|
Asymmetric bidirectional replication at the human DBF4 origin. Nat Struct Mol Biol 2008; 15:722-9. [PMID: 18536724 DOI: 10.1038/nsmb.1439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/06/2008] [Indexed: 01/01/2023]
Abstract
Faithful replication of the entire genome once per cell cycle is essential for maintaining genetic integrity, and the origin of DNA replication is key in this regulation. Unlike that in unicellular organisms, the replication initiation mechanism in mammalian cells is not well understood. We have identified a strong origin of replication at the DBF4 promoter locus, which contains two initiation zones, two origin recognition complex (ORC) binding sites and two DNase I-hypersensitive regions within approximately 1.5 kb. Notably, similar to the Escherichia coli oriC, replication at the DBF4 locus starts from initiation zone I, which contains an ORC-binding site, and progresses in the direction of transcription toward initiation zone II, located approximately 0.4 kb downstream. Replication on the opposite strand from zone II, which contains another ORC-binding site, may be activated or facilitated by replication from zone I. We term this new mammalian replication mode 'asymmetric bidirectional replication'.
Collapse
|
27
|
Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition. EMBO J 2007; 26:5048-60. [PMID: 18007594 DOI: 10.1038/sj.emboj.7601919] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/18/2007] [Indexed: 11/08/2022] Open
Abstract
The Tetrahymena thermophila ribosomal DNA (rDNA) replicon contains dispersed cis-acting replication determinants, including reiterated type I elements that associate with sequence-specific, single-stranded binding factors, TIF1 through TIF4. Here, we show that TIF4, previously implicated in cell cycle-controlled DNA replication and rDNA gene amplification, is the T. thermophila origin recognition complex (TtORC). We further demonstrate that TtORC contains an integral RNA subunit that participates in rDNA origin recognition. Remarkably, this RNA, designated 26T, spans the terminal 282 nts of 26S ribosomal RNA. 26T RNA exhibits extensive complementarity to the type I element T-rich strand and binds the rDNA origin in vivo. Mutations that disrupt predicted interactions between 26T RNA and its complementary rDNA target change the in vitro binding specificity of ORC and diminish in vivo rDNA origin utilization. These findings reveal a role for ribosomal RNA in chromosome biology and define a new mechanism for targeting ORC to replication initiation sites.
Collapse
|
28
|
Zellner E, Herrmann T, Schulz C, Grummt F. Site-specific interaction of the murine pre-replicative complex with origin DNA: assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res 2007; 35:6701-13. [PMID: 17916579 PMCID: PMC2175324 DOI: 10.1093/nar/gkm555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.
Collapse
Affiliation(s)
- Elisabeth Zellner
- Institute of Biochemistry, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
29
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|
30
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
31
|
Costa S, Blow JJ. The elusive determinants of replication origins. EMBO Rep 2007; 8:332-4. [PMID: 17401406 PMCID: PMC1852751 DOI: 10.1038/sj.embor.7400954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Affiliation(s)
- Silvia Costa
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
| | - J Julian Blow
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
- Tel: +44 (0)1382 385797; Fax: +44 (0)1382 388072;
e-mail:
| |
Collapse
|
32
|
Conti C, Saccà B, Herrick J, Lalou C, Pommier Y, Bensimon A. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 2007; 18:3059-67. [PMID: 17522385 PMCID: PMC1949372 DOI: 10.1091/mbc.e06-08-0689] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spatial organization of replicons into clusters is believed to be of critical importance for genome duplication in higher eukaryotes, but its functional organization still remains to be fully clarified. The coordinated activation of origins is insufficient on its own to account for a timely completion of genome duplication when interorigin distances vary significantly and fork velocities are constant. Mechanisms coordinating origin distribution with fork progression are still poorly elucidated, because of technical difficulties of visualizing the process. Taking advantage of a single molecule approach, we delineated and compared the DNA replication kinetics at the genome level in human normal primary and malignant cells. Our results show that replication forks moving from one origin, as well as from neighboring origins, tend to exhibit the same velocity, although the plasticity of the replication program allows for their adaptation to variable interorigin distances. We also found that forks that emanated from closely spaced origins tended to move slower than those associated with long replicons. Taken together, our results indicate a functional role for origin clustering in the dynamic regulation of genome duplication.
Collapse
Affiliation(s)
- Chiara Conti
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Barbara Saccà
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - John Herrick
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Claude Lalou
- Institut National de la Santé et de la Recherche Médicale U532, Hôpital Saint-Louis, Paris 75010, France; and
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817
| | - Aaron Bensimon
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| |
Collapse
|
33
|
Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 2007; 282:11705-14. [PMID: 17314092 PMCID: PMC3033201 DOI: 10.1074/jbc.m700399200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.
Collapse
Affiliation(s)
- Christian Speck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
34
|
Ellingsen A, Slamovits CH, Rossi MS. Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia). Gene 2007; 392:283-90. [PMID: 17331676 DOI: 10.1016/j.gene.2007.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/06/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Sequence variability of RPCS (repetitive PuvII Ctenomys sequence), the major satellite DNA of octodontid Ctenomys rodents, was analysed in species belonging to three groups of species representing the two patterns of karyotypic evolution in the genus: stable and dynamic karyotypes among closely related species. The studied species represent the overall range of RPCS copy number (2000--6.6x10(6) copies per haploid genome) in the genus. RPCS sequence was characterised by PCR amplification of the genomic consensus sequence and cloned monomers. Our results suggest that RPCS genomic consensus sequence variability correlates with RPCS copy number stability and karyotypic stastis, but not with high or low RPCS copy number values. In contrast, the RPCS gcs shows a mutational profile that is similar across all analysed species. Our data suggest that an RPCS ancestral library of variants was maintained through the cladogenesis of the genus. There is also evidence pointing to the simultaneous contribution of processes of concerted evolution that resulted in a reduced representation of some ancestral variants and their partial replacement for new ones. In addition, analysis of distribution of the variability along the monomer suggests that subsequences of the RPCS are subject to some degree of constraint, probably driven by the recent replicative activity of RPCS in species with high copy number.
Collapse
Affiliation(s)
- Amund Ellingsen
- IFIBYNE-CONICET, Laboratorio de Fisiología y Biología Molecular, Dep. Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 2do piso, EHA1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
35
|
Irene C, Maciariello C, Micheli G, Theis JF, Newlon CS, Fabiani L. DNA elements modulating the KARS12 chromosomal replicator in Kluyveromyces lactis. Mol Genet Genomics 2006; 277:287-99. [PMID: 17136349 DOI: 10.1007/s00438-006-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/21/2006] [Indexed: 12/24/2022]
Abstract
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.
Collapse
Affiliation(s)
- Carmela Irene
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, Roma, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Noguchi K, Vassilev A, Ghosh S, Yates JL, DePamphilis ML. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J 2006; 25:5372-82. [PMID: 17066079 PMCID: PMC1636626 DOI: 10.1038/sj.emboj.7601396] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022] Open
Abstract
Selection of initiation sites for DNA replication in eukaryotes is determined by the interaction between the origin recognition complex (ORC) and genomic DNA. In mammalian cells, this interaction appears to be regulated by Orc1, the only ORC subunit that contains a bromo-adjacent homology (BAH) domain. Since BAH domains mediate protein-protein interactions, the human Orc1 BAH domain was mutated, and the mutant proteins expressed in human cells to determine their affects on ORC function. The BAH domain was not required for nuclear localization of Orc1, association of Orc1 with other ORC subunits, or selective degradation of Orc1 during S-phase. It did, however, facilitate reassociation of Orc1 with chromosomes during the M to G1-phase transition, and it was required for binding Orc1 to the Epstein-Barr virus oriP and stimulating oriP-dependent plasmid DNA replication. Moreover, the BAH domain affected Orc1's ability to promote binding of Orc2 to chromatin as cells exit mitosis. Thus, the BAH domain in human Orc1 facilitates its ability to activate replication origins in vivo by promoting association of ORC with chromatin.
Collapse
Affiliation(s)
- Kohji Noguchi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Soma Ghosh
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John L Yates
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA. Tel.: +1 301 402 8234; Fax: +1 301 480 9354; E-mail:
| |
Collapse
|
37
|
Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Bensimon A. DNA replication origin interference increases the spacing between initiation events in human cells. Mol Biol Cell 2006; 17:5337-45. [PMID: 17005913 PMCID: PMC1679695 DOI: 10.1091/mbc.e06-04-0298] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian DNA replication origins localize to sites that range from base pairs to tens of kilobases. A regular distribution of initiations in individual cell cycles suggests that only a limited number of these numerous potential start sites are converted into activated origins. Origin interference can silence redundant origins; however, it is currently unknown whether interference participates in spacing functional human initiation events. By using a novel hybridization strategy, genomic Morse code, on single combed DNA molecules from primary keratinocytes, we report the initiation sites present on 1.5 Mb of human chromosome 14q11.2. We confirm that initiation zones are widespread in human cells, map to intergenic regions, and contain sequence motifs found at other mammalian initiation zones. Origins used per cell cycle are less abundant than the potential sites of initiation, and their limited use increases the spacing between initiation events. Between-zone interference decreases in proportion to the distance from the active origin, whereas within-zone interference is 100% efficient. These results identify a hierarchical organization of origin activity in human cells. Functional origins govern the probability that nearby origins will fire in the context of multiple potential start sites of DNA replication, and this is mediated by origin interference.
Collapse
Affiliation(s)
- Ronald Lebofsky
- *Unité de Stabilité des Génomes, Institut Pasteur, 75724, Paris, France
| | - Roland Heilig
- Genoscope, Centre National de Séquençage, 91000, Evry, France; and
| | - Max Sonnleitner
- Upper Austrian Research, Zentrum für Biommedizinische Nanotechnologie, 4020, Linz, Austria
| | - Jean Weissenbach
- Genoscope, Centre National de Séquençage, 91000, Evry, France; and
| | - Aaron Bensimon
- *Unité de Stabilité des Génomes, Institut Pasteur, 75724, Paris, France
| |
Collapse
|
38
|
Bolon YT, Bielinsky AK. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res 2006; 34:5069-80. [PMID: 16984967 PMCID: PMC1635292 DOI: 10.1093/nar/gkl661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- To whom correspondence should be addressed. Tel: +1 612 624 2469; Fax: +1 612 625 2163;
| |
Collapse
|
39
|
Minami H, Takahashi J, Suto A, Saitoh Y, Tsutsumi KI. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol Cell Biol 2006; 26:8770-80. [PMID: 16982680 PMCID: PMC1636824 DOI: 10.1128/mcb.00949-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A region encompassing the rat aldolase B gene (aldB) promoter acts as a chromosomal origin of DNA replication (origin) in rat aldolase B-nonexpressing hepatoma cells. To examine replicator function of the aldB origin, we constructed recombinant mouse cell lines in which the rat aldB origin and the mutant derivatives were inserted into the same position at the mouse chromosome 8 by cre-mediated recombination. Nascent strand abundance assays revealed that the rat origin acts as a replicator at the ectopic mouse locus. Mutation of site C in the rat origin, which binds an Orc1-binding protein AlF-C in vitro, resulted in a significant reduction of the replicator activity in the mouse cells. Chromatin immunoprecipitation (ChIP) assays indicated that the reduction of replicator activity was paralleled with the reduced binding of AlF-C and Orc1, suggesting that sequence-specific binding of AlF-C to the ectopic rat origin leads to enhanced replicator activity in cooperation with Orc1. Involvement of AlF-C in replication in vivo was further examined for the aldB origin at its original rat locus and for a different rat origin identified in the present study, which contained an AlF-C-binding site. ChIP assays revealed that both replication origins bind AlF-C and Orc1. We think that the results presented here may represent one mode of origin recognition in mammalian cells.
Collapse
Affiliation(s)
- Hiroyuki Minami
- Cryobiosystem Research Center, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
40
|
Gerhardt J, Jafar S, Spindler MP, Ott E, Schepers A. Identification of new human origins of DNA replication by an origin-trapping assay. Mol Cell Biol 2006; 26:7731-46. [PMID: 16954389 PMCID: PMC1636883 DOI: 10.1128/mcb.01392-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
41
|
Wang L, Lin CM, Lopreiato JO, Aladjem MI. Cooperative sequence modules determine replication initiation sites at the human beta-globin locus. Hum Mol Genet 2006; 15:2613-22. [PMID: 16877501 DOI: 10.1093/hmg/ddl187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human beta globin locus contains two adjacent replicators, each capable of initiating DNA replication when transferred from its native locus to ectopic sites. Here, we report a detailed analysis of the sequence requirements for replication initiation from these replicators. In both replicators, initiation required a combination of an asymmetric purine:pyrimidine sequence and several AT-rich stretches. Modules from the two replicators could combine to initiate replication. AT-rich sequences were essential for replicator activity: a low frequency of initiation was observed in DNA fragments that included a short stretch of AT-rich sequences, whereas inclusion of additional AT-rich stretches increased initiation efficiency. By contrast, replication initiated at a low level without the asymmetric purine:pyrimidine modules but they were required in synergy to achieve efficient initiation. These data support a combinatorial model for replicator activity and suggest that the initiation of DNA replication requires interaction between at least two distinct sequence modules.
Collapse
Affiliation(s)
- Lixin Wang
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
42
|
Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006; 7:812-6. [PMID: 16845368 PMCID: PMC1525151 DOI: 10.1038/sj.embor.7400758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/23/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, changes in the DNA replication programme could act to integrate differentiation with cell division in various developmental and transcriptional contexts. Here, we have addressed the use of DNA replication origins during differentiation in the HoxB domain-a cluster of nine genes developmentally regulated in a collinear manner. In undifferentiated mouse P19 cells, we detected several DNA replication origins in the 100 kb HoxB locus, indicating a relaxed origin use when the locus is transcriptionally silent. By contrast, in retinoic-acid-induced differentiated cells, when HoxB transcription is activated, a general silencing of DNA replication origins occurs in the locus except one located downstream of Hoxb1, at the 3' boundary of the HoxB domain. Silencing of the replication origins is associated with histone hyperacetylation, whereas the active Hoxb1 origin persists as a hypoacetylated island. These findings provide direct evidence for the differentiated use of origins in HoxB genes, and we suggest that this regulation might contribute to the regulated expression of HoxB genes during development.
Collapse
Affiliation(s)
- Damien Grégoire
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Konstantin Brodolin
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
- Tel: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
43
|
Rowntree RK, Lee JT. Mapping of DNA replication origins to noncoding genes of the X-inactivation center. Mol Cell Biol 2006; 26:3707-17. [PMID: 16648467 PMCID: PMC1489014 DOI: 10.1128/mcb.26.10.3707-3717.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, few DNA replication origins have been identified. Although there appears to be an association between origins and epigenetic regulation, their underlying link to monoallelic gene expression remains unclear. Here, we identify novel origins of DNA replication (ORIs) within the X-inactivation center (Xic). We analyze 86 kb of the Xic using an unbiased approach and find an unexpectedly large number of functional ORIs. Although there has been a tight correlation between ORIs and CpG islands, we find that ORIs are not restricted to CpG islands and there is no dependence on transcriptional activity. Interestingly, these ORIs colocalize to important genetic elements or genes involved in X-chromosome inactivation. One prominent ORI maps to the imprinting center and to a domain within Tsix known to be required for X-chromosome counting and choice. Location and/or activity of ORIs appear to be modulated by removal of specific Xic elements. These data provide a foundation for testing potential relationships between DNA replication and epigenetic regulation in future studies.
Collapse
Affiliation(s)
- Rebecca K Rowntree
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
44
|
Bielinsky AK, Raveendranathan M. Encircled: large-scale purification of replication origins from Mammalian chromosomes. Mol Cell 2006; 21:735-6. [PMID: 16543143 DOI: 10.1016/j.molcel.2006.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A novel cloning strategy for sequences comprising mammalian replication origins, described by Mesner et al. (2006) in a recent issue of Molecular Cell, utilizes an origin trapping assay in which replication bubbles are selectively retained in agarose due to their circular nature.
Collapse
Affiliation(s)
- Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
45
|
Fu H, Wang L, Lin CM, Singhania S, Bouhassira EE, Aladjem MI. Preventing gene silencing with human replicators. Nat Biotechnol 2006; 24:572-6. [PMID: 16604060 DOI: 10.1038/nbt1202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/09/2006] [Indexed: 11/09/2022]
Abstract
Transcriptional silencing, one of the major impediments to gene therapy in humans, is often accompanied by replication during late S-phase. We report that transcriptional silencing and late replication were prevented by DNA sequences that can initiate DNA replication (replicators). When replicators were included in silencing-prone transgenes, they did not undergo transcriptional silencing, replicated early and maintained histone acetylation patterns characteristic of euchromatin. A mutant replicator, which could not initiate replication, could not prevent gene silencing and replicated late when included in identical transgenes and inserted at identical locations. These observations suggest that replicators introduce epigenetic chromatin changes that facilitate initiation of DNA replication and affect gene silencing. Inclusion of functional replicators in gene therapy vectors may provide a tool for stabilizing gene expression patterns.
Collapse
Affiliation(s)
- Haiqing Fu
- Laboratory of Molecular Pharmacology, NCI, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.
Collapse
Affiliation(s)
- Boyka Anachkova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia 1113, Bulgaria.
| | | | | |
Collapse
|
47
|
Sasaki T, Ramanathan S, Okuno Y, Kumagai C, Shaikh SS, Gilbert DM. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol Cell Biol 2006; 26:1051-62. [PMID: 16428457 PMCID: PMC1347040 DOI: 10.1128/mcb.26.3.1051-1062.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
49
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
50
|
Shimotai Y, Minami H, Saitoh Y, Onodera Y, Mishima Y, Kelm RJ, Tsutsumi KI. A binding site for Pur alpha and Pur beta is structurally unstable and is required for replication in vivo from the rat aldolase B origin. Biochem Biophys Res Commun 2005; 340:517-25. [PMID: 16376299 DOI: 10.1016/j.bbrc.2005.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/06/2005] [Indexed: 11/27/2022]
Abstract
The rat aldolase B promoter acts as a replication origin in vivo, as well as an autonomously replicating sequence (ARS). Here, we examined roles of a polypurine stretch (site PPu) in this origin, which is indispensable to the ARS activity. Purification of site PPu-binding protein revealed that site PPu binds Puralpha and Purbeta, i.e., single-stranded DNA-binding proteins whose roles in replication have been implicated, but less clear. Biochemical analyses showed that site PPu even in a longer DNA fragment is unstable in terms of double-helix, implying that Puralpha/beta may stabilize single-stranded state. Deletion of site PPu from the origin DNA, which was ectopically positioned in the mouse chromosome, significantly reduced replicator activity. Chromatin immunoprecipitation experiments showed that deletion of site PPu abolishes binding of the Puralpha/beta proteins to the origin. These observations suggest functional roles of site PPu and Puralpha/beta proteins in replication initiation.
Collapse
Affiliation(s)
- Yoshitaka Shimotai
- Laboratory of Functional Genomics, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | |
Collapse
|