1
|
Uversky VN. Functional diversity of intrinsically disordered proteins and their structural heterogeneity: Protein structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:1-15. [PMID: 39947745 DOI: 10.1016/bs.pmbts.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The fact that protein universe is enriched in intrinsic disorder is an accepted truism now. It is also recognized that the phenomenon of protein intrinsic disorder contains keys to answer numerous questions that do not have obvious solutions within the classic "lock-and-key"-based structure-function paradigm. In fact, reality is much more complex than the traditional "one-gene - one-protein - one-function" model, as many (if not most) proteins are multifunctional. This multifunctionality is commonly rooted in the presence of the intrinsically disordered or structurally flexible regions in a protein. Here, in addition to various events at the DNA (genetic variations), mRNA (alternative splicing, alternative promoter usage, alternative initiation of translation, and mRNA editing), and protein levels (post-translational modifications), intrinsic disorder and protein functionality are crucial for generation of proteoforms, which are functionally and structurally different protein forms produced from a single gene. Therefore, since a given protein exists as a dynamic conformational ensemble containing multiple proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials, "protein structure-function continuum" model represents a more realistic way to correlate protein structure and function.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
2
|
Abstract
The constrained nature of viral genomes has allowed a translational sleight of hand known as −1 Programmed Ribosomal Frameshifting (−1 PRF) to flourish. Numerous studies have sought to tease apart the mechanisms and implications of −1PRF utilizing a few techniques. The dual-luciferase assay and ribosomal profiling have driven the PRF field to make great advances; however, the use of these assays means that the full impact of the genomic and cellular context on −1 PRF is often lost. Here, we discuss how the Minimal Frameshifting Element (MFE) and its constraints can hide contextual effects on −1 PRF. We review how sequence elements proximal to the traditionally defined MFE, such as the coronavirus attenuator sequence, can affect the observed rates of −1 PRF. Further, the MFE-based approach fully obscured −1 PRF in Barley yellow dwarf virus and would render the exploration of −1 PRF difficult in Porcine reproductive and respiratory syndrome virus, Encephalomyocarditis virus, Theiler’s murine encephalomyelitis virus, and Sindbis virus. Finally, we examine how the cellular context of tRNA abundance, miRNAs, and immune response elements can affect −1 PRF. The use of MFE was instrumental in establishing the basic foundations of PRF; however, it has become clear that the contextual impact on −1 PRF is no longer the exception so much as it is the rule and argues for new approaches to study −1PRF that embrace context. We therefore urge our field to expand the strategies and methods used to explore −1 PRF.
Collapse
|
3
|
Zink RM. Considering the use of the terms strain and adaptation in prion research. Heliyon 2021; 7:e06801. [PMID: 33898853 PMCID: PMC8060586 DOI: 10.1016/j.heliyon.2021.e06801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists and disease biologists use the terms strain and adaptation in Chronic Wasting Disease (CWD) research in different ways. In evolutionary biology, a strain is a nascent genetic lineage that can be described by a genealogy, and a phylogenetic nomenclature constructed to reflect that genealogy. Prion strains are described as showing distinct host range, clinical presentation, disease progression, and neuropathological and PrP biochemical profiles, and lack information that would permit phylogenetic reconstruction of their history. Prion strains are alternative protein conformations, sometimes derived from the same genotype. I suggest referring to prion strains as ecotypes, because the variant phenotypic conformations ("strains") are a function of the interaction between PRNP amino acid genotype and the host environment. In the case of CWD, a prion ecotype in white-tailed deer would be described by its genotype and the host in which it occurs, such as the H95 + ecotype. However, an evolutionary nomenclature is difficult because not all individuals with the same PRNP genotype show signs of CWD, therefore creating a nomenclature reflecting and one-to-one relationship between PRNP genealogy and CWD presence is difficult. Furthermore, very little information exists on the phylogenetic distribution of CWD ecotypes in wild deer populations. Adaptation has a clear meaning in evolutionary biology, the differential survival and reproduction of individual genotypes. If a new prion ecotype arises in a particular host and kills more hosts or kills at an earlier age, it is the antithesis of the evolutionary definition of adaptation. However, prion strains might be transmitted across generations epigenetically, but whether this represents adaptation depends on the fitness consequences of the strain. Protein phenotypes of PRNP that cause transmissible spongiform encephalopathies (TSEs), and CWD, are maladaptive and would not be propagated genetically or epigenetically via a process consistent with an evolutionary view of adaptation. I suggest terming the process of prion strain origination "phenotypic transformation", and only adaptation if evidence shows they are not maladaptive and persist over evolutionary time periods (e.g., thousands of generations) and across distinct species boundaries (via inheritance). Thus, prion biologists use strain and adaptation, historically evolutionary terms, in quite different ways.
Collapse
Affiliation(s)
- Robert M. Zink
- School of Natural Resources, School of Biological Sciences, Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
4
|
Terrinoni A, Calabrese C, Basso D, Aita A, Caporali S, Plebani M, Bernardini S. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med 2020; 57:932-953. [PMID: 30838832 DOI: 10.1515/cclm-2018-0838] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
A large portion of the human genome transcribes RNA sequences that do not code for any proteins. The first of these sequences was identified in 1993, and the best known noncoding RNAs are microRNA (miRNAs). It is now fully established that miRNAs regulate approximately 30% of the known genes that codify proteins. miRNAs are involved in several biological processes, like cell proliferation, differentiation, apoptosis and metastatization. These RNA products regulate gene expression at the post-transcriptional level, modulating or inhibiting protein expression by interacting with specific sequences of mRNAs. Mature miRNAs can be detected in blood plasma, serum and also in a wide variety of biological fluids. They can be found associated with proteins, lipids as well as enclosed in exosome vesicles. We know that circulating miRNAs (C-miRNAs) can regulate several key cellular processes in tissues different from the production site. C-miRNAs behave as endogenous mediators of RNA translation, and an extraordinary knowledge on their function has been obtained in the last years. They can be secreted in different tissue cells and associated with specific pathological conditions. Significant evidence indicates that the initiation and progression of several pathologies are "highlighted" by the presence of specific C-miRNAs, underlining their potential diagnostic relevance as clinical biomarkers. Here we review the current literature on the possible use of this new class of molecules as clinical biomarkers of diseases.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Cosimo Calabrese
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Basso
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sabrina Caporali
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Plebani
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Abstract
The molecular mechanisms and functions in complex biological systems currently remain elusive. Recent high-throughput techniques, such as next-generation sequencing, have generated a wide variety of multiomics datasets that enable the identification of biological functions and mechanisms via multiple facets. However, integrating these large-scale multiomics data and discovering functional insights are, nevertheless, challenging tasks. To address these challenges, machine learning has been broadly applied to analyze multiomics. This review introduces multiview learning-an emerging machine learning field-and envisions its potentially powerful applications to multiomics. In particular, multiview learning is more effective than previous integrative methods for learning data's heterogeneity and revealing cross-talk patterns. Although it has been applied to various contexts, such as computer vision and speech recognition, multiview learning has not yet been widely applied to biological data-specifically, multiomics data. Therefore, this paper firstly reviews recent multiview learning methods and unifies them in a framework called multiview empirical risk minimization (MV-ERM). We further discuss the potential applications of each method to multiomics, including genomics, transcriptomics, and epigenomics, in an aim to discover the functional and mechanistic interpretations across omics. Secondly, we explore possible applications to different biological systems, including human diseases (e.g., brain disorders and cancers), plants, and single-cell analysis, and discuss both the benefits and caveats of using multiview learning to discover the molecular mechanisms and functions of these systems.
Collapse
Affiliation(s)
- Nam D. Nguyen
- Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Abstract
Functions of intrinsically disordered proteins do not require structure. Such structure-independent functionality has melted away the classic rigid "lock and key" representation of structure-function relationships in proteins, opening a new page in protein science, where molten keys operate on melted locks and where conformational flexibility and intrinsic disorder, structural plasticity and extreme malleability, multifunctionality and binding promiscuity represent a new-fangled reality. Analysis and understanding of this new reality require novel tools, and some of the techniques elaborated for the examination of intrinsically disordered protein functions are outlined in this review.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
7
|
Uversky VN. Protein intrinsic disorder and structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:1-17. [DOI: 10.1016/bs.pmbts.2019.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology. PLoS One 2017; 12:e0189922. [PMID: 29267315 PMCID: PMC5739447 DOI: 10.1371/journal.pone.0189922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
Collapse
|
10
|
Matos LC, Santos SC, Anderson JG, Machado J, Greten HJ, Monteiro FJ. Instrumental Measurements of Water and the Surrounding Space During a Randomized Blinded Controlled Trial of Focused Intention. J Evid Based Complementary Altern Med 2017; 22:675-686. [PMID: 28497700 PMCID: PMC5871280 DOI: 10.1177/2156587217707117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/24/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022] Open
Abstract
The main goal of this work was the assessment of measurable interactions induced by focused intention, frequently used in biofield practices such as Healing Touch and Reiki. Water, as the main component of the human body, was chosen as a model. Intention experiments were performed over 4 different days at a scheduled interval, during which 286 trained biofield practitioners from several countries were instructed to meditate with the intention to change the molecular vibrational state of water samples selected by a blinded operator. The experimental protocol was randomized, blinded, and controlled; the measured variables included Raman spectra and the pH and electrical conductance of the water, as well as the magnetic field and UV-VIS (ultraviolet-visible) radiation near the experimental spot. Although a direct causal relationship cannot be established, some measurements of the water samples, as well as the magnetic field and radiation near the experimental spot, were responsive during the experimental period.
Collapse
Affiliation(s)
| | | | | | - Jorge Machado
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Henry Johannes Greten
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
- German Society of Traditional Chinese Medicine, Heidelberg, Germany
| | | |
Collapse
|
11
|
Prion Diagnosis: Application of Real-Time Quaking-Induced Conversion. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5413936. [PMID: 28596963 PMCID: PMC5449729 DOI: 10.1155/2017/5413936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Prions composed of pathogenic scrapie prion protein (PrPSc) are infectious pathogens that cause progressive neurological conditions known as prion diseases or transmissible spongiform encephalopathies. Although these diseases pose considerable risk to public health, procedures for early diagnosis have not been established. One of the most recent attempts at sensitive and specific detection of prions is the real-time quaking-induced conversion (RT-QuIC) method, which measures the activity of PrPSc aggregates or amyloid formation triggered by PrPSc seeds in the presence of recombinant PrP. In this review, we summarize prions, prion diseases, and current approaches to diagnosis, including the principle, conditions for assay performance, and current diagnostic applications of RT-QuIC.
Collapse
|
12
|
p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Int J Mol Sci 2016; 17:ijms17111874. [PMID: 27834926 PMCID: PMC5133874 DOI: 10.3390/ijms17111874] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Although it is one of the most studied proteins, p53 continues to be an enigma. This protein has numerous biological functions, possesses intrinsically disordered regions crucial for its functionality, can form both homo-tetramers and isoform-based hetero-tetramers, and is able to interact with many binding partners. It contains numerous posttranslational modifications, has several isoforms generated by alternative splicing, alternative promoter usage or alternative initiation of translation, and is commonly mutated in different cancers. Therefore, p53 serves as an important illustration of the protein structure–function continuum concept, where the generation of multiple proteoforms by various mechanisms defines the ability of this protein to have a multitude of structurally and functionally different states. Considering p53 in the light of a proteoform-based structure–function continuum represents a non-canonical and conceptually new contemplation of structure, regulation, and functionality of this important protein.
Collapse
|
13
|
Nam JW, Choi SW, You BH. Incredible RNA: Dual Functions of Coding and Noncoding. Mol Cells 2016; 39:367-74. [PMID: 27137091 PMCID: PMC4870183 DOI: 10.14348/molcells.2016.0039] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022] Open
Abstract
Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janus-faced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Bo-Hyun You
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
14
|
(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Abstract
Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Honorary Professor Alain E. Bussard (1917-2010). Eur J Immunol 2010; 40:1522-4. [DOI: 10.1002/eji.201090026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Xiong W, Li T, Chen K, Tang K. Local combinational variables: an approach used in DNA-binding helix-turn-helix motif prediction with sequence information. Nucleic Acids Res 2009; 37:5632-40. [PMID: 19651875 PMCID: PMC2761287 DOI: 10.1093/nar/gkp628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 11/24/2022] Open
Abstract
Sequence-based approach for motif prediction is of great interest and remains a challenge. In this work, we develop a local combinational variable approach for sequence-based helix-turn-helix (HTH) motif prediction. First we choose a sequence data set for 88 proteins of 22 amino acids in length to launch an optimized traversal for extracting local combinational segments (LCS) from the data set. Then after LCS refinement, local combinational variables (LCV) are generated to construct prediction models for HTH motifs. Prediction ability of LCV sets at different thresholds is calculated to settle a moderate threshold. The large data set we used comprises 13 HTH families, with 17 455 sequences in total. Our approach predicts HTH motifs more precisely using only primary protein sequence information, with 93.29% accuracy, 93.93% sensitivity and 92.66% specificity. Prediction results of newly reported HTH-containing proteins compared with other prediction web service presents a good prediction model derived from the LCV approach. Comparisons with profile-HMM models from the Pfam protein families database show that the LCV approach maintains a good balance while dealing with HTH-containing proteins and non-HTH proteins at the same time. The LCV approach is to some extent a complementary to the profile-HMM models for its better identification of false-positive data. Furthermore, genome-wide predictions detect new HTH proteins in both Homo sapiens and Escherichia coli organisms, which enlarge applications of the LCV approach. Software for mining LCVs from sequence data set can be obtained from anonymous ftp site ftp://cheminfo.tongji.edu.cn/LCV/freely.
Collapse
Affiliation(s)
| | - Tonghua Li
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | | | | |
Collapse
|
18
|
Abstract
In 1868 Charles Darwin proposed Pangenesis, a developmental theory of heredity. He suggested that all cells in an organism are capable of shedding minute particles he called gemmules, which are able to circulate throughout the body and finally congregate in the gonads. These particles are then transmitted to the next generation and are responsible for the transmission of characteristics from parent to offspring. If any cells of the parent undergo changes as a result of environmental change, they will consequently transmit modified gemmules to their offspring. Soon after Darwin's pangenetic theory was published, Francis Galton designed a series of blood transfusion experiments on differently pigmented rabbits to test its validity. He found no evidence in support of the existence of Darwin's gemmules and the concept of Pangenesis was largely abandoned. In this article, recent reports of successful induction of heritable changes by blood transfusion are reviewed. Detection of circulating nucleic acids and prions in plant sap and animal blood is considered as fresh evidence for the existence of gemmules. It is now apparent that a considerable revision of views on Darwin's Pangenesis must occur before a new comprehensive genetic theory can be achieved.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
19
|
|
20
|
Self-replicating protein conformations and information transfer: The adaptive β-sheet model. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.bihy.2008.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Pedersen JS, Otzen DE. Amyloid-a state in many guises: survival of the fittest fibril fold. Protein Sci 2007; 17:2-10. [PMID: 18042680 DOI: 10.1110/ps.073127808] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Under appropriate conditions, essentially all proteins are able to aggregate to form long, well-ordered and beta-sheet-rich arrays known as amyloid-like fibrils. These fibrils consist of varying numbers of intertwined protofibrils and can for any given protein exhibit a wealth of different forms at the ultrastructural level. Traditionally, this structural variability or polymorphism has been attributed to differences in the assembly of a common protofibril structure. However, recent work on glucagon, insulin, and the Abeta peptide suggests that this polymorphism can occur at the level of secondary structure. Simple variations in either solvent conditions such as temperature, protein concentration, and ionic strength or external mechanical influences such as agitation can lead to formation of fibrils with markedly different characteristics. In some cases, these characteristics can be passed on to new fibrils in a strain-specific manner, similar to what is known for prions. The preferred structure of fibrils formed can be explained in terms of selective pressure and survival of the fittest; the most populated types of fibrils we observe at the end of an experiment are those that had the fastest overall growth rate under the given conditions. Fibrillar polymorphism is probably a consequence of the lack of structural restraints on a nonfunctional conformational state.
Collapse
|
22
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|