1
|
Neto VG, Cepeda LPP, Queiroz BRS, Cantaloube S, Leger-Silvestre I, Mangeat T, Albert B, Gadal O, Oliveira CC. New insights into nuclear import and nucleolar localization of yeast RNA exosome subunits. Mol Biol Cell 2025; 36:ar69. [PMID: 40266794 DOI: 10.1091/mbc.e25-02-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The RNA exosome is a multiprotein complex essential for RNA maturation and degradation. In budding yeast, a nine-subunit protein core (Exo9) associated with Rrp44 forms a 10-subunit complex (Exo10) in the cytoplasm and, in complex with Rrp6, Exo11 in the nucleus. Depending on its subcellular localization, the exosome interacts with different cofactors and RNA substrates. In the cytoplasm, Exo10 associates with the SKI complex via Ski7, while in the nucleus, Exo11 interacts with the TRAMP complex. Within the nucleolus, the exosome participates in rRNA processing, facilitated by Mtr4-dependent adaptors Utp18 and Nop53. In this article, we have performed a comprehensive study that addresses the targeting mechanism and precise subcellular localization of all members of the Exo11 complex. We observed a high concentration of all Exo11 subunits in the nucleolus and identified the importins Srp1 (α) and Kap95 (β) as responsible for the nuclear import of Exo9 subunits. Notably, Exo9 subunits localization was not significantly disrupted in the simultaneous absence of NLS-containing subunits Rrp6 and Rrp44, suggesting redundant nuclear import pathways for Exo9. Additionally, we show evidence that Ski7 may play a role in the Exo9 retention in the cytoplasm. To explore the exosome subnucleolar localization, we compared Rrp43 with nuclear exosome cofactors and show that it is enriched in the same nucleolar region as Mtr4 and Nop53. In conclusion, our findings provide a detailed characterization of Exo11 distribution, highlight the primary nuclear import mechanisms for Exo9, and reveal the specific localization of the exosome within the granular component of the yeast nucleolus, suggesting a spatial regulation of the RNA-processing pathway.
Collapse
Affiliation(s)
- Valdir Gomes Neto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Leidy Paola P Cepeda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Bruno R S Queiroz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Sylvain Cantaloube
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | | | - Thomas Mangeat
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Benjamin Albert
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Olivier Gadal
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Skamagki M, Zhang C, Hacisuleyman E, Galleti G, Wu C, Vinagolu RK, Cha H, Ata D, Kim J, Weiskittel T, Diop M, Aung T, Del Latto M, Kim AS, Li Z, Miele M, Zhao R, Tang LH, Hendrickson RC, Romesser PB, Smith JJ, Giannakakou P, Darnell RB, Bott MJ, Li H, Kim K. Aging-dependent dysregulation of EXOSC2 is maintained in cancer as a dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647279. [PMID: 40236131 PMCID: PMC11996493 DOI: 10.1101/2025.04.04.647279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Reprogramming of aged donor tissue cells into induced pluripotent stem cells (A-iPSC) preserved the epigenetic memory of aged-donor tissue, defined as genomic instability and poor tissue differentiation in our previous study. The unbalanced expression of RNA exosome subunits affects the RNA degradation complex function and is associated with geriatric diseases including premature aging and cancer progression. We hypothesized that the age-dependent progressive subtle dysregulation of EXOSC2 (exosome component 2) causes the aging traits (abnormal cell cycle and poor tissue differentiation). We used embryonic stem cells as a tool to study EXOSC2 function as the aging trait epigenetic memory determined in A-iPSC because these aging traits could not be studied in senesced aged cells or immortalized cancer cells. We found that the regulatory subunit of PP2A phosphatase, PPP2R5E, is a key target of EXOSC2 and this regulation is preserved in stem cells and cancer.
Collapse
|
3
|
Contreras X, Depierre D, Akkawi C, Srbic M, Helsmoortel M, Nogaret M, LeHars M, Salifou K, Heurteau A, Cuvier O, Kiernan R. PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs. Nat Commun 2023; 14:6745. [PMID: 37875486 PMCID: PMC10598014 DOI: 10.1038/s41467-023-42620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Pervasive transcription of the human genome generates an abundance of RNAs that must be processed and degraded. The nuclear RNA exosome is the main RNA degradation machinery in the nucleus. However, nuclear exosome must be recruited to its substrates by targeting complexes, such as NEXT or PAXT. By proteomic analysis, we identify additional subunits of PAXT, including many orthologs of MTREC found in S. pombe. In particular, we show that polyA polymerase gamma (PAPγ) associates with PAXT. Genome-wide mapping of the binding sites of ZFC3H1, RBM27 and PAPγ shows that PAXT is recruited to the TSS of hundreds of genes. Loss of ZFC3H1 abolishes recruitment of PAXT subunits including PAPγ to TSSs and concomitantly increases the abundance of PROMPTs at the same sites. Moreover, PAPγ, as well as MTR4 and ZFC3H1, is implicated in the polyadenylation of PROMPTs. Our results thus provide key insights into the direct targeting of PROMPT ncRNAs by PAXT at their genomic sites.
Collapse
Affiliation(s)
- Xavier Contreras
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - David Depierre
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Charbel Akkawi
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Marina Srbic
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Marion Helsmoortel
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Maguelone Nogaret
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Matthieu LeHars
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Kader Salifou
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France
| | - Alexandre Heurteau
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Olivier Cuvier
- Center of Integrative Biology (CBI-CNRS), Molecular, Cellular and Developmental Biology (MCD Unit), University of Toulouse, 31000, Toulouse, France
| | - Rosemary Kiernan
- CNRS-UMR 9002, Institute of Human Genetics (IGH)/University of Montpellier, Gene Regulation Lab, 34396, Montpellier, France.
| |
Collapse
|
4
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front Mol Biosci 2022; 9:837901. [PMID: 35495635 PMCID: PMC9047894 DOI: 10.3389/fmolb.2022.837901] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.
Collapse
|
7
|
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep 2021; 11:13084. [PMID: 34158536 PMCID: PMC8219831 DOI: 10.1038/s41598-021-91086-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Collapse
Affiliation(s)
| | | | - Kathy H Li
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Chan Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Rahul Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Alma Burlingame
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
9
|
Sun X, Kawata K, Miki A, Wada Y, Nagahama M, Takaya A, Akimitsu N. Exploration of Salmonella effector mutant strains on MTR4 and RRP6 degradation. Biosci Trends 2020; 14:255-262. [PMID: 32350160 DOI: 10.5582/bst.2020.03085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Typhimurium (Salmonella), a pathogenic bacterium, is a major cause of foodborne diseases worldwide. Salmonella injects multiple virulence factors, called effectors, into cells and causes multiple rearrangements of cellular biological reactions that are important for Salmonella proliferation and virulence. Previously, we reported that Salmonella infection causes loss of MTR4 and RRP6, which are nuclear RNA degradation factors, resulting in the stabilization and accumulation of unstable nuclear RNAs. This accumulation is important for the cellular defense for Salmonella infection. In this study, we examined a series of Salmonella mutant strains, most of which are strains with genes related to effectors translocated by T3SSs encoded on Salmonella pathogenic islands, SPI-1 and SPI-2, that have been depleted. Among 42 Salmonella mutants, 6 mutants' infections canceled loss of MTR4 and RRP6. Proliferation assay of Salmonella in the cell revealed that six mutants showed poor proliferation in the host cell, demonstrating that poor proliferation contributed to cancellation of MTR4 and RRP6 loss. This result indicates that certain events associated with Salmonella proliferation in host cells cause loss of MTR4 and RRP6.
Collapse
Affiliation(s)
- Xiaoning Sun
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Atsuko Miki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Akiko Takaya
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | |
Collapse
|
10
|
Olinares PDB, Chait BT. Native Mass Spectrometry Analysis of Affinity-Captured Endogenous Yeast RNA Exosome Complexes. Methods Mol Biol 2020; 2062:357-382. [PMID: 31768985 DOI: 10.1007/978-1-4939-9822-7_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Native mass spectrometry (MS) enables direct mass measurement of intact protein assemblies generating relevant subunit composition and stoichiometry information. Combined with cross-linking and structural data, native MS-derived information is crucial for elucidating the architecture of macromolecular assemblies by integrative structural methods. The exosome complex from budding yeast was among the first endogenous protein complexes to be affinity isolated and subsequently characterized by this technique, providing improved understanding of its composition and structure. We present a protocol that couples efficient affinity capture of yeast exosome complexes and sensitive native MS analysis, including rapid affinity isolation of the endogenous exosome complex from cryolysed yeast cells, elution in nondenaturing conditions by protease cleavage, depletion of the protease, buffer exchange, and native MS measurements using an Orbitrap-based instrument (Exactive Plus EMR).
Collapse
Affiliation(s)
- Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| |
Collapse
|
11
|
Leney AC. Subunit pI Can Influence Protein Complex Dissociation Characteristics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1389-1395. [PMID: 31077092 PMCID: PMC6669198 DOI: 10.1007/s13361-019-02198-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
Mass spectrometry is frequently used to determine protein complex topology. By combining in-solution and gas-phase dissociation measurements, information can be indirectly inferred about the original composition of the protein complex. Although the mechanisms behind gas-phase complex dissociation are becoming more established, protein complex dissociation is not always predictable. Here, we looked into the effect of the protein subunits pI on complex dissociation. We chose two structurally similar, hexameric protein complexes that consist of a ring of alternating alpha and beta subunits. For one complex, allophycocyanin, the alpha and beta subunits are structurally similar, almost identical in mass, but have distinct pIs. In contrast, the other complex, phycoerythrin, is structural similar to allophycocyanin, yet the subunits have identical pIs. As predicted based on the structural arrangement, dissociation of phycoerythrin resulted in the observation of both the alpha and beta monomeric subunits in the mass spectrometer. However, for allophycocyanin, the results differed dramatically, with only the alpha monomeric subunit being detected upon gas-phase dissociation. Together, the results highlighted the importance of considering the isoelectric points of individual subunits within a protein complex when using tandem mass spectrometry data to elucidate protein complex topology.
Collapse
Affiliation(s)
- Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Profile of Dame Carol Robinson. Proc Natl Acad Sci U S A 2019; 116:7608-7610. [DOI: 10.1073/pnas.1903862116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 2019; 173:1663-1677.e21. [PMID: 29906447 DOI: 10.1016/j.cell.2018.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.
Collapse
|
14
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
16
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
From molecular chaperones to membrane motors: through the lens of a mass spectrometrist. Biochem Soc Trans 2017; 45:251-260. [PMID: 28202679 PMCID: PMC5310722 DOI: 10.1042/bst20160395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions.
Collapse
|
18
|
Gonzales-Zubiate FA, Okuda EK, Da Cunha JPC, Oliveira CC. Identification of karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in Saccharomyces cerevisiae. J Biol Chem 2017; 292:12267-12284. [PMID: 28539363 DOI: 10.1074/jbc.m116.772376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In Saccharomyces cerevisiae, Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.
Collapse
Affiliation(s)
| | - Ellen K Okuda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000 SP, Brazil
| | - Julia P C Da Cunha
- Cell Cycle Laboratory, Center of Toxins, Immune Response and Cell Signaling-Center for Research on Toxins, Immune-response, and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900 SP, Brazil
| | - Carla Columbano Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000 SP, Brazil.
| |
Collapse
|
19
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
20
|
Domanski M, Upla P, Rice WJ, Molloy KR, Ketaren NE, Stokes DL, Jensen TH, Rout MP, LaCava J. Purification and analysis of endogenous human RNA exosome complexes. RNA (NEW YORK, N.Y.) 2016; 22:1467-1475. [PMID: 27402899 PMCID: PMC4986900 DOI: 10.1261/rna.057760.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources.
Collapse
Affiliation(s)
- Michal Domanski
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - William J Rice
- Simons Electron Microscopy Center at New York Structural Biology Center, New York, New York 10027, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - David L Stokes
- Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
21
|
Chait BT, Cadene M, Olinares PD, Rout MP, Shi Y. Revealing Higher Order Protein Structure Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:952-65. [PMID: 27080007 PMCID: PMC5125627 DOI: 10.1007/s13361-016-1385-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 05/24/2023]
Abstract
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA.
| | - Martine Cadene
- CBM, CNRS UPR4301, Rue Charles Sadron, CS 80054, 45071, Orleans Cedex 2, France
| | - Paul Dominic Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
22
|
Olinares PDB, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT. A Robust Workflow for Native Mass Spectrometric Analysis of Affinity-Isolated Endogenous Protein Assemblies. Anal Chem 2016; 88:2799-807. [PMID: 26849307 PMCID: PMC4790104 DOI: 10.1021/acs.analchem.5b04477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The central players in most cellular events are assemblies of macromolecules. Structural and functional characterization of these assemblies requires knowledge of their subunit stoichiometry and intersubunit connectivity. One of the most direct means for acquiring such information is so-called "native mass spectrometry (MS)", wherein the masses of the intact assemblies and parts thereof are accurately determined. It is of particular interest to apply native MS to the study of endogenous protein assemblies-i.e., those wherein the component proteins are expressed at endogenous levels in their natural functional states, rather than the overexpressed (sometimes partial) constructs commonly employed in classical structural studies, whose assembly can introduce stoichiometry artifacts and other unwanted effects. To date, the application of native MS to the elucidation of endogenous protein complexes has been limited by the difficulty in obtaining pristine cell-derived assemblies at sufficiently high concentrations for effective analysis. Here, to address this challenge, we present a robust workflow that couples rapid and efficient affinity isolation of endogenous protein complexes with a sensitive native MS readout. The resulting workflow has the potential to provide a wealth of data on the stoichiometry and intersubunit connectivity of endogenous protein assemblies-information that is key to successful integrative structural elucidation of biological systems.
Collapse
Affiliation(s)
- Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Amelia D. Dunn
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Júlio C. Padovan
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | | | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
23
|
Abstract
"Native" mass spectrometry has become a valuable tool for structural biology. In this issue of Chemistry & Biology, Quintyn et al. (2015) show that modified instruments capable of surface-induced dissociation allow dissection of protein complexes in a way that is reminiscent of their native topology and architecture.
Collapse
|
24
|
Bornschein RE, Niu S, Eschweiler J, Ruotolo BT. Ion Mobility-Mass Spectrometry Reveals Highly-Compact Intermediates in the Collision Induced Dissociation of Charge-Reduced Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:41-49. [PMID: 26323618 DOI: 10.1007/s13361-015-1250-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
Protocols that aim to construct complete models of multiprotein complexes based on ion mobility and mass spectrometry data are becoming an important element of integrative structural biology efforts. However, the usefulness of such data is predicated, in part, on an ability to measure individual subunits removed from the complex while maintaining a compact/folded state. Gas-phase dissociation of intact complexes using collision induced dissociation is a potentially promising pathway for acquiring such protein monomer size information, but most product ions produced are possessed of high charge states and elongated/string-like conformations that are not useful in protein complex modeling. It has previously been demonstrated that the collision induced dissociation of charge-reduced protein complexes can produce compact subunit product ions; however, their formation mechanism is not well understood. Here, we present new experimental evidence for the avidin (64 kDa) and aldolase (157 kDa) tetramers that demonstrates significant complex remodeling during the dissociation of charge-reduced assemblies. Detailed analysis and modeling indicates that highly compact intermediates are accessed during the dissociation process by both complexes. Here, we present putative pathways that describe the formation of such ions, as well as discuss the broader significance of such data for structural biology applications moving forward.
Collapse
Affiliation(s)
| | - Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Eschweiler
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
26
|
Song Y, Nelp M, Bandarian V, Wysocki VH. Refining the Structural Model of a Heterohexameric Protein Complex: Surface Induced Dissociation and Ion Mobility Provide Key Connectivity and Topology Information. ACS CENTRAL SCIENCE 2015; 1:477-487. [PMID: 26744735 PMCID: PMC4690985 DOI: 10.1021/acscentsci.5b00251] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Toyocamycin nitrile hydratase (TNH) is a protein hexamer that catalyzes the hydration of toyocamycin to produce sangivamycin. The structure of hexameric TNH and the arrangement of subunits within the complex, however, have not been solved by NMR or X-ray crystallography. Native mass spectrometry (MS) clearly shows that TNH is composed of two copies each of the α, β, and γ subunits. Previous surface induced dissociation (SID) tandem mass spectrometry on a quadrupole time-of-flight (QTOF) platform suggests that the TNH hexamer is a dimer composed of two αβγ trimers; furthermore, the results suggest that α-β interact most strongly (Blackwell et al. Anal. Chem. 2011, 83, 2862-2865). Here, multiple complementary MS based approaches and homology modeling have been applied to refine the structure of TNH. Solution-phase organic solvent disruption coupled with native MS agrees with the previous SID results. By coupling surface induced dissociation with ion mobility mass spectrometry (SID/IM), further information on the intersubunit contacts and relative interfacial strengths are obtained. The results show that TNH is a dimer of αβγ trimers, that within the trimer the α, β subunits bind most strongly, and that the primary contact between the two trimers is through a γ-γ interface. Collisional cross sections (CCSs) measured from IM experiments are used as constraints for postulating the arrangement of the subunits represented by coarse-grained spheres. Covalent labeling (surface mapping) together with protein complex homology modeling and docking of trimers to form hexamer are utilized with all the above information to propose the likely quaternary structure of TNH, with chemical cross-linking providing cross-links consistent with the proposed structure. The novel feature of this approach is the use of SID-MS with ion mobility to define complete connectivity and relative interfacial areas of a heterohexameric protein complex, providing much more information than is available from solution disruption. That information, when combined with CCS-guided coarse-grained modeling and covalent labeling restraints for homology modeling and trimer-trimer docking, provides atomic models of a previously uncharacterized heterohexameric protein complex.
Collapse
Affiliation(s)
- Yang Song
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Micah
T. Nelp
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- Address: 260 Biomedical Research
Tower, 460 West 12th Avenue, Columbus, OH 43210, USA. Phone: 614-292-8687. E-mail:
| |
Collapse
|
27
|
Mikhailov VA, Ståhlberg F, Clarke AK, Robinson CV. Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus. J Struct Biol 2015; 192:519-527. [PMID: 26525362 PMCID: PMC4673316 DOI: 10.1016/j.jsb.2015.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022]
Abstract
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. To investigate the proteolytic core of the ClpXP1/P2 protease from the cyanobacterium Synechococcus elongatus we have used a non-denaturing mass spectrometry approach. We show that the proteolytic core is a double ring tetradecamer consisting of an equal number of ClpP1 and ClpP2 subunits with masses of 21.70 and 23.44 kDa, respectively. Two stoichiometries are revealed for the heptameric rings: 4ClpP1 + 3ClpP2 and 3ClpP1 + 4ClpP2. When combined in the double ring the stoichiometries are (4ClpP1 + 3ClpP2) + (3ClpP1 + 4ClpP2) and 2 × (3ClpP1 + 4ClpP2) with a low population of a 2 × (4ClpP1 + 3ClpP2) tetradecamer. The assignment of the stoichiometries is confirmed by collision-induced dissociation of selected charge states of the intact heptamer and tetradecamer. Presence of the heterodimers, heterotetramers and heterohexamers, and absence of the mono-oligomers, in the mass spectra of the partially denatured protease indicates that the ring complex consists of a chain of ClpP1/ClpP2 heterodimers with the ring completed by an additional ClpP1 or ClpP2 subunit.
Collapse
Affiliation(s)
- Victor A Mikhailov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Frida Ståhlberg
- Department of Biological & Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Adrian K Clarke
- Department of Biological & Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
29
|
Lv H, Zhu Y, Qiu Y, Niu L, Teng M, Li X. Structural analysis of Dis3l2, an exosome-independent exonuclease from Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2015; 71:1284-94. [PMID: 26057668 DOI: 10.1107/s1399004715005805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/23/2015] [Indexed: 01/04/2023]
Abstract
After deadenylation and decapping, cytoplasmic mRNA can be digested in two opposite directions: in the 5'-3' direction by Xrn1 or in the 3'-5' direction by the exosome complex. Recently, a novel 3'-5' RNA-decay pathway involving Dis3l2 has been described that differs from degradation by Xrn1 and the exosome. The product of the Schizosaccharomyces pombe gene SPAC2C4.07c was identified as a homologue of human Dis3l2. In this work, the 2.8 Å resolution X-ray crystal structure of S. pombe Dis3l2 (SpDis3l2) is reported, the conformation of which is obviously different from that in the homologous mouse Dis3l2-RNA complex. Fluorescence polarization assay experiments showed that RNB and S1 are the primary RNA-binding domains and that the CSDs (CSD1 and CSD2) play an indispensable role in the RNA-binding process of SpDis3l2. Taking the structure comparison and mutagenic experiments together, it can be inferred that the RNA-recognition pattern of SpDis3l2 resembles that of its mouse homologue rather than that of the Escherichia coli RNase II-RNA complex. Furthermore, a drastic conformation change could occur following the binding of the RNA substrate to SpDis3l2.
Collapse
Affiliation(s)
- Hui Lv
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuwei Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yu Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
30
|
Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Lazzaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M, Neri A, Biffo S, Tonon G. The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res 2015; 43:5182-93. [PMID: 25925570 PMCID: PMC4446438 DOI: 10.1093/nar/gkv387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/12/2015] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma, the second most frequent hematologic tumor after lymphomas, is an incurable cancer. Recent sequencing efforts have identified the ribonuclease DIS3 as one of the most frequently mutated genes in this disease. DIS3 represents the catalytic subunit of the exosome, a macromolecular complex central to the processing, maturation and surveillance of various RNAs. miRNAs are an evolutionarily conserved class of small noncoding RNAs, regulating gene expression at post-transcriptional level. Ribonucleases, including Drosha, Dicer and XRN2, are involved in the processing and stability of miRNAs. However, the role of DIS3 on the regulation of miRNAs remains largely unknown. Here we found that DIS3 regulates the levels of the tumor suppressor let-7 miRNAs without affecting other miRNA families. DIS3 facilitates the maturation of let-7 miRNAs by reducing in the cytoplasm the RNA stability of the pluripotency factor LIN28B, a inhibitor of let-7 processing. DIS3 inactivation, through the increase of LIN28B and the reduction of mature let-7, enhances the translation of let-7 targets such as MYC and RAS leading to enhanced tumorigenesis. Our study establishes that the ribonuclease DIS3, targeting LIN28B, sustains the maturation of let-7 miRNAs and suggests the increased translation of critical oncogenes as one of the biological outcomes of DIS3 inactivation.
Collapse
Affiliation(s)
- Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Malgorzata Agata Chudzik
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Erica Claudia Giuliani
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20132 Milan, Italy
| | - Viviana Volta
- Molecular Histology and Cell Growth Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Science Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanna Musco
- Dulbecco Telethon Institute, S. Raffaele Hospital, 20132 Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20132 Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Hematology1 CTMO, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Science Institute, 20132 Milan, Italy Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15100 Alessandria, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy Università Vita-Salute San Raffaele, Milan, 20132, Italy
| |
Collapse
|
31
|
Agarwal D, Caillouet C, Coudert D, Cazals F. Unveiling Contacts within Macromolecular Assemblies by Solving Minimum Weight Connectivity Inference (MWC) Problems. Mol Cell Proteomics 2015; 14:2274-84. [PMID: 25850436 DOI: 10.1074/mcp.m114.047779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
Consider a set of oligomers listing the subunits involved in subcomplexes of a macromolecular assembly, obtained e.g. using native mass spectrometry or affinity purification. Given these oligomers, connectivity inference (CI) consists of finding the most plausible contacts between these subunits, and minimum connectivity inference (MCI) is the variant consisting of finding a set of contacts of smallest cardinality. MCI problems avoid speculating on the total number of contacts but yield a subset of all contacts and do not allow exploiting a priori information on the likelihood of individual contacts. In this context, we present two novel algorithms, MILP-W and MILP-WB. The former solves the minimum weight connectivity inference (MWCI), an optimization problem whose criterion mixes the number of contacts and their likelihood. The latter uses the former in a bootstrap fashion to improve the sensitivity and the specificity of solution sets.Experiments on three systems (yeast exosome, yeast proteasome lid, human eIF3), for which reference contacts are known (crystal structure, cryo electron microscopy, cross-linking), show that our algorithms predict contacts with high specificity and sensitivity, yielding a very significant improvement over previous work, typically a twofold increase in sensitivity.The software accompanying this paper is made available and should prove of ubiquitous interest whenever connectivity inference from oligomers is faced.
Collapse
Affiliation(s)
- Deepesh Agarwal
- From the ‖Inria Sophia-Antipolis (Algorithms-Biology-Structure), 06902 Sophia Antipolis, France
| | - Christelle Caillouet
- ‡Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France; §Inria Sophia Antipolis (COATI), 06902 Sophia Antipolis, France
| | - David Coudert
- ‡Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France; §Inria Sophia Antipolis (COATI), 06902 Sophia Antipolis, France
| | - Frederic Cazals
- From the ‖Inria Sophia-Antipolis (Algorithms-Biology-Structure), 06902 Sophia Antipolis, France;
| |
Collapse
|
32
|
Mehmood S, Allison TM, Robinson CV. Mass Spectrometry of Protein Complexes: From Origins to Applications. Annu Rev Phys Chem 2015; 66:453-74. [DOI: 10.1146/annurev-physchem-040214-121732] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Timothy M. Allison
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
33
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
34
|
Wohlgemuth I, Lenz C, Urlaub H. Studying macromolecular complex stoichiometries by peptide-based mass spectrometry. Proteomics 2015; 15:862-79. [PMID: 25546807 PMCID: PMC5024058 DOI: 10.1002/pmic.201400466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Abstract
A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide‐based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide‐based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
35
|
Clarke DJ, Campopiano DJ. Desalting large protein complexes during native electrospray mass spectrometry by addition of amino acids to the working solution. Analyst 2015; 140:2679-86. [DOI: 10.1039/c4an02334j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple method for mitigating the adverse effects of salt adduction during native protein mass spectrometry by addition of amino-acids.
Collapse
Affiliation(s)
- David J. Clarke
- School of Chemistry
- University of Edinburgh
- Joseph Black Building
- Edinburgh
- UK
| | | |
Collapse
|
36
|
Bornschein RE, Ruotolo BT. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits. Analyst 2015; 140:7020-9. [DOI: 10.1039/c5an01242b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein.
Collapse
|
37
|
Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to Interchain Cysteine-Linked ADC Characterization by Mass Spectrometry. Mol Pharm 2014; 12:1774-83. [PMID: 25474122 DOI: 10.1021/mp500614p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Therapeutic antibody-drug conjugates (ADCs) harness the cell-killing potential of cytotoxic agents and the tumor targeting specificity of monoclonal antibodies to selectively kill tumor cells. Recent years have witnessed the development of several promising modalities that follow the same basic principles of ADC based therapies but which employ unique cytotoxic agents and conjugation strategies in order to realize therapeutic benefit. The complexity and heterogeneity of ADCs present a challenge to some of the conventional analytical methods that industry has relied upon for biologics characterization. This current review will highlight some of the more recent methodological approaches in mass spectrometry that have bridged the gap that is created when conventional analytical techniques provide an incomplete picture of ADC product quality. Specifically, we will discuss mass spectrometric approaches that preserve and/or capture information about the native structure of ADCs and provide unique insights into the higher order structure (HOS) of these therapeutic molecules.
Collapse
Affiliation(s)
| | - Shawna M Hengel
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Lucy Y Pan
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
38
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
39
|
Lourenço RF, Leme AFP, Oliveira CC. Proteomic Analysis of Yeast Mutant RNA Exosome Complexes. J Proteome Res 2013; 12:5912-22. [DOI: 10.1021/pr400972x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rogério F. Lourenço
- Department
of Biochemistry, Chemistry Institute, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Adriana F. P. Leme
- Mass
Spectrometry Laboratory, Brazilian Biosciences National Laboratory- CNPEM, R. Giuseppe Máximo Scolfaro 10000, 13083-970 Campinas, Brazil
| | - Carla C. Oliveira
- Department
of Biochemistry, Chemistry Institute, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
40
|
Zhong Y, Feng J, Ruotolo BT. Robotically assisted titration coupled to ion mobility-mass spectrometry reveals the interface structures and analysis parameters critical for multiprotein topology mapping. Anal Chem 2013; 85:11360-8. [PMID: 24164205 DOI: 10.1021/ac402276k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiprotein complexes have three-dimensional shapes and dynamic functions that impact almost every aspect of biochemistry. Despite this, our ability to rapidly assess the structures of such macromolecules lags significantly behind high-throughput efforts to identify their function, especially in the context of human disease. Here, we describe results obtained by coupling ion mobility-mass spectrometry with automated robotic sampling of different solvent compositions. This combination of technologies has allowed us to explore an extensive set of solution conditions for a group of eight protein homotetramers, representing a broad sample of protein structure and stability space. We find that altering solution ionic strength in concert with dimethylsulfoxide content is sufficient to disrupt the protein-protein interfaces of all of the complexes studied here. Ion mobility measurements captured for both intact assemblies and subcomplexes match expected values from available X-ray structures in all cases save two. For these exceptions, we find that distorted subcomplexes result from extreme disruption conditions, and are accompanied by small shifts in intact tetramers size, thus enabling the removal of distorted subcomplex data in downstream models. Furthermore, we find strong correlations between the relative intensities of disrupted protein tetramers and the relative number and type of interactions present at interfaces as a function of disrupting agent added. In most cases, this correlation appears strong enough to quantify various types of protein interfacial interactions within unknown proteins following appropriate calibration.
Collapse
Affiliation(s)
- Yueyang Zhong
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
41
|
Morris MR, Astuti D, Maher ER. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:106-13. [PMID: 23613427 DOI: 10.1002/ajmg.c.31358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perlman syndrome is a rare autosomal recessively inherited congenital overgrowth syndrome characterized by polyhydramnios, macrosomia, characteristic facial dysmorphology, renal dysplasia and nephroblastomatosis and multiple congenital anomalies. Perlman syndrome is associated with high neonatal mortality and, survivors have developmental delay and a high risk of Wilms tumor. Recently a Perlman syndrome locus was mapped to chromosome 2q37 and homozygous or compound heterozygous mutations were characterized in DIS3L2. The DIS3L2 gene product has ribonuclease activity and homology to the DIS3 component of the RNA exosome. It has been postulated that the clinical features of Perlman syndrome result from disordered RNA metabolism and, though the precise targets of DIS3L2 have yet to be characterized, in cellular models DIS3L2 knockdown is associated with abnormalities of cell growth and division.
Collapse
|
42
|
Mass spectrometry coupled experiments and protein structure modeling methods. Int J Mol Sci 2013; 14:20635-57. [PMID: 24132151 PMCID: PMC3821635 DOI: 10.3390/ijms141020635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.
Collapse
|
43
|
Hall Z, Hernández H, Marsh J, Teichmann S, Robinson C. The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 2013; 21:1325-37. [PMID: 23850452 PMCID: PMC3737473 DOI: 10.1016/j.str.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/16/2013] [Accepted: 06/05/2013] [Indexed: 01/07/2023]
Abstract
Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution.
Collapse
Affiliation(s)
- Zoe Hall
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Helena Hernández
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Joseph A. Marsh
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah A. Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
44
|
Williams DM, Pukala TL. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. MASS SPECTROMETRY REVIEWS 2013; 32:169-187. [PMID: 23345084 DOI: 10.1002/mas.21358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Amyloid disorders incorporate a wide range of human diseases arising from the failure of a specific peptide or protein to adopt, or remain in, its native functional conformational state. These pathological conditions, such as Parkinson's disease, Alzheimer's disease and Huntington's disease are highly debilitating, exact enormous costs on both individuals and society, and are predicted to increase in prevalence. Consequently, they form the focus of a topical and rich area of current scientific research. A major goal in attempts to understand and treat protein misfolding diseases is to define the structures and interactions of protein species intermediate between fully folded and aggregated, and extract a description of the aggregation process. This has proven a difficult task due to the inability of traditional structural biology approaches to analyze structurally heterogeneous systems. Continued developments in instrumentation and analytical approaches have seen ion mobility-mass spectrometry (IM-MS) emerge as a complementary approach for protein structure determination, and in some cases, a structural biology tool in its own right. IM-MS is well suited to the study of protein misfolding, and has already yielded significant structural information for selected amyloidogenic systems during the aggregation process. This review describes IM-MS for protein structure investigation, and provides a summary of current research highlighting how this methodology has unequivocally and unprecedentedly provided structural and mechanistic detail pertaining to the oligomerization of a variety of disease related proteins.
Collapse
Affiliation(s)
- Danielle M Williams
- School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
45
|
Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. J Mol Biol 2013; 425:4790-801. [PMID: 23583780 DOI: 10.1016/j.jmb.2013.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 01/26/2023]
Abstract
DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance.
Collapse
|
46
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
47
|
Han L, Ruotolo BT. Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives. ACTA ACUST UNITED AC 2013; 16:41-50. [PMID: 23539363 DOI: 10.1007/s12127-013-0121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility-mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.
Collapse
Affiliation(s)
- Linjie Han
- University of Michigan, Department of Chemistry, 930 N. University Ave., Ann Arbor, MI, 48108
| | | |
Collapse
|
48
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
49
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 2013. [PMID: 23193082 DOI: 10.1002/pmic.201200328] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | | | |
Collapse
|
50
|
Yang M, Zhang B, Jia J, Yan C, Habaike A, Han Y. RRP41L, a putative core subunit of the exosome, plays an important role in seed germination and early seedling growth in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:165-78. [PMID: 23132787 PMCID: PMC3532249 DOI: 10.1104/pp.112.206706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/01/2012] [Indexed: 05/18/2023]
Abstract
In prokaryotic and eukaryotic cells, the 3'-5'-exonucleolytic decay and processing of RNAs are essential for RNA metabolism. However, the understanding of the mechanism of 3'-5'-exonucleolytic decay in plants is very limited. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional mutant that shows severe growth defects in early seedling growth, including delayed germination and cotyledon expansion, thinner yellow/pale-green leaves, and a slower growth rate. High-efficiency thermal asymmetric interlaced polymerase chain reaction analysis showed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3'-5'-exonuclease, that contained a conserved RNase phosphorolytic domain with high similarity to RRP41, designated RRP41L. Interestingly, we detected highly accumulated messenger RNAs (mRNAs) that encode seed storage protein and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in rrp41l mutants. The mRNA decay kinetics analysis for seed storage proteins, 9-cis-epoxycarotenoid dioxygenases, and ABA INSENSITIVEs revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive to ABA in germination and root growth than wild-type plants, whereas overexpression lines of RRP41L were more resistant to ABA in germination and root growth than wild-type plants. RRP41L was localized to both the cytoplasm and nucleus, and RRP41L was preferentially expressed in seedlings. Altogether, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.
Collapse
|