1
|
Xie Y, Feng NX, Huang L, Wu M, Li CX, Zhang F, Huang Y, Cai QY, Xiang L, Li YW, Zhao HM, Mo CH. Improving key gene expression and di-n-butyl phthalate (DBP) degrading ability in a novel Pseudochrobactrum sp. XF203 by ribosome engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174207. [PMID: 38914327 DOI: 10.1016/j.scitotenv.2024.174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.
Collapse
Affiliation(s)
- Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miaoer Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Cheng-Xuan Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
3
|
Combinatorial strategy towards the efficient expression of lipoxygenase in Escherichia coli at elevated temperatures. Appl Microbiol Biotechnol 2020; 104:10047-10057. [PMID: 33037915 DOI: 10.1007/s00253-020-10941-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) are a family of non-heme iron oxidoreductases, which catalyze the addition of oxygen into polyunsaturated fatty acids. They have applications in the food and medical industries. In most studies, the soluble expression of LOXs in microbes requires low temperature (< 20 °C), which increases the cost and fermentation time. Achievement of soluble expression in elevated temperatures (> 30 °C) would shorten the production phase, leading to cost-efficient industrial applications. In this study, a combinatorial strategy was used to enhance the expression of soluble LOXs, comprising plasmid stability systems plus optimized carbon source used for auto-induction expression. Plasmid stability analysis suggested that both active partition systems and plasmid-dependent systems were essential for plasmid stability. Among them, the parBCA in it resulted in the enzyme activity increasing by a factor of 2 (498 ± 13 units per gram dry cell weight (U/g-DCW) after 6-h induction). Furthermore, the optimized carbon source, composed of glucose, lactose, and glycerol, could be used as an auto-induction expression medium and effectively improve the total and soluble expression of LOX, which resulted in the soluble expression of LOX increased by 7 times. Finally, the soluble expression of LOX was 11 times higher with a combinatorial strategy that included both optimized plasmid partition and auto-induction medium. Our work provides a broad, generalizable, and combinatorial strategy for the efficient production of heterologous proteins at elevated temperatures in the E. coli system. KEY POINTS : • Soluble expression of lipoxygenase at 30 °C or higher temperatures is industrially beneficial. • Strategies comprise plasmid partition and optimized auto-induction medium with glucose, lactose, and glycerol as carbon source. • Combinatorial strategy further improved LOX soluble expression at 30 °C and 37 °C.
Collapse
|
4
|
Turnbull A, Bermejo-Rodríguez C, Preston MA, Garrido-Barros M, Pimentel B, de la Cueva-Méndez G. Targeted Cancer Cell Killing by Highly Selective miRNA-Triggered Activation of a Prokaryotic Toxin-Antitoxin System. ACS Synth Biol 2019; 8:1730-1736. [PMID: 31348648 DOI: 10.1021/acssynbio.9b00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although not evolved to function in eukaryotes, prokaryotic toxin Kid induces apoptosis in human cells, and this is avoided by coexpression of its neutralizing antitoxin, Kis. Inspired by the way Kid becomes active in bacterial cells we had previously engineered a synthetic toxin-antitoxin system bearing a Kis protein variant that is selectively degraded in cells expressing viral oncoprotein E6, thus achieving highly selective killing of cancer cells transformed by human papillomavirus. Here we aimed to broaden the type of oncogenic insults, and therefore of cancer cells, that can be targeted using this approach. We show that appropriate linkage of the kis gene to a single, fully complementary, target site for an oncogenic human microRNA enables the construction of a synthetic toxin-antitoxin pair that selectively kills cancer cells overexpressing that particular microRNA. Importantly, the resulting system spares nontargeted cells from collateral damage, even when they overexpress highly homologous, though nontargeted, microRNAs.
Collapse
Affiliation(s)
- Alice Turnbull
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | | | - Mark A. Preston
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - María Garrido-Barros
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| | - Belén Pimentel
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| | - Guillermo de la Cueva-Méndez
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| |
Collapse
|
5
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
6
|
Jones CE, Maddox A, Hurley D, Barkovskii AL. Persistence of bacterial pathogens, antibiotic resistance genes, and enterococci in tidal creek tributaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:875-883. [PMID: 29787978 DOI: 10.1016/j.envpol.2018.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Intertidal creeks form the primary hydrologic link between estuaries and land-based activities on barrier islands. Fecal indicators Enterococcus spp. (Entero1), pathogens Shigella spp. (ipaH), Salmonella spp. (invA), E. coli of EHEC/EPEC groups (eaeA), E. coli of EAEC, EIEC, and UPEC groups (set1B), E. coli of STEC group (stx1); and tetracycline resistance genes (tet(B), tet(C), tet(D), tet(E), tet(K), tet(Q), tet(W), and tet(X); TRG) were detected in the headwater of Oakdale Creek (Sapelo Island, GA) receiving runoffs from Hog Hammock village. Excavation of drainage ditches around the village caused a high increase in the incidence of the above determinants. Water samples were collected from the headwater, transferred to diffusion chambers, submersed in the headwater, saltmarsh, and mouth of the creek; and the determinants were monitored for 3 winter months. With some exceptions, their persistence decreased in order headwater > saltmarsh > mouth. Genes associated with Enterococcus spp. were the most persistent at all the sites, following in the headwater with determinants for Salmonella spp. and E. coli of EAEC, EIEC, and UPEC groups. In the mouth, the most persistent gene was eaeA indicating EHEC, EPEC, and STEC. Tet(B) and tet(C) persisted the longest in headwater and saltmarsh. No TRG persisted after 11 days in the mouth. Most determinants revealed correlations with temperature and pH, and inverse correlations with dissolved oxygen. Decay rates of the above determinants varied in the range of -0.02 to -0.81/day, and were up to 40 folds higher in the saltmarsh and mouth than in the headwater. Our data demonstrated that water parameters could to some extent predict a general trend in the fate of virulence and antibiotic resistance determinants in tidal creek tributaries but strongly suggested that their persistence in these tributaries cannot be predicted from that of enterococci, or extrapolated from one biological contaminant to another.
Collapse
Affiliation(s)
- Chance E Jones
- Department of Biological and Environmental Sciences, Georgia College & State University, 221 North Wilkinson St., PO Box 081, Milledgeville, GA 31061, USA.
| | - Anthony Maddox
- Department of Biological and Environmental Sciences, Georgia College & State University, 221 North Wilkinson St., PO Box 081, Milledgeville, GA 31061, USA.
| | - Dorset Hurley
- Sapelo Island National Estuarine Research Reserve, P.O. Box 15, Sapelo Island, GA 31327, USA.
| | - Andrei L Barkovskii
- Department of Biological and Environmental Sciences, Georgia College & State University, 221 North Wilkinson St., PO Box 081, Milledgeville, GA 31061, USA.
| |
Collapse
|
7
|
Li YJ, Liu Y, Zhang Z, Chen XJ, Gong Y, Li YZ. A Post-segregational Killing Mechanism for Maintaining Plasmid PMF1 in Its Myxococcus fulvus Host. Front Cell Infect Microbiol 2018; 8:274. [PMID: 30131946 PMCID: PMC6091211 DOI: 10.3389/fcimb.2018.00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023] Open
Abstract
Although plasmids provide additional functions for cellular adaptation to the environment, they also create a metabolic burden, which causes the host cells to be less competitive with their siblings. Low-copy-number plasmids have thus evolved several mechanisms for their long-term maintenance in host cells. pMF1, discovered in Myxococcus fulvus 124B02, is the only endogenous autonomously replicated plasmid yet found in myxobacteria. Here we report that a post-segregational killing system, encoded by a co-transcriptional gene pair of pMF1.19 and pMF1.20, is involved in maintaining the pMF1 plasmid in its host cells. We demonstrate that the protein encoded by pMF1.20 is a new kind of nuclease, which is able to cleave DNA in vitro. The nuclease activity can be neutralized by the protein encoded by pMF1.19 through protein–protein interaction, suggesting that the protein is an immune protein for nuclease cleavage. We propose that the post-segregational killing mechanism of the nuclease toxin and immune protein pair encoded by pMF1.20 and pMF1.19 is helpful for the stable maintenance of pMF1 in M. fulvus cells.
Collapse
Affiliation(s)
- Ya-Jie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
9
|
Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. ACTA ACUST UNITED AC 2018; 45:357-367. [DOI: 10.1007/s10295-018-2020-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroGfbr). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.
Collapse
|
10
|
Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C, Zhang X. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng 2017; 43:37-45. [PMID: 28800965 DOI: 10.1016/j.ymben.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
One of the most important research subjects of metabolic engineering is the pursuit of balanced metabolic pathways, which requires the modulation of expression of many genes. However, simultaneously modulating multiple genes on the chromosome remains challenging in prokaryotic organisms, including the industrial workhorse - Escherichia coli. In this work, the CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique was developed to simultaneously modulate the expression of multiple genes on the chromosome. To implement it, two plasmids were employed to target Cas9 to regulatory sequences of pathway genes, and a donor DNA plasmid library was constructed containing a regulator pool to modulate the expression of these genes. A modularized plasmid construction strategy was used to enable the assembly of a complex donor DNA plasmid library. After genome editing using this technique, a combinatorial library was obtained with variably expressed pathway genes. As a demonstration, the CFPO technique was applied to the xylose metabolic pathway genes in E. coli to improve xylose utilization. Three transcriptional units containing a total of four genes were modulated simultaneously with 70% efficiency, and improved strains were selected from the resulting combinatorial library by growth enrichment. The best strain, HQ304, displayed a 3-fold increase of the xylose-utilization rate. Finally, the xylose-utilization pathway of HQ304 was analyzed enzymologically to determine the optimal combination of enzyme activities.
Collapse
Affiliation(s)
- Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Huanna Qiu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| |
Collapse
|
11
|
Cox KEL, Schildbach JF. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 2017; 91:53-60. [PMID: 28359666 DOI: 10.1016/j.plasmid.2017.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/26/2017] [Indexed: 12/29/2022]
Abstract
The R1 antibiotic resistance plasmid, originally discovered in a clinical Salmonella isolate in London, 1963, has served for decades as a key model for understanding conjugative plasmids. Despite its scientific importance, a complete sequence of this plasmid has never been reported. We present the complete genome sequence of R1 along with a brief review of the current knowledge concerning its various genetic systems and a comparison to the F and R100 plasmids. R1 is 97,566 nucleotides long and contains 120 genes. The plasmid consists of a backbone largely similar to that of F and R100, a Tn21-like transposon that is nearly identical to that of R100, and a unique 9-kb sequence that bears some resemblance to sequences found in certain Klebsiella oxytoca strains. These three regions of R1 are separated by copies of the insertion sequence IS1. Overall, the structure of R1 and comparison to F and R100 suggest a fairly stable shared conjugative plasmid backbone into which a variety of mobile elements have inserted to form an "accessory" genome, containing multiple antibiotic resistance genes, transposons, remnants of phage genes, and genes whose functions remain unknown.
Collapse
Affiliation(s)
- Katherine E L Cox
- Department of Biology, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.
| | - Joel F Schildbach
- Department of Biology, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Wang J, Niyompanich S, Tai YS, Wang J, Bai W, Mahida P, Gao T, Zhang K. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration. Appl Environ Microbiol 2016; 82:7176-7184. [PMID: 27736790 PMCID: PMC5118928 DOI: 10.1128/aem.02178-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023] Open
Abstract
Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and subsequent optimization strategies ensure stable and efficient (i.e., high-titer, high-yield, and high-productivity) production of mevalonate, which demonstrates the potential for scale-up fermentation. Among the optimization strategies, we demonstrated that enhancement of the glycolytic flux significantly improved the productivity. This result provides an example of how to tune the carbon flux for the optimal production of exogenous chemicals.
Collapse
Affiliation(s)
- Jilong Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suthamat Niyompanich
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Yi-Shu Tai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jingyu Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wenqin Bai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Prithviraj Mahida
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tuo Gao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kechun Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Preston MA, Pimentel B, Bermejo-Rodríguez C, Dionne I, Turnbull A, de la Cueva-Méndez G. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells. ACS Synth Biol 2016; 5:540-6. [PMID: 26230535 DOI: 10.1021/acssynbio.5b00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.
Collapse
Affiliation(s)
- Mark A. Preston
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Belén Pimentel
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | | | - Isabelle Dionne
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Alice Turnbull
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Guillermo de la Cueva-Méndez
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Parque Tecnológico de Andalucı́a, C/Severo Ochoa 35, 29590 Campanillas, Málaga, Spain
| |
Collapse
|
14
|
Song N, Xu J, Li Z, Hernalsteens JP. Curing a large endogenous plasmid by single substitution of a partitioning gene. Plasmid 2015; 82:10-6. [PMID: 26123974 DOI: 10.1016/j.plasmid.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022]
Abstract
To investigate whether plasmid-free cells of pathogenic Escherichia coli can be isolated by disrupting a single gene in an endogenous plasmid without further treatment, the effect of the disruption of partitioning genes on the inheritance of the endogenous plasmid pUTI89 of the uropathogenic E. coli strain UTI89 was studied. We found that mutation of parB, which encodes a type Ib partitioning protein, could cause loss of the endogenous plasmid at a ratio of about 1%. Clones derived from parB mutants, identified by antibiotic sensitivity, were all plasmid free. Plasmid instability caused by the parB mutation was found to correlate with a negative effect on host cell growth. Thus, in this pathogenic E. coli, an endogenous plasmid as large as 114 kbp could be cured effectively by targeting a single type Ib partitioning gene followed by passaging, which may facilitate further investigations on the function of endogenous plasmids in their natural hosts.
Collapse
Affiliation(s)
- Ningning Song
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Microbiology Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, 200127 Shanghai, China
| | - Zhaoli Li
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Jean-Pierre Hernalsteens
- Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
15
|
Wright O, Delmans M, Stan GB, Ellis T. GeneGuard: A modular plasmid system designed for biosafety. ACS Synth Biol 2015; 4:307-16. [PMID: 24847673 DOI: 10.1021/sb500234s] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors.
Collapse
Affiliation(s)
- Oliver Wright
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mihails Delmans
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy-Bart Stan
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tom Ellis
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Abstract
ABSTRACT
The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include
inter alia
origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties.
Collapse
|
17
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
18
|
Rahube TO, Viana LS, Koraimann G, Yost CK. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front Microbiol 2014; 5:558. [PMID: 25389419 PMCID: PMC4211555 DOI: 10.3389/fmicb.2014.00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.
Collapse
Affiliation(s)
- Teddie O Rahube
- Department of Biology, University of Regina Regina, SK, Canada ; Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology Palapye, Botswana
| | - Laia S Viana
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | | |
Collapse
|
19
|
Bajaj P, Aggarwal G, Tripathy RK, Pande AH. Interplay between amino acid residues at positions 192 and 115 in modulating hydrolytic activities of human paraoxonase 1. Biochimie 2014; 105:202-10. [DOI: 10.1016/j.biochi.2014.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
|
20
|
Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells. Proc Natl Acad Sci U S A 2014; 111:2734-9. [PMID: 24449860 DOI: 10.1073/pnas.1308241111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.
Collapse
|
21
|
Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 2013; 16:1-10. [DOI: 10.1016/j.ymben.2012.11.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 01/06/2023]
|
22
|
Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 2011; 93:2455-62. [DOI: 10.1007/s00253-011-3752-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/06/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
|
23
|
Viñuelas J, Febvay G, Duport G, Colella S, Fayard JM, Charles H, Rahbé Y, Calevro F. Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum. Mol Microbiol 2011; 81:1271-85. [PMID: 21797941 PMCID: PMC3229713 DOI: 10.1111/j.1365-2958.2011.07760.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions.
Collapse
Affiliation(s)
- José Viñuelas
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INSA-Lyon, INRA, Université de Lyon, Bât. Louis Pasteur, 20 av. Albert Einstein, F-69621 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Carrera J, Rodrigo G, Singh V, Kirov B, Jaramillo A. Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate. Biotechnol J 2011; 6:773-83. [PMID: 21681966 DOI: 10.1002/biot.201100084] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/11/2022]
Abstract
Synthetic biology uses modeling to facilitate the design of new genetic constructions. In particular, it is of utmost importance to model the reaction of the cellular chassis when expressing heterologous systems. We constructed a mathematical model for the response of a bacterial cell chassis under heterologous expression. For this, we relied on previous characterization of the growth-rate dependence on cellular resource availability (in this case, DNA and RNA polymerases and ribosomes). Accordingly, we estimated the maximum capacities of the cell for heterologous expression to be 46% of the total RNA and the 33% of the total protein. To experimentally validate our model, we engineered two genetic constructions that involved the constitutive expression of a fluorescent reporter in a vector with a tunable origin of replication. We performed fluorescent measurements using population and single-cell fluorescent measurements. Our model predicted cell growth for several heterologous constructions under five different culture conditions and various plasmid copy numbers with significant accuracy, and confirmed that ribosomes act as the limiting resource. Our study also confirmed that the bacterial response to synthetic gene expression could be understood in terms of the requirement for cellular resources and could be predicted from relevant cellular parameters.
Collapse
Affiliation(s)
- Javier Carrera
- Synth-Bio Group, Institute of Systems and Synthetic Biology, Universite d'Evry Val d'Essonne-Genopole®, 5 rue Henri Desbruères, Evry Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Nuk MR, Reisner A, Zechner EL. The transfer operon of plasmid R1 extends beyond finO into the downstream replication genes. Plasmid 2011; 65:150-8. [DOI: 10.1016/j.plasmid.2010.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022]
|
26
|
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1:134. [PMID: 21687759 PMCID: PMC3109405 DOI: 10.3389/fmicb.2010.00134] [Citation(s) in RCA: 751] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/17/2010] [Indexed: 12/03/2022] Open
Abstract
This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance, and chemotherapy is also discussed.
Collapse
Affiliation(s)
- Rustam I. Aminov
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| |
Collapse
|
27
|
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010; 2010:761042. [PMID: 20414363 PMCID: PMC2857869 DOI: 10.1155/2010/761042] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.
Collapse
|
28
|
Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275-89. [PMID: 19571247 DOI: 10.1098/rstb.2009.0037] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic 'individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as 'backbone modules' to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of 'accessory elements' that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized 'private genes'.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Section for Evolution and Microbiology, University of Copenhagen, Copenhagen K, Denmark.
| | | | | |
Collapse
|
29
|
Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol 2009; 587:4169-74. [PMID: 19596893 DOI: 10.1113/jphysiol.2009.176370] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotes and prokaryotes have developed mutually beneficial relationships over millennia of evolutionary adaptation. Bacteria in our gut rely on our diet and the protected environment of our bodies just as our health depends on byproducts of microbial metabolism. Microorganisms of the gut microbiota ferment carbohydrates into short-chain fatty acids, convert dietary and endogenous nitrogenous compounds into ammonia and microbial protein, and synthesize and activate B vitamins and vitamin K. The benefit from their activity is multiplex and translates into increased energy for the gut epithelial cells, balanced absorption of salt and water, nitrogen recycling, breakdown of complex lipids and cholesterol, and detoxification of waste compounds.
Collapse
Affiliation(s)
- Silvia C Resta
- Department of Medicine, UCSD, School of Medicine, 9500 Gilman Drive, UC 303, MC0063, La Jolla, CA 92093-0063, USA.
| |
Collapse
|
30
|
Pellegrino FL, Casali N, Nouér SA, Riley LW, Moreira BM. A carbapenem-susceptible Pseudomonas aeruginosa strain carrying the blaSPM gene. Diagn Microbiol Infect Dis 2008; 61:214-6. [DOI: 10.1016/j.diagmicrobio.2008.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 11/27/2022]
|
31
|
Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 2008; 412:1-18. [PMID: 18426389 DOI: 10.1042/bj20080359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally divergent proteins, they actually utilize similar mechanisms of DNA segregation. Thus, in the present review, the known Par protein and Par-protein complex structures are discussed with regard to their functions in DNA segregation in an attempt to begin to define, at a detailed atomic level, the molecular mechanisms involved in plasmid segregation.
Collapse
|
32
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|