1
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bulfone L, Vacca A, Bertin N, Vivarelli C, Comand J, Catena C, Sechi LA. Lipoprotein(a): Just an Innocent Bystander in Arterial Hypertension? Int J Mol Sci 2023; 24:13363. [PMID: 37686169 PMCID: PMC10487946 DOI: 10.3390/ijms241713363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Elevated plasma lipoprotein(a) [Lp(a)] is a relatively common and highly heritable trait conferring individuals time-dependent risk of developing atherosclerotic cardiovascular disease (CVD). Following its first description, Lp(a) triggered enormous scientific interest in the late 1980s, subsequently dampened in the mid-1990s by controversial findings of some prospective studies. It was only in the last decade that a large body of evidence has provided strong arguments for a causal and independent association between elevated Lp(a) levels and CVD, causing renewed interest in this lipoprotein as an emerging risk factor with a likely contribution to cardiovascular residual risk. Accordingly, the 2022 consensus statement of the European Atherosclerosis Society has suggested inclusion of Lp(a) measurement in global risk estimation. The development of highly effective Lp(a)-lowering drugs (e.g., antisense oligonucleotides and small interfering RNA, both blocking LPA gene expression) which are still under assessment in phase 3 trials, will provide a unique opportunity to reduce "residual cardiovascular risk" in high-risk populations, including patients with arterial hypertension. The current evidence in support of a specific role of Lp(a) in hypertension is somehow controversial and this narrative review aims to overview the general mechanisms relating Lp(a) to blood pressure regulation and hypertension-related cardiovascular and renal damage.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
| | - Jacopo Comand
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
2
|
Lippi G, Favaloro EJ, Sanchis-Gomar F. Antisense lipoprotein[a] therapy: State-of-the-art and future perspectives. Eur J Intern Med 2020; 76:8-13. [PMID: 32336611 DOI: 10.1016/j.ejim.2020.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Several lines of evidence now attest that lipoprotein[a] (Lp[a]) is a significant risk factor for many cardiovascular disorders. This enigmatic lipoprotein, composed of a single copy of apolipoprotein B (apoB) and apolipoprotein[a] (apo [a]), expresses peculiar metabolism, virtually independent from lifestyle interventions. Several therapeutic options have hence been proposed for lowering elevated Lp[a] values, with or without concomitant effect on low density lipoprotein (LDL) particles, mostly encompassing statins, ezetimibe, nicotinic acid, lipoprotein apheresis, and anti-PCSK9 monoclonal antibodies. Since all these medical treatments have some technical and clinical drawbacks, a novel strategy is currently being proposed, based on the use of antisense apo[a] and/or apoB inhibitors. Although the role of these agents in hypercholesterolemic patients is now nearby entering clinical practice, the collection of information on Lp[a] is still underway. Preliminary evidence would suggest that apo[a] antisense therapy seems more appropriate in patients with isolated Lp[a] elevations, while apoB antisense therapy is perhaps more advisable in patients with isolated LDL elevations. In patients with concomitant elevations of Lp[a] and LDL, either combining the two apo[a] and apoB antisense therapies (a strategy which has never been tested), or the combination of well-known and relatively inexpensive drugs such as statins with antisense apo[a] inhibitors can be theoretically suggested. The results of an upcoming phase 3 study with antisense apo[a] inhibitors will hopefully provide definitive clues as to whether this approach may become the standard of care in patients with increased Lp[a] concentrations.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Kostner KM, Kostner GM. Lipoprotein (a): a historical appraisal. J Lipid Res 2016; 58:1-14. [PMID: 27821413 DOI: 10.1194/jlr.r071571] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Initially, lipoprotein (a) [Lp(a)] was believed to be a genetic variant of lipoprotein (Lp)-B. Because its lipid moiety is almost identical to LDL, Lp(a) has been deliberately considered to be highly atherogenic. Lp(a) was detected in 1963 by Kare Berg, and individuals who were positive for this factor were called Lpa+ Lpa+ individuals were found more frequently in patients with coronary heart disease than in controls. After the introduction of quantitative methods for monitoring of Lp(a), it became apparent that Lp(a), in fact, is present in all individuals, yet to a greatly variable extent. The genetics of Lp(a) had been a mystery for a long time until Gerd Utermann discovered that apo(a) is expressed by a variety of alleles, giving rise to a unique size heterogeneity. This size heterogeneity, as well as countless mutations, is responsible for the great variability in plasma Lp(a) concentrations. Initially, we proposed to evaluate the risk of myocardial infarction at a cut-off for Lp(a) of 30-50 mg/dl, a value that still is adopted in numerous epidemiological studies. Due to new therapies that lower Lp(a) levels, there is renewed interest and still rising research activity in Lp(a). Despite all these activities, numerous gaps exist in our knowledge, especially as far as the function and metabolism of this fascinating Lp are concerned.
Collapse
Affiliation(s)
- Karam M Kostner
- Department of Cardiology, Mater Hospital and University of Queensland, Brisbane, 4101 Queensland, Australia
| | - Gert M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| |
Collapse
|
4
|
Hoover-Plow J, Huang M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism 2013; 62:479-91. [PMID: 23040268 PMCID: PMC3547132 DOI: 10.1016/j.metabol.2012.07.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 11/20/2022]
Abstract
Lipoprotein(a) [Lp(a)] resembles low-density lipoprotein (LDL), with an LDL lipid core and apolipoprotein B (apoB), but contains a unique apolipoprotein, apo(a). Elevated Lp(a) is an independent risk factor for coronary and peripheral vascular diseases. The size and concentration of plasma Lp(a) are related to the synthetic rate, not the catabolic rate, and are highly variable with small isoforms associated with high concentrations and pathogenic risk. Apo(a) is synthesized in the liver, although assembly of apo(a) and LDL may occur in the hepatocytes or plasma. While the uptake and clearance site of Lp(a) is poorly delineated, the kidney is the site of apo(a) fragment excretion. The structure of apo(a) has high homology to plasminogen, the zymogen for plasmin and the primary clot lysis enzyme. Apo(a) interferes with plasminogen binding to C-terminal lysines of cell surface and extracellular matrix proteins. Lp(a) and apo(a) inhibit fibrinolysis and accumulate in the vascular wall in atherosclerotic lesions. The pathogenic role of Lp(a) is not known. Small isoforms and high concentrations of Lp(a) are found in healthy octogenarians that suggest Lp(a) may also have a physiological role. Studies of Lp(a) function have been limited since it is not found in commonly studied small mammals. An important aspect of Lp(a) metabolism is the modification of circulating Lp(a), which has the potential to alter the functions of Lp(a). There are no therapeutic drugs that selectively target elevated Lp(a), but a number of possible agents are being considered. Recently, new modifiers of apo(a) synthesis have been identified. This review reports the regulation of Lp(a) metabolism and potential sites for therapeutic targets.
Collapse
Affiliation(s)
- Jane Hoover-Plow
- J. J. Jacobs Center for Thrombosis and Vascular Biology, Department of Cardiovascular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44139, USA.
| | | |
Collapse
|
5
|
Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R, Guschin D, Su H, Jovin IS, Kunis M, Hinkley S, Liang Y, Hinh L, Spratt SK, Case CC, Rebar EJ, Ehrlich BE, Ehrlich B, Gregory PD, Giordano FJ. A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol Ther 2012; 20:1508-15. [PMID: 22828502 PMCID: PMC3412484 DOI: 10.1038/mt.2012.80] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Selective inhibition of disease-related proteins underpins the majority of successful drug-target interactions. However, development of effective antagonists is often hampered by targets that are not druggable using conventional approaches. Here, we apply engineered zinc-finger protein transcription factors (ZFP TFs) to the endogenous phospholamban (PLN) gene, which encodes a well validated but recalcitrant drug target in heart failure. We show that potent repression of PLN expression can be achieved with specificity that approaches single-gene regulation. Moreover, ZFP-driven repression of PLN increases calcium reuptake kinetics and improves contractile function of cardiac muscle both in vitro and in an animal model of heart failure. These results support the development of the PLN repressor as therapy for heart failure, and provide evidence that delivery of engineered ZFP TFs to native organs can drive therapeutically relevant levels of gene repression in vivo. Given the adaptability of designed ZFPs for binding diverse DNA sequences and the ubiquity of potential targets (promoter proximal DNA), our findings suggest that engineered ZFP repressors represent a powerful tool for the therapeutic inhibition of disease-related genes, therefore, offering the potential for therapeutic intervention in heart failure and other poorly treated human diseases.
Collapse
|
6
|
Chennamsetty I, Claudel T, Kostner KM, Baghdasaryan A, Kratky D, Levak-Frank S, Frank S, Gonzalez FJ, Trauner M, Kostner GM. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest 2011; 121:3724-34. [PMID: 21804189 DOI: 10.1172/jci45277] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022] Open
Abstract
High plasma concentrations of lipoprotein(a) [Lp(a), which is encoded by the APOA gene] increase an individual's risk of developing diseases, such as coronary artery diseases, restenosis, and stroke. Unfortunately, increased Lp(a) levels are minimally influenced by dietary changes or drug treatment. Further, the development of Lp(a)-specific medications has been hampered by limited knowledge of Lp(a) metabolism. In this study, we identified patients suffering from biliary obstructions with very low plasma Lp(a) concentrations that rise substantially after surgical intervention. Consistent with this, common bile duct ligation in mice transgenic for human APOA (tg-APOA mice) lowered plasma concentrations and hepatic expression of APOA. To test whether farnesoid X receptor (FXR), which is activated by bile acids, was responsible for the low plasma Lp(a) levels in cholestatic patients and mice, we treated tg-APOA and tg-APOA/Fxr-/- mice with cholic acid. FXR activation markedly reduced plasma concentrations and hepatic expression of human APOA in tg-APOA mice but not in tg-APOA/Fxr-/- mice. Incubation of primary hepatocytes from tg-APOA mice with bile acids dose dependently downregulated APOA expression. Further analysis determined that the direct repeat 1 element between nucleotides -826 and -814 of the APOA promoter functioned as a negative FXR response element. This motif is also bound by hepatocyte nuclear factor 4α (HNF4α), which promotes APOA transcription, and FXR was shown to compete with HNF4α for binding to this motif. These findings may have important implications in the development of Lp(a)-lowering medications.
Collapse
Affiliation(s)
- Indumathi Chennamsetty
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Lipoprotein (a) [Lp(a)] appears to be one of the most atherogenic lipoproteins. It consists of a low-density lipoprotein (LDL) core in addition to a covalently bound glycoprotein, apolipoprotein (a) [apo(a)]. Apo(a) exists in numerous polymorphic forms. The size polymorphism is mediated by the variable number of kringle-4 Type-II repeats found in apo(a). Plasma Lp(a) levels are determined to more than 90% by genetic factors. Plasma Lp(a) levels in healthy individuals correlate significantly high with apo(a) biosynthesis and not with its catabolism. There are several hormones known to have a strong impact on Lp(a) metabolism. In certain diseases, such as kidney disease, Lp(a) catabolism is impaired leading to up to fivefold elevations. Lp(a) levels rise with age but are otherwise influenced only little by diet and lifestyle. There is no safe and efficient way of treating individuals with elevated plasma Lp(a) concentrations. Most of the lipid-lowering drugs have either no significant influence on Lp(a) or exhibit a variable effect in patients with different forms of primary and secondary hyperlipoproteinemia. There is without doubt a strong need to concentrate on the development of specific medications to selectively target Lp(a) biosynthesis, Lp(a) assembly and Lp(a) catabolism. So far only anabolic steroids were found to drastically reduce Lp(a) plasma levels. This class of substance cannot, of course, be used for treatment of patients with hyper-Lp(a). We recommend that the mechanism of action of these drugs be studied in more detail and that the possibility of synthesizing derivatives which may have a more specific effect on Lp(a) without having any side effects be pursued. Other strategies that may be of use in the development of drugs for treatment of patients with hyper-Lp(a) are discussed in this review.
Collapse
Affiliation(s)
- K M Kostner
- Research Wing Level 3, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.
| | | |
Collapse
|
8
|
Abstract
Existing approaches to the treatment of refractory hypercholesterolaemia, severe hypertriglyceridaemia, low levels of high-density lipoprotein cholesterol and certain inherited disorders of intracellular lipid metabolism are ineffective in a substantial number of patients. Somatic gene therapy is considered to be a potential approach to the therapy of several of these lipid disorders. In many cases preclinical proof-of-principle studies have already been performed, and in one (homozygous familial hypercholesterolaemia) a clinical trial has been conducted. Other clinical gene therapy trials for dyslipidaemia are likely to be initiated within the next several years.
Collapse
Affiliation(s)
- Uli C Broedl
- University of Munich, Department of InternalMedicine II, Marchioninistr. 15, 81377 Munich, Germany.
| | | |
Collapse
|
9
|
Scanu AM. Lipoprotein(a) and the atherothrombotic process: mechanistic insights and clinical implications. Curr Atheroscler Rep 2003; 5:106-13. [PMID: 12573195 DOI: 10.1007/s11883-003-0081-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although many epidemiologic studies have pointed at an association between plasma levels of lipoprotein(a) (Lp(a)) and cardiovascular risk, the data obtained have been conflicting because of a number of factors, particularly those dealing with plasma storage, lack of assay standardization, population sample size, age, gender, ethnic variations, and variable disease endpoints. Moreover, the attention has been primarily focused on whole Lp(a), with relatively less emphasis on its constituent apolipoprotein(a) and on the apolipoprotein B100-containing lipoprotein, mainly low-density lipoprotein (LDL), to which apolipoprotein(a) is linked. According to recent studies, small-size apolipoprotein(a) isoforms may represent a cardiovascular risk factor either by themselves or synergistically with plasma Lp(a) concentration. Moreover, the density properties of the LDL moiety may have an impact on Lp(a) pathogenicity. It has also become apparent that Lp(a) can be modified by oxidative events and by the action of lipolytic and proteolytic enzymes with the generation of products that exhibit atherothrombogenic potential. The role of the O-glycans linked to the inter-kringle linkers of apolipoprotein(a) is also emerging. This information is raising the awareness of the pleiotropic functions of Lp(a) and is opening new vistas on pathogenetic mechanisms whose knowledge is essential for developing rational therapies against this complex cardiovascular pathogen.
Collapse
Affiliation(s)
- Angelo M Scanu
- Cardiology Section, Department of Medicine and Biochemistry and Molecular Biology, MC5041, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Strauss JG, Zimmermann R, Hrzenjak A, Zhou Y, Kratky D, Levak-Frank S, Kostner GM, Zechner R, Frank S. Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochem J 2002; 368:69-79. [PMID: 12164779 PMCID: PMC1222966 DOI: 10.1042/bj20020306] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 07/31/2002] [Accepted: 08/06/2002] [Indexed: 12/30/2022]
Abstract
Endothelial cell-derived lipase (EDL) is a new member of the lipase gene family with high sequence homology with lipoprotein lipase (LPL). EDL is a phospholipase with very little triacylglycerol lipase activity. To investigate the effects of EDL on binding and uptake of high-density lipoprotein (HDL), as well as on the selective uptake of HDL-derived cholesterol esters (CEs), HepG2 cells were infected with adenovirus coding for EDL. For comparison, cells were also infected with LPL and with lacZ as a control. Both HDL binding and particle uptake were increased 1.5-fold and selective HDL-CE uptake was increased 1.8-fold in EDL-infected HepG2 cells compared with controls. The effect of LPL was less pronounced, resulting in 1.1-fold increase in particle uptake and 1.3-fold increase in selective uptake. Inhibition of the enzymic activity with tetrahydrolipstatin (THL) significantly enhanced the effect of EDL, as reflected by a 5.2-fold increase in binding, a 2.6-fold increase in particle uptake and a 1.1-fold increase in CE selective uptake compared with incubations without THL. To elucidate the mechanism responsible for the effects of THL, we analysed the abundance of heparin-releasable EDL protein from infected HepG2 cells upon incubations with THL, HDL and free (non-esterified) fatty acids (FFAs). In the presence of THL, vastly more EDL protein remained bound to the cell surface. Additionally, HDL and FFAs reduced the amount of cell-surface-bound EDL, suggesting that fatty acids that are liberated from phospholipids in HDL release EDL from the cell surface. This was substantiated further by the finding that, in contrast with EDL, the amount of cell-surface-bound enzymically inactive mutant EDL (MUT-EDL) was not reduced in the presence of HDL and foetal calf serum. The increased amount of cell-surface-bound MUT-EDL in the presence of THL suggested that the enzymic inactivity of MUT-EDL, as well as an augmenting effect of THL that is independent of its ability to inactivate the enzyme, are responsible for the increased amount of cell-surface-bound EDL in the presence of THL. Furthermore, in cells expressing MUT-EDL, binding and holoparticle uptake were markedly higher compared with cells expressing the active EDL, and could be increased further in the presence of THL. Despite 1.7-fold higher binding and 1.8-fold higher holoparticle uptake, the selective CE uptake by MUT-EDL-expressing cells was comparable with EDL-expressing cells and was even decreased 1.3-fold with THL. Experiments in CLA-1 (CD-36 and LIMPII analogous 1, the human homologue of scavenger receptor class B type I)-deficient HEK-293 cells demonstrated that EDL alone has the ability to stimulate HDL-CE selective uptake independently of CLA-1. Thus our results demonstrate that EDL mediates both HDL binding and uptake, and the selective uptake of HDL-CE, independently of lipolysis and CLA-1.
Collapse
Affiliation(s)
- Juliane G Strauss
- Institute of Molecular Biology, Biochemistry and Microbiology, University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Lipoprotein(a) belongs to the class of the most atherogenic lipoproteins. Despite intensive research - in the last year more than 80 papers have been published on this topic - information is still lacking on the physiological function of lipoprotein(a) and the site of its catabolism. Important advances have been made in the knowledge of these points, which may have some therapeutic implications. RECENT FINDINGS The association of high lipoprotein(a) values with an increase in risk for coronary events has been documented in further prospective studies. This increased risk may relate to recent findings that apolipoprotein(a) is produced in situ within the vessel wall. In addition, lipoprotein(a) binds and inactivates the tissue factor pathway inhibitor and induces plasminogen activator inhibitor type 2 expression in monocytes. A new antisense oligonucleotide strategy has been proposed which efficiently inhibits apolipoprotein(a) expression in vitro and in vivo. Apolipoprotein(a), however, suppresses angiogenesis and thus may interfere with the infiltration of tumor cells. Finally, the enzymatic activity leading to the formation of apolipoprotein(a) fragments in plasma and their catabolism have been further elucidated. SUMMARY We are still far away from understanding the pathways involved in lipoprotein(a) catabolism, and the physiological function of this lipoprotein. Recent findings, however, provide new insight into pathomechanisms in patients with increased lipoprotein(a) related to hemostasis, which may serve as a basis for designing new treatment strategies.
Collapse
Affiliation(s)
- Karam M Kostner
- Department of Cardiology, University Hospital of Vienna, Austria
| | | |
Collapse
|
12
|
Wirtz S, Becker C, Blumberg R, Galle PR, Neurath MF. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:411-20. [PMID: 11751987 DOI: 10.4049/jimmunol.168.1.411] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have shown that IL-18, a pleiotropic cytokine that augments IFN-gamma production, is produced by intestinal epithelial cells and lamina propria cells from patients with Crohn's disease. In this study, we show that IL-18 is strongly expressed by intestinal epithelial cells in a murine model of Crohn's disease induced by transfer of CD62L+ CD4+ T cells into SCID mice. To specifically down-regulate IL-18 expression in this model, we constructed an E1/E3-deleted adenovirus expressing IL-18 antisense mRNA, denoted Ad-asIL-18, and demonstrated the capacity of such a vector to down-regulate IL-18 expression in colon-derived DLD-1 cells and RAW264.7 macrophages. Local administration of the Ad-asIL-18 vector to SCID mice with established colitis led to transduction of epithelial cells and caused a significant suppression of colitis activity, as assessed by a newly developed endoscopic analysis system for colitis. Furthermore, treatment with Ad-asIL-18 induced a significant suppression of histologic colitis activity and caused suppression of mucosal IFN-gamma production, whereas IFN-gamma production by spleen T cells was unaffected. Taken together, these data indicate an important role for IL-18 in the effector phase of a T cell-dependent murine model of colitis and suggest that strategies targeting IL-18 expression may be used for the treatment of patients with Crohn's disease.
Collapse
Affiliation(s)
- Stefan Wirtz
- Laboratory of Immunology, I Medical Clinic, University of Mainz, Langenbeckstrasse 1, Mainz, Germany
| | | | | | | | | |
Collapse
|