1
|
Hörner M, Weber W. Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology. Curr Protoc 2022; 2:e440. [PMID: 35671165 DOI: 10.1002/cpz1.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The OptoAAV technology allows spatially defined delivery of transgenes into native target cells down to single-cell resolution by the illumination with cell-compatible and tissue-penetrating red light. The system is based on an adeno-associated viral (AAV) vector of serotype 2 with an engineered capsid (OptoAAV) and a photoreceptor-containing adapter protein mediating the interaction of the OptoAAV with the surface of the target cell in response to low doses of red and far-red light. In this article, we first provide detailed protocols for the production, purification, and analysis of the OptoAAV and the adapter protein. Afterward, we describe in detail the application of the OptoAAV system for the light-controlled transduction of human cells with global and patterned illumination. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production, purification, and analysis of PhyB-DARPinEGFR adapter protein Basic Protocol 2: Production, purification, and analysis of OptoAAV Basic Protocol 3: Red light-controlled viral transduction with the OptoAAV system Support Protocol: Spatially resolved transduction of two transgenes with the OptoAAV system.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS. Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9111666. [PMID: 34829895 PMCID: PMC8615732 DOI: 10.3390/biomedicines9111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Svetlana A. Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
| | - Julia V. Sopova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Mikhail S. Bozhokin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
4
|
Hörner M, Jerez-Longres C, Hudek A, Hook S, Yousefi OS, Schamel WWA, Hörner C, Zurbriggen MD, Ye H, Wagner HJ, Weber W. Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. SCIENCE ADVANCES 2021; 7:7/25/eabf0797. [PMID: 34134986 PMCID: PMC8208708 DOI: 10.1126/sciadv.abf0797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carolina Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Anna Hudek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Cindy Hörner
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanna J Wagner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Tian X, Cong F, Guo H, Fan J, Chao G, Song T. Downregulation of Bach1 protects osteoblasts against hydrogen peroxide-induced oxidative damage in vitro by enhancing the activation of Nrf2/ARE signaling. Chem Biol Interact 2019; 309:108706. [DOI: 10.1016/j.cbi.2019.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
|
6
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
7
|
Brown N, Song L, Kollu NR, Hirsch ML. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes? Hum Gene Ther 2018; 28:450-463. [PMID: 28490211 DOI: 10.1089/hum.2017.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the stage for future elucidation and eventual therapeutic applications.
Collapse
Affiliation(s)
- Nolan Brown
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Liujiang Song
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Nageswara R Kollu
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Matthew L Hirsch
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| |
Collapse
|
8
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Determination of the Chondrogenic Differentiation Processes in Human Bone Marrow-Derived Mesenchymal Stem Cells Genetically Modified to Overexpress Transforming Growth Factor-β via Recombinant Adeno-Associated Viral Vectors. Hum Gene Ther 2014; 25:1050-60. [DOI: 10.1089/hum.2014.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | | | - Ana Rey-Rico
- Center of Experimental Orthopedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University Medical Center, D-66421 Homburg, Germany
- Department of Orthopedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
10
|
Ahn J, Park S, Cha BH, Kim JH, Park H, Joung YK, Han I, Lee SH. Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Use of Tissue Engineering Strategies to Repair Joint Tissues in Osteoarthritis: Viral Gene Transfer Approaches. Curr Rheumatol Rep 2014; 16:449. [DOI: 10.1007/s11926-014-0449-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med 2014; 15:343-55. [PMID: 24006099 DOI: 10.1002/jgm.2741] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/06/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA), a paramount cause of physical disability for which there is no definitive cure, is mainly characterized by the gradual loss of the articular cartilage. Current nonsurgical and reconstructive surgical therapies have not met success in reversing the OA phenotype so far. Gene transfer approaches allow for a long-term and site-specific presence of a therapeutic agent to re-equilibrate the metabolic balance in OA cartilage and may consequently be suited to treat this slow and irreversible disorder. The distinct stages of OA need to be respected in individual gene therapy strategies. In this context, molecular therapy appears to be most effective for early OA. A critical step forward has been made by directly transferring candidate sequences into human articular chondrocytes embedded within their native extracellular matrix via recombinant adeno-associated viral vectors. Although extensive studies in vitro attest to a growing interest in this approach, data from animal models of OA are sparse. A phase I dose-escalating trial was recently performed in patients with advanced knee OA to examine the safety and activity of chondrocytes modified to produce the transforming growth factor β1 via intra-articular injection, showing a dose-dependent trend toward efficacy. Proof-of-concept studies in patients prior to undergoing total knee replacement may be privileged in the future to identify the best mode of translating this approach to clinical application, followed by randomized controlled trials.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Homburg, Saar, Germany
| | | |
Collapse
|
13
|
Elsler S, Schetting S, Schmitt G, Kohn D, Madry H, Cucchiarini M. Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. J Gene Med 2012; 14:501-11. [PMID: 22711470 DOI: 10.1002/jgm.2644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Genetic modification of mesenchymal stem cells (MSCs) comprises a promising tool to generate cell- and gene-based platforms for regenerative approaches of articular cartilage repair. In the present study, we systematically screened a panel of 15 nonviral compounds for their ability to promote safe, efficient and durable gene expression in human bone marrow-derived MSCs (hMSCS) without impeding their commitment towards chondrogenic differentiation. METHODS Primary hMSCs were transfected with plasmid vectors carrying sequences for the Photinus pyralis luciferase Escherichia coli β-galactosidase, or human insulin-like growth factor I via 15 nonviral formulations. Transgene expression and transfection efficiencies were monitored for each component in parallel with the effects on cell viability and cytotoxicity. Upon optimization, the most promising reagent was then evaluated for a possible influence on the chondrogenic potential of hMSCs. RESULTS Among all formulations tested, GeneJammer® gave the best results for transgene expression and transfection efficacy (25-14% from days 2-21 in monolayer cultures and 35% in 21-day aggregate cultures), allowing for high levels of viability (92-94%) and modest cytotoxicity (< 12%). Most notably, the application of this reagent did not affect the potential of the cells for chondrogenic differentiation when maintained in long-term (21 days) three-dimensional (aggregate) cultures. CONCLUSIONS The data indicate that safe, efficient transgene expression can be achieved in hMSCs over time using the nonviral GeneJammer® compound, showing promise for future therapeutic settings aiming to treat human articular cartilage disorders.
Collapse
Affiliation(s)
- Sebastian Elsler
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J 2012; 52:245-61. [PMID: 21674822 PMCID: PMC3131141 DOI: 10.3325/cmj.2011.52.245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Articular cartilage defects do not regenerate. Transplantation of autologous articular chondrocytes, which is clinically being performed since several decades, laid the foundation for the transplantation of genetically modified cells, which may serve the dual role of providing a cell population capable of chondrogenesis and an additional stimulus for targeted articular cartilage repair. Experimental data generated so far have shown that genetically modified articular chondrocytes and mesenchymal stem cells (MSC) allow for sustained transgene expression when transplanted into articular cartilage defects in vivo. Overexpression of therapeutic factors enhances the structural features of the cartilaginous repair tissue. Combined overexpression of genes with complementary mechanisms of action is also feasible, holding promises for further enhancement of articular cartilage repair. Significant benefits have been also observed in preclinical animal models that are, in principle, more appropriate to the clinical situation. Finally, there is convincing proof of concept based on a phase I clinical gene therapy study in which transduced fibroblasts were injected into the metacarpophalangeal joints of patients without adverse events. To realize the full clinical potential of this approach, issues that need to be addressed include its safety, the choice of the ideal gene vector system allowing for a long-term transgene expression, the identification of the optimal therapeutic gene(s), the transplantation without or with supportive biomaterials, and the establishment of the optimal dose of modified cells. As safe techniques for generating genetically engineered articular chondrocytes and MSCs are available, they may eventually represent new avenues for improved cell-based therapies for articular cartilage repair. This, in turn, may provide an important step toward the unanswered question of articular cartilage regeneration.
Collapse
Affiliation(s)
- Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Homburg/Saar, Germany.
| | | |
Collapse
|
15
|
Locke M, Ussher JE, Mistry R, Taylor JA, Dunbar PR. Transduction of Human Adipose-Derived Mesenchymal Stem Cells by Recombinant Adeno-Associated Virus Vectors. Tissue Eng Part C Methods 2011; 17:949-59. [PMID: 21563982 DOI: 10.1089/ten.tec.2011.0153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michelle Locke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - James E. Ussher
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Raakhi Mistry
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, University of Auckland, Auckland, New Zealand
| | - P. Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Myon L, Ferri J, Chai F, Blanchemain N, Raoul G. [Oro-maxillofacial bone tissue engineering combining biomaterials, stem cells, and gene therapy]. ACTA ACUST UNITED AC 2011; 112:201-11. [PMID: 21798570 DOI: 10.1016/j.stomax.2011.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Improvements have been made in regenerative medicine, due to the development of tissue engineering and cellular therapy. Bone regeneration is an ambitious project, leading to many applications involving skull, maxillofacial, and orthopaedic surgery. Scaffolds, stem cells, and signals support bone tissue engineering. The scaffold physical and chemical properties promote cell invasion, guide their differentiation, and enable signal transmission. Scaffold may be inorganic or organic. Their conception was improved by the use of new techniques: self-assembled nanofibres, electrospinning, solution-phase separation, micropatterned hydrogels, bioprinting, and rapid prototyping. Cellular biology processes allow us to choose between embryonic stem cells or adult stem cells for regenerative medicine. Finally, communication between cells and their environment is essential; they use various signals to do so. The study of signals and their transmission led to the discovery and the use of Bone Morphogenetic Protein (BMP). The development of cellular therapy led to the emergence of a specific field: gene therapy. It relies on viral vectors, which include: retroviruses, adenoviruses and adeno-associated vectors (AAV). Non-viral vectors include plasmids and lipoplex. Some BMP genes have successfully been transfected. The ability to control transfected cells and the capacity to combine and transfect many genes involved in osseous healing will improve gene therapy.
Collapse
Affiliation(s)
- L Myon
- Université Lille Nord de France, UDSL, 59000 Lille, France
| | | | | | | | | |
Collapse
|
17
|
Wu H, Ye Z, Mahato RI. Genetically modified mesenchymal stem cells for improved islet transplantation. Mol Pharm 2011; 8:1458-70. [PMID: 21707070 DOI: 10.1021/mp200135e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | | | | |
Collapse
|
18
|
Abstract
The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists.
Collapse
Affiliation(s)
- Henning Madry
- Saarland University, Homburg, Germany,Henning Madry, Saarland University, Kirrbergerstrasse 1, Homburg, 66424 Germany
| | | | | |
Collapse
|
19
|
Future of local bone regeneration - Protein versus gene therapy. J Craniomaxillofac Surg 2011; 39:54-64. [PMID: 20434921 DOI: 10.1016/j.jcms.2010.03.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 11/22/2022] Open
Abstract
The most promising attempts to achieve bone regeneration artificially are based on the application of mediators such as bone morphogenetic proteins (BMPs) directly to the deficient tissue site. BMPs, as promoters of the regenerative process, have the ability to induce de novo bone formation in various tissues, and many animal models have demonstrated their high potential for ectopic and orthotopic bone formation. However, the biological activity of the soluble factors that promote bone formation in vivo is limited by diffusion and degradation, leading to a short half-life. Local delivery remains a problem in clinical applications. Several materials, including hydroxyapatite, tricalcium phosphate, demineralised bone matrices, poly-lactic acid homo- and heterodimers, and collagen have been tested as carriers and delivery systems for these factors in a sustained and appropriate manner. Unfortunately these delivery vehicles often have limitations in terms of biodegradability, inflammatory and immunological rejection, disease transmission, and most importantly, an inability to provide a sustained, continuous release of these factors at the region of interest. In coping with these problems, new approaches have been established: genes encoding these growth factor proteins can be delivered to the target cells. In this way the transfected cells serve as local "bioreactors", as they express the exogenous genes and secrete the synthesised proteins into their vicinity. The purpose of this review is to present the different methods of gene versus growth factor delivery in tissue engineering. Our review focuses on these promising and innovative methods that are defined as regional gene therapy and provide an alternative to the direct application of growth factors. Various advantages and disadvantages of non-viral and viral vectors are discussed. This review identifies potential candidate genes and target cells, and in vivo as well as ex vivo approaches for cell transduction and transfection. In explaining the biological basis, this paper also refers to current experimental and clinical applications.
Collapse
|
20
|
Abstract
Light-activated gene transduction (LAGT) is an approach to localize gene therapy via preactivation of cells with UV light, which facilitates transduction by recombinant adeno-associated virus vectors. Prior studies demonstrated that UVC induces LAGT secondary to pyrimidine dimer formation, while UVA induces LAGT secondary to reactive oxygen species (ROS) generation. However, the empirical UVB boundary of these UV effects is unknown. Thus, we aimed to define the action spectra for UV-induced LAGT independent of DNA damage, and determine an optimal wavelength to maximize safety and efficacy. Results: UV at 288, 311 and 320nm produced significant dose-dependent LAGT effects, of which the maximum (800-fold) was observed with 4kJ/m2 at 311nm. Consistent with its robust cytotoxicity, 288nm produced significantly high levels of DNA damage at all doses tested, while 311, 320 and 330nm did not generate pyrimidine dimers and produced low levels of DNA damage detected by comet assay. While 288nm failed to induce ROS, the other wavelengths were effective, with the maximum (10-fold) effect observed with 30 kJ/m2 at 311nm. An in vivo pilot study assessing 311nm-induced LAGT of rabbit articular chondrocytes demonstrated a significant 6.6-fold (p<0.05) increase in transduction with insignificant cytotoxicity. Conclusion: 311nm was found to be the optimal wavelength for LAGT based on its superior efficacy at the peak dose, and its broad safety range that is remarkably wider than the other UV wavelengths tested.
Collapse
|
21
|
Coleman CM, Curtin C, Barry FP, O'Flatharta C, Murphy JM. Mesenchymal stem cells and osteoarthritis: remedy or accomplice? Hum Gene Ther 2011; 21:1239-50. [PMID: 20649459 DOI: 10.1089/hum.2010.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal or stem cells (MSCs) are likely to be agents of connective tissue homeostasis and repair. Because the hallmark of osteoarthritis (OA) is degeneration and failure to repair connective tissues it is compelling to think that these cells have a role to play in OA. Indeed, MSCs have been implicated in the pathogenesis of OA and, in turn, progression of the disease has been shown to be therapeutically modulated by MSCs. This review discusses current knowledge on the potential of both marrow- and local joint-derived MSCs in OA, the mode of action of the cells, and possible effects of the osteoarthritic niche on the function of MSCs. The use of stem cells for repair of isolated cartilage lesions and strategies for modulation of OA using local cell delivery are discussed as well as therapeutic options for the future to recruit and appropriately activate endogenous progenitors and/or locally systemically administered MSCs in the early stages of the disease. The use of gene therapy protocols, particularly as they pertain to modulation of inflammation associated with the osteoarthritic niche, offer an additional option in the treatment of this chronic disease. In summary, elucidation of the etiology of OA and development of technologies to detect early disease, allied to an increased understanding of the role MSCs in aging and OA, should lead to more targeted and efficacious treatments for this debilitating chronic disease in the future.
Collapse
Affiliation(s)
- Cynthia M Coleman
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
22
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Nasu T, Ito H, Tsutsumi R, Kitaori T, Takemoto M, Schwarz EM, Nakamura T. Biological activation of bone-related biomaterials by recombinant adeno-associated virus vector. J Orthop Res 2009; 27:1162-8. [PMID: 19242999 DOI: 10.1002/jor.20860] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gene therapy is a promising clinical tool that is no longer limited as a method to supplement genetic deficits, but rather is considered reliable for delivering proteins to specific tissues or cells. Recombinant adeno-associated virus (rAAV) vector is one of the most potent gene transfer vehicles. Many biomaterials have been used in reconstructive surgery, but their biological inactivity has limited their use. To overcome shortcomings of available bone-related biomaterials, we investigated the combination of rAAV with biomaterials. Taking advantage of the method of lyophilizing rAAV onto biomaterials, we showed that an rAAV coating successfully induced beta-galactosidase protein expression by rat fibroblasts on hydroxyapatite, beta-tricalcium phosphate, and titanium alloy in vitro. beta-Galactosidase expression was detected for 8 weeks after implantation of rAAV-coated hydroxyapatite into rat back muscles in vivo. A coating of bone morphogenetic protein-2-expressing rAAV induced significant de novo bone formation on hydroxyapatite in rat back muscles. Our study demonstrates that the combination of lyophilized rAAV and biomaterials presents a promising strategy for bone regenerative medicine.
Collapse
Affiliation(s)
- Tomonori Nasu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, Awad HA, Yanoso L, Zhao L, Schwarz EM, Zhang YE, Boyce BF, Xing L. Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 2008; 283:23084-92. [PMID: 18567580 DOI: 10.1074/jbc.m709848200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammatory disorders, such as rheumatoid arthritis, are often accompanied by systemic bone loss, which is thought to occur through inflammatory cytokine-mediated stimulation of osteoclast resorption and inhibition of osteoblast function. However, the mechanisms involved in osteoblast inhibition remain poorly understood. Here we test the hypothesis that increased Smad ubiquitin regulatory factor 1 (Smurf1)-mediated degradation of the bone morphogenetic protein pathway signaling proteins mediates reduced bone formation in inflammatory disorders. Osteoblasts derived from bone marrow or long bone samples of adult tumor necrosis factor (TNF) transgenic (TNF-Tg) mice were used in this study. TNF decreased the steady-state levels of Smad1 and Runx2 protein similarly to those in long bones of TNF-Tg mice. In the presence of the proteasome inhibitor MG132, TNF increased accumulation of ubiquitinated Smad1 protein. TNF administration over calvarial bones caused decreases in Smad1 and Runx2 protein levels and mRNA expression of osteoblast marker genes in wild-type, but not in Smurf1(-/-) mice. Vertebral bone volume and strength of TNF-Tg/Smurf1(-/-) mice were examined by a combination of micro-CT, bone histomorphometry, and biomechanical testing and compared with those from TNF-Tg littermates. TNF-Tg mice had significantly decreased bone volume and biomechanical properties, which were partially rescued in TNF-Tg/Smurf1(-/-) mice. We conclude that in chronic inflammatory disorders where TNF is increased, TNF induces the expression of ubiquitin ligase Smurf1 and promotes ubiquitination and proteasomal degradation of Smad1 and Runx2, leading to systemic bone loss. Inhibition of ubiquitin-mediated Smad1 and Runx2 degradation in osteoblasts could help to treat inflammation-induced osteoporosis.
Collapse
Affiliation(s)
- Ruolin Guo
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H. Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 2008; 15:537-44. [PMID: 18256695 DOI: 10.1038/gt.2008.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene electrotransfer is an efficient and reproducible nonviral gene transfer technique useful for the nonpermanent expression of therapeutic transgenes. The present study established optimal conditions for the electrotransfer of reporter genes into mesenchymal stem cells (MSCs) isolated from rat bone marrow by their selective adherence to tissue-culture plasticware. The electrotransfer of the lacZ reporter gene was optimized by adjusting the pulse electric field intensity, electric pulse type, electropulsation buffer conductivity and electroporation temperature. LacZ electrotransfection into MSCs was optimal at 1500 V cm(-1) with pre-incubation in Spinner's minimum essential medium buffer at 22 degrees C. Under these conditions beta-galactosidase expression was achieved in 29+/-3% of adherent cells 48 h post transfection. The kinetics of beta-galactosidase activity revealed maintenance of beta-galactosidase production for at least 10 days. Moreover, electroporation did not affect the MSC potential for multidifferentiation; electroporated MSCs differentiated into osteoblastic, adipogenic and chondrogenic lineages to the same extent as cells that were not exposed to electric pulses. Thus, this study demonstrates the feasibility of efficient transgene electrotransfer into MSCs while preserving cell viability and multipotency.
Collapse
Affiliation(s)
- E Ferreira
- Laboratoire de Recherches Orthopédiques (B2OA), CNRS UMR 7052, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Dai J, Rabie ABM. Gene Therapy to Enhance Condylar Growth Using rAAV-VEGF. Angle Orthod 2008; 78:89-94. [DOI: 10.2319/102606-441.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 03/01/2007] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objective: To test the hypothesis that the introduction of specific vascular growth inducting genes would favorably affect mandibular condylar growth in Sprague-Dawley (SD) rats over a limited experimental period. Therefore, the aim of this study is to examine the effect of gene therapy on condylar growth by means of a morphological assessment.
Materials and Methods: Ninety 35-day-old female SD rats were randomly divided into three groups, which received any of the injections of recombinant adeno-associated virus mediated vascular endothelial growth factor (rAAV-VEGF), rAAV mediated enhanced green fluorescence protein (rAAV-eGFP), or phosphate-buffered saline (PBS) into both mandibular condyles. Each group of rats was sacrificed on the following experimental days: 7, 14, 21, 30, and 60. Left halves of the mandibles were isolated and digital pictures were obtained in a standardized manner.
Results: The length of condylar process (B-F) as well as mandibular length (A-F) significantly increased on day 30 and continued to increase until the end of the experiment. Moreover, the width of condyle (Q-R) had increased significantly from day 30 and lasted to day 60. Condylar length (C-D) was found to be significantly longer on day 60.
Conclusions: Gene therapy with VEGF stimulates condylar growth at will. The rAAV-VEGF is an excellent candidate for future gene therapy to induce mandibular growth.
Collapse
Affiliation(s)
- Juan Dai
- a Graduate PhD student, Department of Orthodontics, University of Hong Kong, Hong Kong, SAR, China
| | - A. Bakr M. Rabie
- b Professor, Department of Orthodontics, University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
27
|
Abstract
OBJECTIVES To provide a comprehensive literature review describing recent developments of the recombinant adeno-associated virus (rAAV) vector and exploring the therapeutic application of rAAV for bone defects, cartilage lesions and rheumatoid arthritis. DESIGN Narrative review. RESULT The review outlines the serotypes and genome of AAV, integration and life cycle of the rAAV vectors, the immune response and regulating system for AAV gene therapy. Furthermore, the advancements of rAAV gene therapy for bone growth together with cartilage repair are summarized. CONCLUSION Recombinant adeno-associated virus vector is perceived to be one of the most promising vector systems for bone and cartilage gene therapy approaches and further investigations need to be carried out for craniofacial research.
Collapse
Affiliation(s)
- Juan Dai
- The Biomedical and Tissue Engineering Group, Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
28
|
Abstract
Focal defects of articular cartilage are an unsolved problem in clinical orthopaedics. These lesions do not heal spontaneously and no treatment leads to complete and durable cartilage regeneration. Although the concept of gene therapy for cartilage damage appears elegant and straightforward, current research indicates that an adaptation of gene transfer techniques to the problem of a circumscribed cartilage defect is required in order to successfully implement this approach. In particular, the localised delivery into the defect of therapeutic gene constructs is desirable. Current strategies aim at inducing chondrogenic pathways in the repair tissue that fills such defects. These include the stimulation of chondrocyte proliferation, maturation, and matrix synthesis via direct or cell transplantation-mediated approaches. Among the most studied candidates, polypeptide growth factors have shown promise to enhance the structural quality of the repair tissue. A better understanding of the basic scientific aspects of cartilage defect repair, together with the identification of additional molecular targets and the development of improved gene-delivery techniques, may allow a clinical translation of gene therapy for cartilage defects. The first experimental steps provide reason for cautious optimism.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
29
|
Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2006; 5:1571-84. [PMID: 16318421 PMCID: PMC1371057 DOI: 10.1517/14712598.5.12.1571] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The intriguing biology of stem cells and their vast clinical potential is emerging rapidly for gene therapy. Bone marrow stem cells, including the pluripotent haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and possibly the multipotent adherent progenitor cells (MAPCs), are being considered as potential targets for cell and gene therapy-based approaches against a variety of different diseases. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. The apparently high self-renewal potential makes them strong candidates for delivering genes and restoring organ systems function. However, the high proliferative potential of MSCs, now presumed to be self-renewal, may be more apparent than real. Although expanded MSCs have great proliferation and differentiation potential in vitro, there are limitations with the biology of these cells in vivo. So far, expanded MSCs have failed to induce durable therapeutic effects expected from a true self-renewing stem cell population. The loss of in vivo self-renewal may be due to the extensive expansion of MSCs in existing in vitro expansion systems, suggesting that the original stem cell population and/or properties may no longer exist. Rather, the expanded population may indeed be heterogeneous and represents several generations of different types of mesenchymal cell progeny that have retained a limited proliferation potential and responsiveness for terminal differentiation and maturation along mesenchymal and non-mesenchymal lineages. Novel technology that allows MSCs to maintain their stem cell function in vivo is critical for distinguishing the elusive stem cell from its progenitor cell populations. The ultimate dream is to use MSCs in various forms of cellular therapies, as well as genetic tools that can be used to better understand the mechanisms leading to repair and regeneration of damaged or diseased tissues and organs.
Collapse
Affiliation(s)
- Jakob Reiser
- LSU Health Sciences Center, Gene Therapy Program, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
30
|
SAFETY AND EFFICACY OF ULTRAVIOLET-A LIGHT-ACTIVATED GENE TRANSDUCTION FOR GENE THERAPY OF ARTICULAR CARTILAGE DEFECTS. J Bone Joint Surg Am 2006. [DOI: 10.2106/00004623-200604000-00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
31
|
Le Bec C, Douar AM. Gene Therapy Progress and Prospects – Vectorology: design and production of expression cassettes in AAV vectors. Gene Ther 2006; 13:805-13. [PMID: 16453010 DOI: 10.1038/sj.gt.3302724] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adeno-associated virus (AAV) derived vectors are considered highly eligible vehicles for human gene therapy. Not only do they possess many great potential for clinical applications due to their wide range of tissue targets but also their excellent preclinical safety profile makes them particularly suitable candidates for treating serious diseases. Initial clinical trials have yielded encouraging results and prompted further improvements in their design and methods of production. Many studies have been performed to modify the tropism of recombinant (r)AAV by capsid modification. However, the precise control of spatial and temporal gene expression, which may be important in determining the safety and efficacy of gene transfer, lies in a rational choice and a subtle combination of various regulatory genetic elements to be inserted into the expression cassette. Moreover, new strategies based on such genetic sequences open new perspectives for enhancing vector genome persistence, disrupting or reducing pathogenic gene expression and even targeting genes.
Collapse
Affiliation(s)
- C Le Bec
- CNRS UMR 8115, Généthon, Evry, France
| | | |
Collapse
|
32
|
McMahon JM, Conroy S, Lyons M, Greiser U, O'shea C, Strappe P, Howard L, Murphy M, Barry F, O'Brien T. Gene Transfer into Rat Mesenchymal Stem Cells: A Comparative Study of Viral and Nonviral Vectors. Stem Cells Dev 2006; 15:87-96. [PMID: 16522166 DOI: 10.1089/scd.2006.15.87] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed for use in combinatorial gene and cell therapy protocols for the treatment of disease and promotion of repair. The efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression with minimal cell death. The study was carried out on bone-marrow derived rat MSCs, and a range of vectors was tested on the same stem cell preparation. Adenovirus, adeno-associated virus (AAV; serotypes 1, 2, 4, 5, and 6), lentivirus, and nonviral vectors were compared. Lentivirus proved to be most effective with transduction efficiencies of up to 95%, concurrent with low levels of cell toxicity. Adenovirus also proved effective, but a significant increase in cell death was seen with increasing viral titer. Rat MSCs remained refractory to transduction by all AAV serotypes, in contrast to rabbit MSCs tested at the same time. Lipofection of plasmid DNA gave moderate transfection levels but was also accompanied by cell death. Electroporative gene transfer proved ineffective at the parameters tested and resulted in high cell death. High and moderate levels of cell transduction using lentivirus vectors did not affect the ability of the cells to differentiate down the adipogenic pathway.
Collapse
Affiliation(s)
- J M McMahon
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Department of Medicine, National University of Ireland, Galway, Republic of Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lu FZ, Fujino M, Kitazawa Y, Uyama T, Hara Y, Funeshima N, Jiang JY, Umezawa A, Li XK. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. ACTA ACUST UNITED AC 2005; 146:271-8. [PMID: 16242526 DOI: 10.1016/j.lab.2005.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/27/2005] [Accepted: 07/04/2005] [Indexed: 12/26/2022]
Abstract
It has been shown that the stromal-cell population found in bone marrow can be expanded and differentiated into cells with the phenotypes of bone, cartilage, muscle, neural, and fat cells. However, whether mesenchymal stem cells (MSCs) are present in human umbilical-cord blood (UCB) has been the subject of ongoing debate. In this study, we report on a population of fibroblastlike cells derived from the mononuclear fraction of human UCB with osteogenic and adipogenic potential, as well as the presence of a subset of cells that have been maintained in continuous culture for more than 6 months. These cells were found to express CD29, CD44, CD90, CD95, CD105, CD166, and MHC class, but not CD14, CD34, CD40, CD45, CD80, CD86, CD117, CD152, or MHC class II. We also compared gene expression after gene transfer using lenti- and adenoviral vectors carrying the green fluorescence protein to the MSCs derived from UCB because a reliable gene-delivery system is required to transfer target genes into MSCs, which have attracted attention as potential platforms for the systemic delivery of therapeutic genes. The lentiviral vectors can transduce these cells more efficiently than can adenoviral vectors, and we maintained transgene expression for at least 5 weeks. This is the first report showing that UCB-derived MSCs can express exogenous genes by way of a lentivirus vector. These results demonstrate that human UCB is a source of mesenchymal progenitors and may be used in cell transplantation and a wide range of gene-therapy treatments.
Collapse
Affiliation(s)
- Fei-Zhou Lu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|