1
|
Silencing and overexpression of human blood group antigens in transfusion: Paving the way for the next steps. Blood Rev 2015; 29:163-9. [DOI: 10.1016/j.blre.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
|
2
|
Smith KR, Chan S, Harris J. Human germline genetic modification: scientific and bioethical perspectives. Arch Med Res 2012; 43:491-513. [PMID: 23072719 DOI: 10.1016/j.arcmed.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, Abertay University, Dundee, United Kingdom.
| | | | | |
Collapse
|
3
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
4
|
Falgowski K, Falgowski C, York-Vickers C, Kmiec EB. Strand bias influences the mechanism of gene editing directed by single-stranded DNA oligonucleotides. Nucleic Acids Res 2011; 39:4783-94. [PMID: 21343181 PMCID: PMC3113578 DOI: 10.1093/nar/gkr061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene editing directed by modified single-stranded DNA oligonucleotides has been used to alter a single base pair in a variety of biological systems. It is likely that gene editing is facilitated by the direct incorporation of the oligonucleotides via replication and/or by direct conversion, most likely through the DNA mismatch repair pathway. The phenomenon of strand bias, however, as well as its importance to the gene editing reaction itself, has yet to be elucidated in terms of mechanism. We have taken a reductionist approach by using a genetic readout in Eschericha coli and a plasmid-based selectable system to evaluate the influence of strand bias on the mechanism of gene editing. We show that oligonucleotides (ODNs) designed to anneal to the lagging strand generate 100-fold greater 'editing' efficiency than 'those that anneal to' the leading strand. The majority of editing events (∼70%) occur by the incorporation of the ODN during replication within the lagging strand. Conversely, ODNs that anneal to the leading strand generate fewer editing events although this event may follow either the incorporation or direct conversion pathway. In general, the influence of DNA replication is independent of which ODN is used suggesting that the importance of strand bias is a reflection of the underlying mechanism used to carry out gene editing.
Collapse
Affiliation(s)
- Kerry Falgowski
- Marshall Institute for Interdisciplinary Research, Marshall University, Robert C. Byrd Biotechnology Science Center, 1700 Third Avenue, Suite 220, Huntington, WV 25755, USA
| | | | | | | |
Collapse
|
5
|
Falgowski KA, Kmiec EB. Gene editing activity on extrachromosomal arrays in C. elegans transgenics. Gene 2011; 475:87-93. [PMID: 21241788 DOI: 10.1016/j.gene.2010.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022]
Abstract
Gene editing by modified single-stranded oligonucleotides is a strategy aimed at inducing single base changes into the genome, generating a permanent genetic change. The work presented here explores gene editing capabilities in the model organism Caenorhabditis elegans. Current approaches to gene mutagenesis in C. elegans have been plagued by non-specificity and thus the ability to induce precise, directed alterations within the genome of C. elegans would offer a platform upon which structure/function analyses can be carried out. As such, several in vivo assay systems were developed to evaluate gene editing capabilities in C. elegans. Fluorescence was chosen as the selectable endpoint as fluorescence can be easily detected through the transparent worm body even from minimal expression. Two tissue specific fluorescent expression vectors containing either a GFP or mCherry transgene were mutagenized to create a single nonsense mutation within the open reading frame of each respective fluorescent gene. These served as the target site to evaluate the frequency of gene editing on extrachromosomal array transgenic lines. Extrachromosomal arrays can carry hundreds of copies of the transgene, therefore low frequency events (like those in the gene editing reaction) may be detected. Delivery of the oligonucleotide was accomplished by microinjection into the gonads of young adult worms in an effort to induce repair of the mutated fluorescent gene in the F1 progeny. Despite many microinjections on the transgenic strains with varying concentrations of ODNs, no gene editing events were detected. This result is consistent with the previous research, demonstrating the difficulties encountered in targeting embryonic stem cells and the pronuclei of single-celled embryos.
Collapse
Affiliation(s)
- Kerry A Falgowski
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25755, USA.
| | | |
Collapse
|
6
|
Aarts M, te Riele H. Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther 2010; 18:213-9. [PMID: 21160530 DOI: 10.1038/gt.2010.161] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising technique for introducing site-specific sequence alterations without affecting the genomic organization of the target locus. Here, we discuss the significant progress that has been made over the last 5 years in unraveling the mechanisms and reaction parameters underlying ssODN-mediated gene targeting. We will specifically focus on ssODN-mediated gene targeting in murine embryonic stem cells (ESCs) and the impact of the DNA mismatch repair (MMR) system on the targeting process. Implications of novel findings for routine application of ssODN-mediated gene targeting and challenges that need to be overcome for future therapeutic applications are highlighted.
Collapse
Affiliation(s)
- M Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Aarts M, te Riele H. Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res 2010; 38:6956-67. [PMID: 20601408 PMCID: PMC2978364 DOI: 10.1093/nar/gkq589] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ssODNs. The slower appearance of green fluorescent cells with sense ssODNs as compared to anti-sense ssODNs is consistent with physical incorporation of the ssODN into the genome. Thus, the supremacy of anti-sense ssODNs, previously reported by others, may be an artefact of early readout of the EGFP reporter. Importantly, gene correction by unmodified ssODNs only mildly affected the viability of targeted cells and did not induce genomic DNA double-stranded breaks (DSBs). In contrast, ssODNs that were end-protected by phosphorothioate (PTO) linkages caused increased H2AX phosphorylation and impaired cell cycle progression in both corrected and non-corrected cells due to induction of genomic DSBs. Our results demonstrate that the use of unmodified rather than PTO end-protected ssODNs allows stable gene modification without compromising the genomic integrity of the cell, which is crucial for application of ssODN-mediated gene targeting in (embryonic) stem cells.
Collapse
Affiliation(s)
- Marieke Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Breyer D, Herman P, Brandenburger A, Gheysen G, Remaut E, Soumillion P, Van Doorsselaere J, Custers R, Pauwels K, Sneyers M, Reheul D. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge? ACTA ACUST UNITED AC 2009; 8:57-64. [PMID: 19833073 DOI: 10.1051/ebr/2009007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.
Collapse
Affiliation(s)
- Didier Breyer
- Scientific Institute of Public Health, Division of Biosafety and Biotechnology, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is emerging as a powerful tool for the introduction of subtle gene modifications in mouse embryonic stem (ES) cells and the generation of mutant mice. Here, we have studied the role of ssODN composition, transcription and replication of the target locus, and DNA repair pathways to gain more insight into the parameters governing ssODN-mediated gene targeting in mouse ES cells. We demonstrated that unmodified ssODNs of 35–40 nt were most efficient in correcting a chromosomally integrated mutant neomycin reporter gene. Addition of chemical modifications did not further enhance the efficacy of these ssODNs. The observed strand bias was not affected by transcriptional activity and may rather be caused by the different accessibility of the DNA strands during DNA replication. Consistently, targeting frequencies were enhanced when cells were treated with hydroxyurea to reduce the rate of replication fork progression. Transient down-regulation of various DNA repair genes by RNAi had no effect on the targeting frequency. Taken together, our data suggest that ssODN-mediated gene targeting occurs within the context of a replication fork. This implies that any given genomic sequence, irrespective of transcriptional status, should be amenable to ssODN-mediated gene targeting. The ability of ES cells to differentiate into various cell types after ssODN-mediated gene targeting may offer opportunities for future therapeutic applications.
Collapse
Affiliation(s)
- Marieke Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Genetic correction of splice site mutation in purified and enriched myoblasts isolated from mdx5cv mice. BMC Mol Biol 2009; 10:15. [PMID: 19236710 PMCID: PMC2654480 DOI: 10.1186/1471-2199-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Duchenne Muscular Dystrophy (DMD) is an X-linked genetic disorder that results in the production of a dysfunctional form of the protein, dystrophin. The mdx5cv mouse is a model of DMD in which a point mutation in exon 10 of the dystrophin gene creates an artificial splice site. As a result, a 53 base pair deletion of exon 10 occurs with a coincident creation of a frameshift and a premature stop codon. Using primary myoblasts from mdx5cv mice, single-stranded DNA oligonucleotides were designed to correct this DNA mutation. Results Single-stranded DNA oligonucleotides that were designed to repair this splice site mutation corrected the mutation in the gene and restored expression of wild-type dystrophin. This repair was validated at the DNA, RNA and protein level. We also report that the frequency of genetic repair of the mdx mutation can be enhanced if RNAi is used to suppress expression of the recombinase inhibitor protein Msh2 in cultures containing myoblasts but not in those heavily enriched in myoblasts. Conclusion Exogenous manipulations, such as RNAi, are certainly feasible and possibly required to increase the successful application of gene repair in some primary or progenitor muscle cells.
Collapse
|
11
|
Igoucheva O, Alexeev V, Anni H, Rubin E. Oligonucleotide-mediated gene targeting in human hepatocytes: implications of mismatch repair. Oligonucleotides 2008; 18:111-22. [PMID: 18637729 DOI: 10.1089/oli.2008.0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gene therapy using viral vectors for liver diseases, particularly congenital disorders, is besought with difficulties, particularly immunologic reactions to viral antigens. As a result, nonviral methods for gene transfer in hepatocytes have also been explored. Gene repair by small synthetic single-stranded oligodeoxynucleotides (ODNs) produces targeted alterations in the genome of mammalian cells and represents a great potential for nonviral gene therapy. To test the feasibility of ODN-mediated gene repair within chromosomal DNA in human hepatocytes, two new cell lines with stably integrated mutant reporter genes, namely neomycin and enhanced green fluorescent protein were established. Targeting theses cells with ODNs specifically designed for repair resulted in site-directed and permanent gene conversion of the single-point mutation of the reporter genes. Moreover, the frequency of gene alteration was highly dependent on the mitotic activity of the cells, indicating that the proliferative status is an important factor for successful targeting in human hepatocytes. cDNA array expression profiling of DNA repair genes under different cell culture conditions combined with RNA interference assay showed that mismatch repair (MMR) in actively growing hepatocytes imposes a strong barrier to efficient gene repair mediated by ODNs. Suppression of MSH2 activity in hepatocytes transduced with short hairpin RNAs (shRNAs) targeted to MSH2 mRNA resulted in 25- to 30-fold increase in gene repair rate, suggesting a negative effect of MMR on ODN-mediated gene repair. Taken together, these data suggest that under appropriate conditions nonviral chromosomal targeting may represent a feasible approach to gene therapy in liver disease.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA.
| | | | | | | |
Collapse
|
12
|
Site-specific gene modification by oligodeoxynucleotides in mouse bone marrow-derived mesenchymal stem cells. Gene Ther 2008; 15:1035-48. [PMID: 18337839 DOI: 10.1038/gt.2008.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthetic oligodeoxynucleotides (ODNs) had been employed in gene modification and represent an alternative approach to 'cure' genetic disorders caused by mutations. To test the ability of ODN-mediated gene repair in bone marrow-derived mesenchymal stem cells (MSCs), we established MSCs cell lines with stably integrated mutant neomycin resistance and enhanced green fluorescent protein reporter genes. The established cultures showed morphologically homogenous population with phenotypic and functional features of mesenchymal progenitors. Transfection with gene-specific ODNs successfully repaired targeted cells resulting in the expression of functional proteins at relatively high frequency approaching 0.2%. Direct DNA sequencing confirmed that phenotype change resulted from the designated nucleotide correction at the target site. The position of the mismatch-forming nucleotide was shown to be important structural feature for ODN repair activity. The genetically corrected MSCs were healthy and maintained an undifferentiated state. Furthermore, the genetically modified MSCs were able to engraft into many tissues of unconditioned transgenic mice making them an attractive therapeutic tool in a wide range of clinical applications.
Collapse
|
13
|
Morozov V, Wawrousek EF. Single-strand DNA-mediated targeted mutagenesis of genomic DNA in early mouse embryos is stimulated by Rad51/54 and by Ku70/86 inhibition. Gene Ther 2007; 15:468-72. [DOI: 10.1038/sj.gt.3303088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Parekh-Olmedo H, Kmiec EB. Progress and Prospects: targeted gene alteration (TGA). Gene Ther 2007; 14:1675-80. [DOI: 10.1038/sj.gt.3303053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair. BMC Mol Biol 2007; 8:9. [PMID: 17284323 PMCID: PMC1797188 DOI: 10.1186/1471-2199-8-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Single-stranded oligonucleotides (ssODN) are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.
Collapse
|