1
|
Thompson CE, Brisolara-Corrêa L, Thompson HN, Stassen H, de Freitas LB. Evolutionary and structural aspects of Solanaceae RNases T2. Genet Mol Biol 2022; 46:e20220115. [PMID: 36534953 PMCID: PMC9762611 DOI: 10.1590/1678-4685-gmb-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Plant RNases T2 are involved in several physiological and developmental processes, including inorganic phosphate starvation, senescence, wounding, defense against pathogens, and the self-incompatibility system. Solanaceae RNases form three main clades, one composed exclusively of S-RNases and two that include S-like RNases. We identified several positively selected amino acids located in highly flexible regions of these molecules, mainly close to the B1 and B2 substrate-binding sites in S-like RNases and the hypervariable regions of S-RNases. These differences between S- and S-like RNases in the flexibility of amino acids in substrate-binding regions are essential to understand the RNA-binding process. For example, in the S-like RNase NT, two positively selected amino acid residues (Tyr156 and Asn134) are located at the most flexible sites on the molecular surface. RNase NT is induced in response to tobacco mosaic virus infection; these sites may thus be regions of interaction with pathogen proteins or viral RNA. Differential selective pressures acting on plant ribonucleases have increased amino acid variability and, consequently, structural differences within and among S-like RNases and S-RNases that seem to be essential for these proteins play different functions.
Collapse
Affiliation(s)
- Claudia Elizabeth Thompson
- Universidade Federal de Ciências da Saúde de Porto Alegre,
Departamento de Farmacociências, Porto Alegre, RS, Brazil
| | - Lauís Brisolara-Corrêa
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Porto Alegre, RS, Brazil
| | - Helen Nathalia Thompson
- Universidade Federal do Rio Grande do Sul, Instituto de Química,
Departamento de Fisico-Química, Laboratório de Química Teórica e Computacional,
Porto Alegre, RS, Brazil
| | - Hubert Stassen
- Universidade Federal do Rio Grande do Sul, Instituto de Química,
Departamento de Fisico-Química, Laboratório de Química Teórica e Computacional,
Porto Alegre, RS, Brazil
| | | |
Collapse
|
2
|
Yisilam G, Wang CX, Xia MQ, Comes HP, Li P, Li J, Tian XM. Phylogeography and Population Genetics Analyses Reveal Evolutionary History of the Desert Resource Plant Lycium ruthenicum (Solanaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:915526. [PMID: 35845630 PMCID: PMC9280156 DOI: 10.3389/fpls.2022.915526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Climactic oscillations during the Quaternary played a significant role in the formation of genetic diversity and historical demography of numerous plant species in northwestern China. In this study, we used 11 simple sequence repeats derived from expressed sequence tag (EST-SSR), two chloroplast DNA (cpDNA) fragments, and ecological niche modeling (ENM) to investigate the population structure and the phylogeographic history of Lycium ruthenicum, a plant species adapted to the climate in northwestern China. We identified 20 chloroplast haplotypes of which two were dominant and widely distributed in almost all populations. The species has high haplotype diversity and low nucleotide diversity based on the cpDNA data. The EST-SSR results showed a high percentage of total genetic variation within populations. Both the cpDNA and EST-SSR results indicated no significant differentiation among populations. By combining the evidence from ENM and demographic analysis, we confirmed that both the last interglacial (LIG) and late-glacial maximum (LGM) climatic fluctuations, aridification might have substantially narrowed the distribution range of this desert species, the southern parts of the Junggar Basin, the Tarim Basin, and the eastern Pamir Plateau were the potential glacial refugia for L. ruthenicum during the late middle Pleistocene to late Pleistocene Period. During the early Holocene, the warm, and humid climate promoted its demographic expansion in northwestern China. This work may provide new insights into the mechanism of formation of plant diversity in this arid region.
Collapse
Affiliation(s)
- Gulbar Yisilam
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen-Xi Wang
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mao-Qin Xia
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hans Peter Comes
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xin-Min Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Levin RA, Miller JS. Molecular signatures of long-distance oceanic dispersal and the colonization of Pacific islands in Lycium carolinianum. AMERICAN JOURNAL OF BOTANY 2021; 108:694-710. [PMID: 33811320 DOI: 10.1002/ajb2.1626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Long-distance dispersal has been important in explaining the present distributions of many plant species. Despite being infrequent, such dispersal events have considerable evolutionary consequences, because bottlenecks during colonization can result in reduced genetic diversity. We examined the phylogeographic history of Lycium carolinianum, a widespread taxon that ranges from southeastern North America to several Pacific islands, with intraspecific diversity in sexual and mating systems. METHODS We used Bayesian, likelihood, and coalescent approaches with nuclear and plastid sequence data and genome-wide single nucleotide polymorphisms to reconstruct the dispersal history of this species. We also compared patterns of genetic variation in mainland and island populations using single nucleotide polymorphisms and allelic diversity at the S-RNase mating system gene. RESULTS Lycium carolinianum is monophyletic and dispersed once from the North American mainland, colonizing the Pacific islands ca. 40,100 years ago. This dispersal was accompanied by a loss of genetic diversity in SNPs and the S-RNase locus due to a colonization bottleneck and the loss of self-incompatibility. Additionally, we documented at least two independent transitions to gynodioecy: once following the colonization of the Hawaiian Islands and loss of self-incompatibility, and a second time associated with polyploidy in the Yucatán region of Mexico. CONCLUSIONS Long-distance dispersal via fleshy, bird dispersed fruits best explains the unusually widespread distribution of L. carolinianum. The collapse of diversity at the S-RNase locus in island populations suggests that self-fertilization may have facilitated the subsequent colonization of Pacific islands following a single dispersal from mainland North America.
Collapse
Affiliation(s)
- Rachel A Levin
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Jill S Miller
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| |
Collapse
|
4
|
Vieira J, Rocha S, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Vieira CP. Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model. FRONTIERS IN PLANT SCIENCE 2019; 10:879. [PMID: 31379893 PMCID: PMC6649718 DOI: 10.3389/fpls.2019.00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Noé Vázquez
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Miller JS, Blank CM, Levin RA. Colonization, Baker's law, and the evolution of gynodioecy in Hawaii: implications from a study of Lycium carolinianum. AMERICAN JOURNAL OF BOTANY 2019; 106:733-743. [PMID: 31042317 DOI: 10.1002/ajb2.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
PREMISE As Baker's law suggests, the successful colonization of oceanic islands is often associated with uniparental reproduction (self-fertility), but the high incidence of dimorphism (dioecy, gynodioecy) on islands complicates this idea. Lycium carolinianum is widespread, occurring on the North American mainland and the Hawaiian Islands. We examined Baker's ideas for mainland and island populations of L. carolinianum and examined inbreeding depression as a possible contributor to the evolution of gynodioecy on Maui. METHODS Controlled crosses were conducted in two mainland populations and two populations in Hawaii. Treatments included self and cross pollination, unmanipulated controls, and autogamy/agamospermy. Alleles from the self-incompatibility S-RNase gene were isolated and compared between mainland and island populations. Given self-compatibility in Hawaii, we germinated seeds from self- and cross- treatments and estimated inbreeding depression using seven traits and a measure of cumulative fitness. RESULTS Mainland populations of Lycium carolinianum are predominately self-incompatible with some polymorphism for self-fertility, whereas Hawaiian populations are self-compatible. Concordantly, S-RNase allelic diversity is reduced in Hawaii compared to the mainland. Hawaiian populations also exhibit significant inbreeding depression. CONCLUSIONS Self-compatibility in Hawaii and individual variation in self-fertility in mainland populations suggests that a colonization filter promoting uniparental reproduction may be acting in this system. Comparison of S-RNase variation suggests a collapse of allelic diversity and heterozygosity at the S-RNase locus in Hawaii, which likely contributed to mate limitation upon arrival to the Pacific. Inbreeding depression coupled with autonomous self-fertilization may have led to the evolution of gynodioecy on Maui.
Collapse
Affiliation(s)
- Jill S Miller
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Caitlin M Blank
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Rachel A Levin
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| |
Collapse
|
6
|
Miller JS, Kamath A, Husband BC, Levin RA. Correlated polymorphism in cytotype and sexual system within a monophyletic species, Lycium californicum. ANNALS OF BOTANY 2016; 117:307-17. [PMID: 26546375 PMCID: PMC4724043 DOI: 10.1093/aob/mcv167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Polyploidy has important effects on reproductive systems in plants and has been implicated in the evolution of dimorphic sexual systems. In particular, higher ploidy is associated with gender dimorphism across Lycium species (Solanaceae) and across populations within the species Lycium californicum. Previous research on the association of cytotype and sexual system within L. californicum sampled a limited portion of the species range, and did not investigate evolutionary transitions between sexual systems. Lycium californicum occurs in arid regions on offshore islands and mainland regions in the south-western United States and Mexico, motivating a more comprehensive analysis of intraspecific variation in sexual system and cytotype across the full range of this species. METHODS Sexual system (dimorphic vs. cosexual) was determined for 34 populations across the geographical range of L. californicum using field observations of pollen production, and was confirmed using morphological measurements and among-plant correlations of primary sexual traits. Ploidy was inferred using flow cytometry in 28 populations. DNA sequence data from four plastid and two nuclear regions were used to reconstruct relationships among populations and to map transitions in sexual system and ploidy. KEY RESULTS Lycium californicum is monophyletic, ancestrally diploid and cosexual, and the association of gender dimorphism and polyploidy appears to have two evolutionary origins in this species. Compared with cosexual populations, dimorphic populations had bimodal anther size distributions, negative correlations between male and female floral traits, and larger coefficients of variation for primary sexual traits. Flow cytometry confirmed tetraploidy in dimorphic populations, whereas cosexual populations were diploid. CONCLUSIONS Tetraploidy and gender dimorphism are perfectly correlated in L. californicum, and the distribution of tetraploid-dimorphic populations is restricted to populations in Arizona and the Baja California peninsula. The analysis suggests that tetraploidy and dimorphism likely established in Baja California and may have evolved multiple times.
Collapse
Affiliation(s)
- Jill S Miller
- Department of Biology, Amherst College, Amherst, MA 01002 USA,
| | - Ambika Kamath
- Department of Biology, Amherst College, Amherst, MA 01002 USA, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA and
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Rachel A Levin
- Department of Biology, Amherst College, Amherst, MA 01002 USA
| |
Collapse
|
7
|
Brisolara-Corrêa L, Thompson CE, Fernandes CL, de Freitas LB. Diversification and distinctive structural features of S-RNase alleles in the genus Solanum. Mol Genet Genomics 2014; 290:987-1002. [PMID: 25501309 DOI: 10.1007/s00438-014-0969-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 11/29/2022]
Abstract
The multigenic and multiallelic S-locus in plants is responsible for the gametophytic self-incompatibility system, which is important to prevent the detrimental effects of self-fertilization and inbreeding depression. Several studies have discussed the importance of punctual mutations, recombination, and natural selection in the generation of allelic diversity in the S-locus. However, there has been no wide-ranging study correlating the molecular evolution and structural aspects of the corresponding proteins in Solanum. Therefore, we evaluated the molecular evolution of one gene in this locus and generated a statistically well-supported phylogenetic tree, as well as evidence of positive selection, helping us to understand the diversification of S alleles in Solanum. The three-dimensional structures of some of the proteins corresponding to the major clusters of the phylogenetic tree were constructed and subsequently submitted to molecular dynamics to stabilize the folding and obtain the native structure. The positively selected amino acid residues were predominantly located in the hyper variable regions and on the surface of the protein, which appears to be fundamental for allele specificity. One of the positively selected residues was identified adjacent to a conserved strand that is crucial for enzymatic catalysis. Additionally, we have shown significant differences in the electrostatic potential among the predicted molecular surfaces in S-RNases. The structural results indicate that local changes in the three-dimensional structure are present in some regions of the molecule, although the general structure seems to be conserved. No previous study has described such structural variations in S-RNases.
Collapse
Affiliation(s)
- Lauís Brisolara-Corrêa
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
8
|
Blank CM, Levin RA, Miller JS. Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism. AMERICAN JOURNAL OF BOTANY 2014; 101:2160-2168. [PMID: 25480712 DOI: 10.3732/ajb.1400356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY An association between polyploidy and gender dimorphism has been noted in several plant lineages. Whereas the majority of Lycium species are diploid and have hermaphroditic flowers in cosexual populations, gender dimorphism (gynodioecy, dioecy) has been shown to be uniformly associated with polyploidy in previous studies. Preliminary field observations suggested that some populations of Lycium carolinianum were dimorphic, providing a test of this association.• METHODS We assessed sexual systems and cytotype variation (to infer ploidy) across 17 populations of L. carolinianum. Comparison of flowers in cosexual and dimorphic populations were used to infer changes in reproductive morphology associated with the evolution of gynodioecy.• KEY RESULTS The majority of populations were cosexual in gender expression, but dimorphism was present in the Yucatán and in some populations in Hawaii. Populations varied in ploidy and were either diploid or tetraploid. Floral sexual dimorphism was present in all gynodioecious populations, though the magnitude differed and was cryptic in some cases. Our results are consistent with the hypothesis that following the evolution of gynodioecy, flowers on hermaphrodites increased in size.• CONCLUSIONS Dimorphic sexual systems have likely evolved convergently in L. carolinianum. In contrast to previous studies, dimorphism is not perfectly associated with polyploidy. Although our sample from the Yucatán was both tetraploid and dimorphic, all populations in Hawaii were diploid regardless of sexual system. Ongoing phylogeographic and mating system studies will contribute to our understanding of reproductive evolution in this widespread, polymorphic species.
Collapse
Affiliation(s)
- Caitlin M Blank
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Rachel A Levin
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Jill S Miller
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| |
Collapse
|
9
|
Abstract
BACKGROUND Our understanding of the processes and dynamics of allopolyploid speciation, the long-term consequences of ploidal change, and the genetic and chromosomal changes in new emerged allopolyploids has substantially increased during the past few decades. Yet we remain uncertain about the time since lineage divergence when two taxa are capable of spawning such entities. Indeed, the matter has seemed intractable. Knowledge of the window of opportunity for allopolyploid production is very important because it provides temporal insight into a key evolutionary process, and a temporal reference against which other modes of speciation may be measured. SCOPE This Viewpoint paper reviews and integrates published information on the crossability of herbaceous species and the fertility of their hybrids in relation to species' divergence times. Despite limitations in methodology and sampling, the estimated times to hybrid sterility are somewhat congruent across disparate lineages. Whereas the waiting time for hybrid sterility is roughly 4-5 million years, the waiting time for cross-incompatibility is roughly 8-10 million years, sometimes considerably more. Strict allopolyploids may be formed in the intervening time window. The progenitors of several allopolyploids diverged between 4 and 6 million years before allopolyploid synthesis, as expected. This is the first study to propose a general temporal framework for strict allopolyploidy. This Viewpoint paper hopefully will stimulate interest in studying the tempo of speciation and the tempo of reproductive isolation in general.
Collapse
|
10
|
Liu Z, Shu Q, Wang L, Yu M, Hu Y, Zhang H, Tao Y, Shao Y. Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Paape T, Kohn JR. Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae). BMC Evol Biol 2011; 11:243. [PMID: 21854581 PMCID: PMC3175474 DOI: 10.1186/1471-2148-11-243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 08/19/2011] [Indexed: 12/04/2022] Open
Abstract
Background The S-RNases of the Solanaceae are highly polymorphic self-incompatibility (S-) alleles subject to strong balancing selection. Relatively recent diversification of S-alleles has occurred in the genus Physalis following a historical restriction of S-allele diversity. In contrast, the genus Solanum did not undergo a restriction of S-locus diversity and its S-alleles are generally much older. Because recovery from reduced S-locus diversity should involve increased selection, we employ a statistical framework to ask whether S-locus selection intensities are higher in Physalis than Solanum. Because different S-RNase lineages diversify in Physalis and Solanum, we also ask whether different sites are under selection in different lineages. Results Maximum-likelihood and Bayesian coalescent methods found higher intensities of selection and more sites under significant positive selection in the 48 Physalis S-RNase alleles than the 49 from Solanum. Highest posterior densities of dN/dS (ω) estimates show that the strength of selection is greater for Physalis at 36 codons. A nested maximum likelihood method was more conservative, but still found 16 sites with greater selection in Physalis. Neither method found any codons under significantly greater selection in Solanum. A random effects likelihood method that examines data from both taxa jointly confirmed higher selection intensities in Physalis, but did not find different proportions of sites under selection in the two datasets. The greatest differences in strengths of selection were found in the most variable regions of the S-RNases, as expected if these regions encode self-recognition specificities. Clade-specific likelihood models indicated some codons were under greater selection in background Solanum lineages than in specific lineages of Physalis implying that selection on sites may differ among lineages. Conclusions Likelihood and Bayesian methods provide a statistical approach to testing differential selection across populations or species. These tests appear robust to the levels of polymorphism found in diverse S-allele collections subject to strong balancing selection. As predicted, the intensity of selection at the S-locus was higher in the taxon with more recent S-locus diversification. This is the first confirmation by statistical test of differing selection intensities among self-incompatibility alleles from different populations or species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Plant Biology, University of Minnesota, 250 Biological Science Center, 1445 Gortner Ave, St, Paul, MN 55108, USA.
| | | |
Collapse
|
12
|
Abstract
Self-incompatibility (SI) is a genetic system found in some hermaphrodite plants. Recognition of pollen by pistils expressing cognate specificities at two linked genes leads to rejection of self pollen and pollen from close relatives, i.e., to avoidance of self-fertilization and inbred matings, and thus increased outcrossing. These genes generally have many alleles, yet the conditions allowing the evolution of new alleles remain mysterious. Evolutionary changes are clearly necessary in both genes, since any mutation affecting only one of them would result in a nonfunctional self-compatible haplotype. Here, we study diversification at the S-locus (i.e., a stable increase in the total number of SI haplotypes in the population, through the incorporation of new SI haplotypes), both deterministically (by investigating analytically the fate of mutations in an infinite population) and by simulations of finite populations. We show that the conditions allowing diversification are far less stringent in finite populations with recurrent mutations of the pollen and pistil genes, suggesting that diversification is possible in a panmictic population. We find that new SI haplotypes emerge fastest in populations with few SI haplotypes, and we discuss some implications for empirical data on S-alleles. However, allele numbers in our simulations never reach values as high as observed in plants whose SI systems have been studied, and we suggest extensions of our models that may reconcile the theory and data.
Collapse
|
13
|
Miller JS, Kostyun JL. Functional gametophytic self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae). Heredity (Edinb) 2010; 107:30-9. [PMID: 21119705 DOI: 10.1038/hdy.2010.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transition from self-incompatibility to self-compatibility is a common transition in angiosperms often reported in populations at the edge of species range limits. Geographically distinct populations of wild tomato species (Solanum section Lycopersicon (Solanaceae)) have been described as polymorphic for mating system with both self-incompatible and self-compatible populations. Using controlled pollinations and sequencing of the S-RNase mating system gene, we test the compatibility status of a population of S. peruvianum located near its southern range limit. Pollinations among plants of known genotypes revealed strong self-incompatibility; fruit set following compatible pollinations was significantly higher than following incompatible pollinations for all tested individuals. Sequencing of the S-RNase gene in parents and progeny arrays was also as predicted under self-incompatibility. Molecular variation at the S-RNase locus revealed a diverse set of alleles, and heterozygosity in over 500 genotyped individuals. We used controlled crosses to test the specificity of sequences recovered in this study; in all cases, results were consistent with a unique allelic specificity for each tested sequence, including two alleles sharing 92% amino-acid similarity. Site-specific patterns of selection at the S-RNase gene indicate positive selection in regions of the gene associated with allelic specificity determination and purifying selection in previously characterized conserved regions. Further, there is broad convergence between the present and previous studies in specific amino-acid positions inferred to be evolving under positive selection.
Collapse
Affiliation(s)
- J S Miller
- Department of Biology, Amherst College, MA, USA.
| | | |
Collapse
|
14
|
Miller JS, Kamath A, Damashek J, Levin RA. Out of America to Africa or Asia: Inference of Dispersal Histories Using Nuclear and Plastid DNA and the S-RNase Self-incompatibility Locus. Mol Biol Evol 2010; 28:793-801. [DOI: 10.1093/molbev/msq253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Roldán JA, Quiroga R, Goldraij A. Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alata. PLANT CELL REPORTS 2010; 29:735-46. [PMID: 20443007 DOI: 10.1007/s00299-010-0860-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 05/29/2023]
Abstract
Self-incompatibility in the Solanaceae is mediated by S-RNase alleles expressed in the style, which confer specificity for pollen recognition. Nicotiana alata has been successfully used as an experimental model to elucidate cellular and molecular aspects of S-RNase-based self-incompatibility in Solanaceae. However, S-RNase alleles of this species have not been surveyed from natural populations and consequently the S-haplotype diversity is poorly known. Here the molecular and functional characterization of seven S-RNase candidate sequences, identified from a natural population of N. alata, are reported. Six of these candidates, S ( 5 ), S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ), showed plant-specific amplification in the natural population and style-specific expression, which increased gradually during bud maturation, consistent with the reported S-RNase expression. In contrast, the S ( 63 ) ribonuclease was present in all plants examined and was ubiquitously expressed in different organs and bud developmental stages. Genetic segregation analysis demonstrated that S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ) alleles were fully functional novel S-RNases, while S ( 5 ) and S ( 63 ) resulted to be non-S-RNases, although with a clearly distinct pattern of expression. These results reveal the importance of performing functional analysis in studies of S-RNase allelic diversity. Comparative phylogenetic analysis of six species of Solanaceae showed that N. alata S-RNases were included in eight transgeneric S-lineages. Phylogenetic pattern obtained from the inclusion of the novel S-RNase alleles confirms that N. alata represents a broad sample of the allelic variation at the S-locus of the Solanaceae.
Collapse
Affiliation(s)
- Juan A Roldán
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | | | | |
Collapse
|
16
|
Levin RA, Whelan A, Miller JS. The utility of nuclear conserved ortholog set II (COSII) genomic regions for species-level phylogenetic inference in Lycium (Solanaceae). Mol Phylogenet Evol 2009; 53:881-90. [PMID: 19698795 DOI: 10.1016/j.ympev.2009.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 06/24/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
The identification of genomic regions with sufficient variation to elucidate fine-scale relationships among closely related species is a major goal of phylogenetic systematics. However, the accumulation of such multi-locus data sets brings its own challenges, given that gene trees do not necessarily represent the true species tree. Using genomic tools developed for Solanum (Solanaceae), we have evaluated the utility of nuclear conserved ortholog set II (COSII) regions for phylogenetic inference in tribe Lycieae (Solanaceae). Five COSII regions, with intronic contents ranging from 68% to 91%, were sequenced in 10 species. Their phylogenetic utility was assessed and compared with data from more commonly used nuclear (GBSSI, nrITS) and cpDNA spacer data. We compared the effectiveness of a traditional total evidence concatenation approach versus the recently developed Bayesian estimation of species trees (BEST) method to infer species trees given multiple independent gene trees. All of the sampled COSII regions had high numbers of parsimony-informative (PI) characters, and two of the COSII regions had more PI characters than the GBSSI, ITS, and cpDNA spacer data sets combined. COSII markers are a promising new tool for phylogenetic inference in Solanaceae, and should be explored in related groups. Both the concatenation and BEST approaches yielded similar topologies; however, when multiple individuals with polyphyletic alleles were included, BEST was clearly the more robust approach for inferring species trees in the presence of gene tree incongruence.
Collapse
Affiliation(s)
- Rachel A Levin
- Department of Biology, McGuire Life Sciences Building, Amherst College, Amherst, MA 01002, USA.
| | | | | |
Collapse
|
17
|
Cavatorta JR, Savage AE, Yeam I, Gray SM, Jahn MM. Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J Mol Evol 2008; 67:551-9. [PMID: 18953590 DOI: 10.1007/s00239-008-9172-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 09/08/2008] [Accepted: 09/29/2008] [Indexed: 01/26/2023]
Abstract
Explicit evaluation of the accuracy and power of maximum likelihood and Bayesian methods for detecting site-specific positive Darwinian selection presents a challenge because selective consequences of single amino acid changes are generally unknown. We exploited extensive molecular and functional characterization of amino acid substitutions in the plant gene eIF4E to evaluate the performance of these methods in detecting site-specific positive selection. We documented for the first time a molecular signature of positive selection within a recessive resistance gene in plants. We then used two statistical platforms, Phylogenetic Analysis Using Maximum Likelihood and Hypothesis Testing Using Phylogenies (HyPhy), to look for site-specific positive selection. Their relative power and accuracy are assessed by comparing the sites they identify as being positively selected with those of resistance-determining amino acids. Our results indicate that although both methods are surprisingly accurate in their identification of resistance sites, HyPhy appears to more accurately identify biologically significant amino acids using our data set.
Collapse
Affiliation(s)
- J R Cavatorta
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
18
|
Miller JS, Levin RA, Feliciano NM. A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 2008; 62:1052-65. [PMID: 18315577 DOI: 10.1111/j.1558-5646.2008.00358.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Over 50 years ago, Baker (1955, 1967) suggested that self-compatible species were more likely than self-incompatible species to establish new populations on oceanic islands. His logic was straightforward and rested on the assumption that colonization was infrequent; thus, mate limitation favored the establishment of self-fertilizing individuals. In support of Baker's rule, many authors have documented high frequencies of self-compatibility on islands, and recent work has solidified the generality of Baker's ideas. The genus Lycium (Solanaceae) has ca. 80 species distributed worldwide, and phylogenetic studies suggest that Lycium originated in South America and dispersed to the Old World a single time. Previous analyses of the S-RNase gene, which controls the stylar component of self-incompatibility, have shown that gametophytically controlled self-incompatibility is ancestral within the genus, making Lycium a good model for investigating Baker's assertions concerning reproductive assurance following oceanic dispersal. Lycium is also useful for investigations of reproductive evolution, given that species vary both in sexual expression and the presence of self-incompatibility. A model for the evolution of gender dimorphism suggests that polyploidy breaks down self-incompatibility, leading to the evolution of gender dimorphism, which arises as an alternative outcrossing mechanism. There is a perfect association of dimorphic gender expression, polyploidy, and self-compatibility (vs. cosexuality, diploidy, and self-incompatibility) among North American Lycium. Although the association between ploidy level and gender expression also holds for African Lycium, to date no studies of mating systems have been initiated in Old World species. Here, using controlled pollinations, we document strong self-incompatibility in two cosexual, diploid species of African Lycium. Further, we sequence the S-RNase gene in 15 individuals from five cosexual, diploid species of African Lycium and recover 24 putative alleles. Genealogical analyses indicate reduced trans-generic diversity of S-RNases in the Old World compared to the New World. We suggest that genetic diversity at this locus was reduced as a result of a founder event, but, despite the bottleneck, self-incompatibility was maintained in the Old World. Maximum-likelihood analyses of codon substitution patterns indicate that positive Darwinian selection has been relatively strong in the Old World, suggesting the rediversification of S-RNases following a bottleneck. The present data thus provide a dramatic exception to Baker's rule, in addition to supporting a key assumption of the Miller and Venable (2000) model, namely that self-incompatibility is associated with diploidy and cosexuality.
Collapse
Affiliation(s)
- Jill S Miller
- Department of Biology, Amherst College, Amherst, MA 01002, USA.
| | | | | |
Collapse
|
19
|
Igic B, Smith WA, Robertson KA, Schaal BA, Kohn JR. Studies of self-incompatibility in wild tomatoes: I. S-allele diversity in Solanum chilense (Dun.) Reiche [corrected] (Solanaceae). Heredity (Edinb) 2007; 99:553-61. [PMID: 17700636 DOI: 10.1038/sj.hdy.6801035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We characterized the molecular allelic variation of RNases at the self-incompatibility (SI) locus of Solanum chilense Dun. We recovered 30 S-RNase allele sequences from 34 plants representing a broad geographic sample. This yielded a species-wide estimate of 35 (95% likelihood interval 31-40) S-alleles. We performed crosses to confirm the association with SI function of 10 of the putative S-RNase allele sequences. Results in all cases were consistent with the expectation that these sequences represent functional alleles under single-locus gametophytic SI. We used the allele sequences to conduct an analysis of selection, as measured by the excess of nonsynonymous changes per site, and found evidence for adaptive changes both within the traditionally defined hypervariable regions and downstream, near the 3'-end of the molecule.
Collapse
Affiliation(s)
- B Igic
- Department of Biological Sciences, University of Illinois-Chicago, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
20
|
Castric V, Vekemans X. Evolution under strong balancing selection: how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae? BMC Evol Biol 2007; 7:132. [PMID: 17683611 PMCID: PMC2045110 DOI: 10.1186/1471-2148-7-132] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 08/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Molecular lock-and-key systems are common among reproductive proteins, yet their evolution remains a major puzzle in evolutionary biology. In the Brassicaceae, the genes encoding self-incompatibility have been identified, but technical challenges currently prevent detailed analyses of the molecular interaction between the male and female components. In the present study, we investigate sequence polymorphism in the female specificity determinant SRK of Arabidopsis halleri from throughout Europe. Using a comparative approach based on published SRK sequences in A. lyrata and Brassica, we track the signature of frequency-dependent selection acting on these genes at the codon level. Using simulations, we evaluate power and accuracy of our approach and estimate the proportion of codon sites involved in the molecular interaction.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de génétique et évolution des populations végétales UMR CNRS 8016, Cité Scientifique, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq cedex, France
| | - Xavier Vekemans
- Laboratoire de génétique et évolution des populations végétales UMR CNRS 8016, Cité Scientifique, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq cedex, France
| |
Collapse
|