1
|
Cheng S, Jacobs CGC, Mogollón Pérez EA, Chen D, van de Sanden JT, Bretscher KM, Verweij F, Bosman JS, Hackmann A, Merks RMH, van den Heuvel J, van der Zee M. A life-history allele of large effect shortens developmental time in a wild insect population. Nat Ecol Evol 2024; 8:70-82. [PMID: 37957313 DOI: 10.1038/s41559-023-02246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.
Collapse
Affiliation(s)
- Shixiong Cheng
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Elisa A Mogollón Pérez
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daipeng Chen
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joep T van de Sanden
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Femke Verweij
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jelle S Bosman
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Amke Hackmann
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | | |
Collapse
|
2
|
Kemp DJ. Genotype-environment interaction reveals varied developmental responses to unpredictable host phenology in a tropical insect. Evolution 2021; 75:1537-1551. [PMID: 33749853 DOI: 10.1111/evo.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Understanding the genetic architecture of life history plasticity may inform resilience under environmental change, but relatively little is known for the inhabitants of unpredictable wet-dry tropical environments. Here, I explore the quantitative genetics of juvenile growth and development relative to hostplant phenology in the butterfly Eurema hecabe. Wet season generations of this species breed explosively on leguminous annuals whereas dry season generations subsist at low density upon an alternative perennial host. The wet-to-dry season transition is temporally unpredictable and marked by widespread host defoliation, forcing a large cohort of stranded larvae to either pupate prematurely or prolong development in the hope of renewed foliage production. A split-brood experiment demonstrated greater performance on high quality annual as opposed to perennial host foliage and a marked decline under the stressed conditions faced by stranded wet season larvae. Genetic variances for rates of growth and development were equivalent among high quality treatments but strikingly elevated under resource stress, and the associated cross-environment genetic correlations were indistinguishable from zero. The results demonstrate genotype-environment interaction involving both rank order and variance scale, thereby revealing genetic variance for norms of reaction that may reflect variable risk aversion given an unpredictable tropical host phenology.
Collapse
Affiliation(s)
- Darrell J Kemp
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
3
|
Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Kawecki TJ. Sexual selection reveals a cost of pathogen resistance undetected in life-history assays. Evolution 2019; 74:338-348. [PMID: 31814118 PMCID: PMC7028033 DOI: 10.1111/evo.13895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023]
Abstract
Mechanisms of resistance to pathogens and parasites are thought to be costly and thus to lead to evolutionary trade‐offs between resistance and life‐history traits expressed in the absence of the infective agents. On the other hand, sexually selected traits are often proposed to indicate “good genes” for resistance, which implies a positive genetic correlation between resistance and success in sexual selection. Here I show that experimental evolution of improved resistance to the intestinal pathogen Pseudomonas entomophila in Drosophila melanogaster was associated with a reduction in male sexual success. Males from four resistant populations achieved lower paternity than males from four susceptible control populations in competition with males from a competitor strain, indicating an evolutionary cost of resistance in terms of mating success and/or sperm competition. In contrast, no costs were found in larval viability, larval competitive ability and population productivity assayed under nutritional limitation; together with earlier studies this suggests that the costs of P. entomophila resistance for nonsexual fitness components are negligible. Thus, rather than indicating heritable pathogen resistance, sexually selected traits expressed in the absence of pathogens may be sensitive to costs of resistance, even if no such costs are detected in other fitness traits.
Collapse
Affiliation(s)
- Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Environmental and Evolutionary Drivers of the Modular Gene Regulatory Network Underlying Phenotypic Plasticity for Stress Resistance in the Nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2019; 9:969-982. [PMID: 30679247 PMCID: PMC6404610 DOI: 10.1534/g3.118.200017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Organisms can cope with stressful environments via a combination of phenotypic plasticity at the individual level and adaptation at the population level. Changes in gene expression can play an important role in both. Significant advances in our understanding of gene regulatory plasticity and evolution have come from comparative studies in the field and laboratory. Experimental evolution provides another powerful path by which to learn about how differential regulation of genes and pathways contributes to both acclimation and adaptation. Here we present results from one such study using the nematode Caenorhabditis remanei We selected one set of lines to withstand heat stress and another oxidative stress. We then compared transcriptional responses to acute heat stress of both and an unselected control to the ancestral population using a weighted gene coexpression network analysis, finding that the transcriptional response is primarily dominated by a plastic response that is shared in the ancestor and all evolved populations. In addition, we identified several modules that respond to artificial selection by (1) changing the baseline level of expression, (2) altering the magnitude of the plastic response, or (3) a combination of the two. Our findings therefore reveal that while patterns of transcriptional response can be perturbed with short bouts of intense selection, the overall ancestral structure of transcriptional plasticity is largely maintained over time.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Department of Biology, William Jewell College, Liberty, Missouri 64068
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
6
|
Sikkink KL, Reynolds RM, Cresko WA, Phillips PC. Environmentally induced changes in correlated responses to selection reveal variable pleiotropy across a complex genetic network. Evolution 2015; 69:1128-42. [PMID: 25809411 PMCID: PMC5523853 DOI: 10.1111/evo.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/06/2015] [Indexed: 12/28/2022]
Abstract
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
- Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota, 55108
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
- Department of Biology, William Jewell College, Liberty, Missouri, 64068
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403.
| |
Collapse
|
7
|
Harrison JF, Cease AJ, Vandenbrooks JM, Albert T, Davidowitz G. Caterpillars selected for large body size and short development time are more susceptible to oxygen-related stress. Ecol Evol 2013; 3:1305-16. [PMID: 23762517 PMCID: PMC3678485 DOI: 10.1002/ece3.551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/03/2022] Open
Abstract
Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large-selected (big-fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small-fast) or an unselected control line. Individuals from the big-fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University Tempe, Arizona, 85287-4501
| | | | | | | | | |
Collapse
|
8
|
Lopatina EB, Kipyatkov VE, Balashov SV, Kutcherov DA. Photoperiod-temperature interaction-a new form of seasonal control of growth and development in insects and in particular a Carabid Beetle, Amara communis (Coleoptera: Carabidae). J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s002209301106010x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Allen CE, Zwaan BJ, Brakefield PM. Evolution of sexual dimorphism in the Lepidoptera. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:445-464. [PMID: 20822452 DOI: 10.1146/annurev-ento-120709-144828] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Among the animals, the Lepidoptera (moths and butterflies) are second only to beetles in number of described species and are known for their striking intra- and interspecific diversity. Within species, sexual dimorphism is a source of variation in life history (e.g., sexual size dimorphism and protandry), morphology (e.g., wing shape and color pattern), and behavior (e.g., chemical and visual signaling). Sexual selection and mating systems have been considered the primary forces driving the evolution of sexual dimorphism in the Lepidoptera, and alternative hypotheses have been neglected. Here, we examine opportunities for sexual selection, natural selection, and the interplay between the two forces in the evolution of sexual differences in the moths and butterflies. Our primary goal is to identify mechanisms that either facilitate or constrain the evolution of sexual dimorphism, rather than to resolve any perceived controversy between hypotheses that may not be mutually exclusive.
Collapse
Affiliation(s)
- Cerisse E Allen
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
10
|
Brakefield PM, Beldade P, Zwaan BJ. The African butterfly Bicyclus anynana: a model for evolutionary genetics and evolutionary developmental biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo122. [PMID: 20147150 DOI: 10.1101/pdb.emo122] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul M Brakefield
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
11
|
Yanagi SI, Tuda M. Interaction effect among maternal environment, maternal investment and progeny genotype on life history traits in Callosobruchus chinensis. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01653.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zwaan BJ, Zijlstra WG, Keller M, Pijpe J, Brakefield PM. Potential constraints on evolution: sexual dimorphism and the problem of protandry in the butterfly Bicyclus anynana. J Genet 2009; 87:395-405. [PMID: 19147929 DOI: 10.1007/s12041-008-0062-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The earlier mean adult emergence between males and females, protandry, has been well studied mathematically and in comparative studies. However, quantitative and evolutionary genetic research on protandry is scarce. The butterfly, Bicyclus anynana exhibits protandry and here we selected for each of the different combinations of male and female development time in this species, thus including direct selection on protandry (i.e., FAST, fast males and fast females; SLOW, slow males and slow females; FMSF, fast males and slow females; and SMFF, slow males and fast females). After eight generations of selection there was no significant response for increased or decreased protandry, whereas selection for increased or decreased development time in both sexes (FAST or SLOW) was successful. Continued selection (> 30 generations) for decreased or increased protandry showed a significant difference between the FMSFC and SMFFC lines (subscript c for continued selection), which was of the same magnitude as the nonsignificant difference observed between the FMSF and SMFF lines at generation eight. This indicated that the initial selection was successful, but that the difference between the lines did not increase with continued selection. Our results also indicate that the genetic covariance across sexes for development time is near unity. Interestingly, lines selected for decreased protandry (SMFF) had lower egg-to-adult survival, and broods from these lines had lower rates of egg hatching. This suggests that interactions with fertility might constrain certain directions of change in patterns of protandry. Moreover, selection yielded a change in the ratio of male to female development time for slow lines, suggesting that some amount of sex-specific genetic variance for development time is still present in this population. The FMSFC line showed the largest effect of selection on protandry, mainly through an effect on female developmental time. Lastly, our results show that temperature has an effect on the amount of protandry in the selected lines. These results are discussed in relation to the ecology of this species and the evolution of protandry.
Collapse
Affiliation(s)
- Bas J Zwaan
- Evolutionary Biology, Institute of Biology, University of Leiden, P. O. Box 9516, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Brakefield PM, Beldade P, Zwaan BJ. Culture and propagation of laboratory populations of the African butterfly Bicyclus anynana. Cold Spring Harb Protoc 2009; 2009:pdb.prot5203. [PMID: 20147155 DOI: 10.1101/pdb.prot5203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONThis protocol describes methods required for the culture of the African butterfly Bicyclus anynana. The larvae are typically fed and maintained on pot-grown maize plants (Zea mays) that are ~50 cm high. Males and females can be separated as pupae or adults. Adults are fed on moist banana and will readily mate in the laboratory. Females lay eggs on available grass plants. We use a standard temperature of 27°C (because an approximate rule is that developmental time is twice as long at 20°C), a high relative humidity of ~60%-70% (the exact level is not critical), and a 12:12 photoperiod similar to the climate experienced in the wet season near the equator. Both larval and pupal molts are gated by photoperiod and can be readily timed (e.g., by use of time-exposure filming). To set up cohorts of standard developmental stages, an appropriate timing for this photoperiod is chosen: Pupation usually occurs shortly after lights out, and larval molts also occur during the night. At ~27°C, egg development takes 4 d, and the total generation time is 5-6 wk, yielding about eight generations a year in selection experiments.
Collapse
Affiliation(s)
- Paul M Brakefield
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
14
|
Abstract
Genetic and developmental constraints have often been invoked to explain patterns of existing morphologies. Yet, empirical tests addressing this issue directly are still scarce. We here set out to investigate the importance of maternal body size as an evolutionary constraint on egg size in the tropical butterfly Bicyclus anynana, employing an artificial two-trait selection experiment on simultaneous changes in body and egg size (synergistic and antagonistic selection). Selection on maternal body size and egg size was successful in both the synergistic and the antagonistic selection direction. Yet, responses to selection and realized heritabilities varied across selection regimes: the most extreme values for pupal mass were found in the synergistic selection directions, whereas in the antagonistic selection direction realized heritabilities were low and nonsignificant in three of four cases. In contrast, for egg size the highest values were obtained in the lines selected for low pupal mass. Thus, selection on body size yielded a stronger correlated response in egg size than vice versa, which is likely to bias (i.e., constrain), if weakly, evolutionary change in body size. However, it seems questionable whether this will prevent evolution toward novel phenotypes, given enough time and that natural selection is strong. Correlated responses to selection were overall weak. Egg and larval development times tended to be associated with changes in maternal size, whereas variation in pupal development times weakly tended to follow variation in egg size. Lifetime fecundity was similar across selection regimes, except for females simultaneously selected for large body mass and small egg size, exhibiting increased fecundity. Multiple regressions showed that lifetime fecundity and concomitantly reproductive investment were primarily determined by longevity, as expected for an income breeder, whereas egg size was primarily determined by pupal mass. Evidence for a phenotypic trade-off between egg size and number was weak.
Collapse
|