1
|
Bay V, Keleş M, Aymaz R, Hatipoğlu E, Öner Y, Yaman Y. Documentation of extensive genetic diversity in the Ovar- DRB1 gene in native Turkish sheep. Anim Biotechnol 2021; 32:507-518. [PMID: 33606604 DOI: 10.1080/10495398.2021.1884086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Indigenous breeds have a high level of genetic diversity that might contribute to develop animal breeds with desired traits such as disease resistance and high productivity. Major histocompatibility complex (MHC) is a key component of adaptive immune system and consists of highly polymorphic genes that take part in adaptive immune response and disease resistance. Exploring and understanding the effect of polymorphisms in MHC could be beneficial to future animal breeding strategies. In this study, we sequenced the highly polymorphic Exon2 of the ovine DRB1 gene using Sanger sequencing to explore the diversity of this gene in six indigenous Turkish sheep breeds and two crossbreeds. In total, 894 haplotypes from 447 sheep were investigated, and 69 different haplotypes including 27 novel ones were identified. Among the identified haplotypes there were common and breed specific haplotypes. There was a relatively high diversity of the alleles within indigenous breeds. Allelic diversity patterns were mostly associated with geographical differences. The results of this study highlight the genetic variation within indigenous breeds which has important implications for biodiversity and the adaptability of breeds to specific environments. There is value to further studies which include other genomic regions and traits, and these could guide breeding strategies.
Collapse
Affiliation(s)
- Veysel Bay
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Murat Keleş
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Ramazan Aymaz
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Ecem Hatipoğlu
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Yasemin Öner
- Department of Biometry and Genetics, Faculty of Agriculture, Uludağ University, Bursa, Turkey
| | - Yalçın Yaman
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| |
Collapse
|
2
|
MHC Genotyping by SSCP and Amplicon-Based NGS Approach in Chamois. Animals (Basel) 2020; 10:ani10091694. [PMID: 32962183 PMCID: PMC7552744 DOI: 10.3390/ani10091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) code for cell surface proteins essential for adaptive immunity. They show the most outstanding genetic diversity in vertebrates, which has been connected with various fitness traits and thus with the long-term persistence of populations. In this study, polymorphism of the MHC class II DRB locus was investigated in chamois with Single-Strand Conformation Polymorphism (SSCP)/Sanger genotyping and Ion Torrent S5 next-generation sequencing (NGS). From eight identified DRB variants in 28 individuals, five had already been described, and three were new, undescribed alleles. With conventional SSCP/Sanger sequencing, we were able to detect seven alleles, all of which were also detected with NGS. We found inconsistencies in the individual genotypes between the two methods, which were mainly caused by allelic dropout in the SSCP/Sanger method. Six out of 28 individuals were falsely classified as homozygous with SSCP/Sanger analysis. Overall, 25% of the individuals were identified as genotyping discrepancies between the two methods. Our results show that NGS technologies are better performing in sequencing highly variable regions such as the MHC, and they also have a higher detection capacity, thus allowing a more accurate description of the genetic composition, which is crucial for evolutionary and population genetic studies.
Collapse
|
3
|
Peters SO, Hussain T, Adenaike AS, Adeleke MA, De Donato M, Hazzard J, Babar ME, Imumorin IG. Genetic Diversity of Bovine Major Histocompatibility Complex Class II DRB3 locus in cattle breeds from Asia compared to those from Africa and America. J Genomics 2018; 6:88-97. [PMID: 29928467 PMCID: PMC6004549 DOI: 10.7150/jgen.26491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic polymorphisms and diversity of BoLA-DRB3.2 are essential because of DRB3 gene's function in innate immunity and its association with infectious diseases resistance or tolerance in cattle. The present study was aimed at assessing the level of genetic diversity of DRB3 in the exon 2 (BoLA-DRB3.2) region in African, American and Asian cattle breeds. Amplification of exon 2 in 174 cattle revealed 15 haplotypes. The breeds with the highest number of haplotypes were Brangus (10), Sokoto Gudali (10) and Dajal (9), while the lowest number of haplotypes were found in Holstein and Sahiwal with 4 haplotypes each. Medium Joining network obtained from haplotypic data showed that all haplotypes condensed around a centric area and each sequence (except in H-3, H-51 and H-106) representing almost a specific haplotype. The BoLA-DRB3.2 sequence analyses revealed a non-significant higher rate of non-synonymous (dN) compared to synonymous substitutions (dS). The ratio of dN/dS substitution across the breeds were observed to be greater than one suggesting that variation at the antigen-binding sites is under positive selection; thus increasing the chances of these breeds to respond to wide array of pathogenic attacks. An analysis of molecular variance revealed that 94.01 and 5.99% of the genetic variation was attributable to differences within and among populations, respectively. Generally, results obtained suggest that within breed genetic variation across breeds is higher than between breeds. This genetic information will be important for investigating the relationship between BoLADRB3.2 and diseases in various cattle breeds studied with attendant implication on designing breeding programs that will aim at selecting individual cattle that carry resistant alleles.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149.,Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Adeyemi S Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), P/Bag X54001, Durban 4000, South Africa
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Quretaro, Mexico
| | - Jordan Hazzard
- Department of Animal Science, Berry College, Mount Berry, GA 30149
| | - Masroor E Babar
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ikhide G Imumorin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332.,African Institute for Bioscience Research and Training, Ibadan, Nigeria
| |
Collapse
|
4
|
Pradiee J, O’Brien E, Esteso M, Castaño C, Toledano-Díaz A, Lopez-Sebastián A, Marcos-Beltrán J, Vega R, Guillamón F, Martínez-Nevado E, Guerra R, Santiago-Moreno J. Effect of shortening the prefreezing equilibration time with glycerol on the quality of chamois (Rupicapra pyrenaica), ibex (Capra pyrenaica), mouflon (Ovis musimon) and aoudad (Ammotragus lervia) ejaculates. Anim Reprod Sci 2016; 171:121-8. [DOI: 10.1016/j.anireprosci.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
|
5
|
Cavallero S, Marco I, Lavín S, D'Amelio S, López-Olvera JR. Polymorphisms at MHC class II DRB1 exon 2 locus in Pyrenean chamois (Rupicapra pyrenaica pyrenaica). INFECTION GENETICS AND EVOLUTION 2012; 12:1020-6. [PMID: 22425496 DOI: 10.1016/j.meegid.2012.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/19/2012] [Accepted: 02/28/2012] [Indexed: 11/12/2022]
Abstract
Chamois (Rupicapra spp.) are mountain ungulates from Southern and Central Europe and the Near East. A newly reported border disease virus (BDV) has affected the easternmost populations of Pyrenean chamois, leading to a dramatic population decrease that may drive to genetic variability loss. The Major Histocompatibility Complex (MHC) is a sensitive marker for genetic variation of populations: polymorphism on the MHC genes is affected both by pathogens and population dynamics and it is ecologically relevant, as depending on host-pathogen relationships and life history features. In the present study MHC class II DRB1 exon 2 variation was investigated in 81 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) belonging to four populations. Haplotype analysis, population genetics statistics and network analysis were carried out, in order to analyze variability, phylogeography and genealogy, and the effects of geography and demographic trend. Twenty-nine haplotypes were identified, 26 of them newly described, with high Gene diversity (Gd). The variability observed in the easternmost populations of Pyrenean chamois showed a higher genetic diversity than that previously reported for other populations of Pyrenean and Cantabrian chamois (Rupicapra pyrenaica parva). The most frequent allele was RupyDRB*15, previously undetected, which seems to play a significant role in genotyping the variability, suggesting a possible effect of positive selection.
Collapse
Affiliation(s)
- Serena Cavallero
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
6
|
Shafer ABA, Fan CW, Cote SD, Coltman DW. (Lack of) Genetic Diversity in Immune Genes Predates Glacial Isolation in the North American Mountain Goat (Oreamnos americanus). J Hered 2012; 103:371-9. [DOI: 10.1093/jhered/esr138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra). BMC Evol Biol 2011; 11:272. [PMID: 21943106 PMCID: PMC3198967 DOI: 10.1186/1471-2148-11-272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA) and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe. Results We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia) were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles. Conclusions The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests that, contrary to the presumed Asian origin, the paternal lineage of chamois originated in the Mediterranean, most probably in the Iberian Peninsula, and dispersed eastwards through serial funding events during the glacial-interglacial cycles of the Quaternary. The diversity of Y-chromosomes in chamois is very low. The differences in patterns of variation among Y-chromosome, mtDNA and biparental microsatellites reflect the evolutionary characteristics of the different markers as well as the effects of sex-biased dispersal and species phylogeography.
Collapse
|
8
|
Rodríguez F, Pérez T, Hammer SE, Albornoz J, Domínguez A. Integrating phylogeographic patterns of microsatellite and mtDNA divergence to infer the evolutionary history of chamois (genus Rupicapra). BMC Evol Biol 2010; 10:222. [PMID: 20649956 PMCID: PMC2923631 DOI: 10.1186/1471-2148-10-222] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 07/22/2010] [Indexed: 01/24/2023] Open
Abstract
Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. However, a previous study of cytochrome b revealed that the two proposed species were non-monophyletic. The reconstruction of phylogenetic relationships between animal species often depends on the markers studied. To further elucidate the evolutionary history of chamois, we extended earlier studies by analysing DNA sequences of four mitochondrial regions (ND1, 12S, tRNApro and Control Region) and microsatellites (20 loci) to include all subspecies and cover its entire distribution range. Results We found discordant microsatellite (μsat) and mitochondrial (mt) DNA phylogenies. Mitochondrial phylogenies form three clades, West, Central and East (mtW, mtC and mtE), at variance with taxonomic classification. Our divergence age estimates indicate an initial separation into branches mtW-mtC and mtE 1.7 million years ago (mya), in the late Pliocene-early Pleistocene, quickly followed by the split of clades mtW and mtC. Clade mtW contains haplotypes from the Iberian peninsula and the western Alps, Clade mtC includes haplotypes from the Apennines and the Massif of Chartreuse and Clade mtE comprises populations to the east of the Alps. Divergence among populations within these three major clades is recent (< 0.5 mya). New microsatellite multilocus genotypes added to previously published data revealed differences between every pair of subspecies, forming three well defined groups (μsatW, μsatC and μsatE) also with a strong geographic signature. Grouping does not correspond with the mitochondrial lineages but is closer to morphology and taxonomic classification. Recent drastic reductions in population size can be noted for the subspecies ornata as an extremely low diversity. Conclusions The phylogeographic patterns for mtDNA and microsatellites suggest an evolutionary history with limited range contractions and expansions during the Quaternary period and reflect a major effect of the Alpine barrier on west-east differentiation. The contrasting phylogenies for mtDNA and microsatellites indicate events of hybridization among highly divergent lineages in the central area of distribution. Our study points to the importance of reticulate evolution, with periods of isolation and reduction of population size followed by expansions and hybridizations, in the diversification at the level of close species or subspecies.
Collapse
Affiliation(s)
- Fernando Rodríguez
- Departamento de Biología Funcional, Universidad de Oviedo, Genética, Julián Clavería 6, 33071 Oviedo, Spain
| | | | | | | | | |
Collapse
|
9
|
Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D'Amelio S, Rossi L, Meneguz PG, Bertorelle G. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Mol Ecol 2009; 17:4053-67. [PMID: 19238706 DOI: 10.1111/j.1365-294x.2008.03892.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen-mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high d(n)/d(s) ratio and the presence of trans-species polymorphisms suggest that a strong long-term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D-loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000-30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.
Collapse
Affiliation(s)
- S Mona
- Department of Biology and Evolution, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|