1
|
Talbert JA, Lu J, Spicer SK, Moore RE, Townsend SD, Gaddy JA. Ameliorating Adverse Perinatal Outcomes with Lactoferrin: An Intriguing Chemotherapeutic Intervention. Bioorg Med Chem 2022; 74:117037. [DOI: 10.1016/j.bmc.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
|
2
|
Ma Y, Jin J, Tong X, Yang W, Ren P, Dai Y, Pan Y, Zhang Y, Zhang S. ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet 2020; 37:657-667. [PMID: 31974739 PMCID: PMC7125252 DOI: 10.1007/s10815-019-01659-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The study investigated potential correlations between the expression levels of ADAMTS1 and HSPG2 in cumulus cells (CCs) and controlled ovarian hyperstimulation (COH) outcomes. METHODS RT-PCR was used to determine ADAMTS1 and HSPG2 mRNA levels in mice CCs at different timepoints (0, 4, 8, 12, and 16 h) after human chorionic gonadotropin (hCG) injection, and in CCs after RNAi treatment. Women with polycystic ovary syndrome (PCOS) (n = 45) and normal ovulatory controls (n = 103) undergoing IVF/ICSI were recruited. Relative ADAMTS1 and HSPG2 mRNA levels were measured by RT-PCR. Moreover, correlations of ADAMTS1 and HSPG2 levels with COH outcomes were analyzed. RESULTS At different timepoints after hCG treatment, ADAMTS1 mRNA had the highest level at 12 h, whereas HSPG2 showed opposite profiles to ADAMTS1 with the lowest level at 12 h. HSPG2 expression was upregulated after ADAMTS1 RNAi treatment The PCOS group had higher HSPG2 and lower ADAMTS1 expression levels than controls. In normal ovulatory women (control group), a higher expression of ADAMTS1 and lower expression of HSPG2 were associated with more mature oocytes, transplantable embryos, and good quality embryos, whereas higher transplantable embryo rates and good quality embryo rates were obtained only with lower HSPG2 expression. ROC curves showed the co-measurement of ADAMTS1 and HSPG2 had a better predictive power than separate analyses. CONCLUSION The dynamic profiles of ADAMTS1 and HSPG2 were inversely correlated in CCs. In PCOS and normal ovulatory patients, higher ADAMTS1 and lower HSPG2 expression levels in CCs were related to better COH outcomes.
Collapse
Affiliation(s)
- Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - YinLi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Arumugam P, Carroll KL, Berceli SA, Barnhill S, Wrenshall LE. Expression of a Functional IL-2 Receptor in Vascular Smooth Muscle Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:694-703. [PMID: 30598511 DOI: 10.4049/jimmunol.1701151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2018] [Indexed: 11/19/2022]
Abstract
Many nonlymphoid cell types express at least two, if not all three, subunits of the IL-2R; although, compared with lymphocytes, relatively little is known about how IL-2 affects the function of nonlymphoid cells. The limited information available suggests that IL-2 has a substantial impact on cells such as gastrointestinal epithelial cells, endothelial cells, and fibroblasts. In a previous report from our laboratory, we noted that IL-2 and IL-2Rβ-deficient mice lose smooth muscle cells over time, eventually resulting in aneurysmal aortas and ectatic esophagi. This finding, combined with our work showing that IL-2 surrounds vascular smooth muscle cells by association with perlecan, led us to ask whether vascular smooth muscle cells express an IL-2R. Toward this end, we reported the expression of IL-2Rβ on human and murine vascular smooth muscle cells. We now report that vascular smooth muscle cells express all three subunits of the IL-2R, and that expression of IL-2Rα varies with vascular smooth muscle cell phenotype. Furthermore, we show that, through a functional IL-2R, IL-2 initiates signaling pathways and impacts vascular smooth muscle cell function. Finally, we demonstrate that IL-2 expression increases upon initiation of conditions that promote intimal hyperplasia, suggesting a mechanism by which the IL-2/IL-2R system may impact this widespread vascular pathology.
Collapse
Affiliation(s)
- Prakash Arumugam
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435;
| | - Katie L Carroll
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435
| | - Scott A Berceli
- Department of Surgery, University of Florida, Gainesville, FL 32611.,Malcolm Randall Veteran's Administration Medical Center, Gainesville, FL 32611; and
| | - Spencer Barnhill
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435; .,Department of Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| |
Collapse
|
4
|
O'Callaghan P, Zhang X, Li JP. Heparan Sulfate Proteoglycans as Relays of Neuroinflammation. J Histochem Cytochem 2018; 66:305-319. [PMID: 29290138 DOI: 10.1369/0022155417742147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are implicated as inflammatory mediators in a variety of settings, including chemokine activation, which is required to recruit circulating leukocytes to infection sites. Heparan sulfate (HS) polysaccharide chains are highly interactive and serve co-receptor roles in multiple ligand:receptor interactions. HS may also serve as a storage depot, sequestering ligands such as cytokines and restricting their access to binding partners. Heparanase, through its ability to fragment HS chains, is a key regulator of HS function and has featured prominently in studies of HS's involvement in inflammatory processes. This review focuses on recent discoveries regarding the role of HSPGs, HS, and heparanase during inflammation, with particular focus on the brain. HS chains emerge as critical go-betweens in multiple aspects of the inflammatory response-relaying signals between receptors and cells. The molecular interactions proposed to occur between HSPGs and the pathogen receptor toll-like receptor 4 (TLR4) are discussed, and we summarize some of the contrasting roles that HS and heparanase have been assigned in diseases associated with chronic inflammatory states, including Alzheimer's disease (AD). We conclude by briefly discussing how current knowledge could potentially be applied to augment HS-mediated events during sustained neuroinflammation, which contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Pérol L, Piaggio E. New Molecular and Cellular Mechanisms of Tolerance: Tolerogenic Actions of IL-2. Methods Mol Biol 2016; 1371:11-28. [PMID: 26530792 DOI: 10.1007/978-1-4939-3139-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interleukin-2 (IL-2) is an old molecule with brand new functions. Indeed, IL-2 has been first described as a T-cell growth factor but recent data pointed out that its main function in vivo is the maintenance of immune tolerance. Mechanistically, IL-2 is essential for the development and function of CD4(+) Foxp3(+) regulatory T cells (Treg cells) that are essential players in the control of immune responded to self, tumors, microbes and grafts. Treg cells are exquisitely sensitive to IL-2 due to their constitutive expression of the high affinity IL-2 receptor (IL-2R) and the new paradigm suggests that low-doses of IL-2 could selectively boost Treg cells in vivo. Consequently, a growing body of clinical research is aiming at using IL-2 at low doses as a tolerogenic drug to boost endogenous Treg cells in patients suffering from autoimmune or inflammatory conditions. In this manuscript, we briefly review IL-2/IL-2R biology and the role of IL-2 in the development, maintenance, and function of Treg cells; and also its effects on other immune cell populations such as CD4(+) T helper cells and CD8(+) memory T cells. Then, focusing on type 1 diabetes, we review the preclinical studies and clinical trials supporting the use of low-doses IL-2 as a tolerogenic immunotherapy. Finally, we discuss the limitations and future directions for IL-2 based immunotherapy.
Collapse
Affiliation(s)
- Louis Pérol
- INSERM U932, 26 rue d'Ulm, 75005, Paris, France.
- Institut Curie, Section Recherche, 26 rue d'Ulm, 75005, Paris, France.
| | - Eliane Piaggio
- INSERM U932, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Section Recherche, 26 rue d'Ulm, 75005, Paris, France
| |
Collapse
|
6
|
Identification of a cytotoxic form of dimeric interleukin-2 in murine tissues. PLoS One 2014; 9:e102191. [PMID: 25019288 PMCID: PMC4097599 DOI: 10.1371/journal.pone.0102191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/16/2014] [Indexed: 01/29/2023] Open
Abstract
Interleukin-2 (IL-2) is a multi-faceted cytokine, known for promoting proliferation, survival, and cell death depending on the cell type and state. For example, IL-2 facilitates cell death only in activated T cells when antigen and IL-2 are abundant. The availability of IL-2 clearly impacts this process. Our laboratory recently demonstrated that IL-2 is retained in blood vessels by heparan sulfate, and that biologically active IL-2 is released from vessel tissue by heparanase. We now demonstrate that heparanase digestion also releases a dimeric form of IL-2 that is highly cytotoxic to cells expressing the IL-2 receptor. These cells include "traditional" IL-2 receptor-bearing cells such as lymphocytes, as well as those less well known for IL-2 receptor expression, such as epithelial and smooth muscle cells. The morphologic changes and rapid cell death induced by dimeric IL-2 imply that cell death is mediated by disruption of membrane permeability and subsequent necrosis. These findings suggest that IL-2 has a direct and unexpectedly broad influence on cellular homeostatic mechanisms in both immune and non-immune systems.
Collapse
|
7
|
Simon Davis DA, Parish CR. Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013; 4:470. [PMID: 24391644 PMCID: PMC3866581 DOI: 10.3389/fimmu.2013.00470] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting diverse functions. In fact, a bioinformatics analysis of mammalian proteins that express a heparin/HS-binding motif and are associated with the immune system identified 235 candidate proteins, the majority having an intracellular location. This simple analysis suggests that HS may, in fact, interact with many more components of the immune system than previously realized. Numerous studies have also directly demonstrated that HS plays multiple prominent functional roles in the immune system that are briefly reviewed in this article. In particular, the molecule has been shown to regulate leukocyte development, leukocyte migration, immune activation, and inflammatory processes.
Collapse
Affiliation(s)
- David Anak Simon Davis
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|
8
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
9
|
Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol 2011; 90:252-68. [PMID: 22136726 DOI: 10.1139/o11-056] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lactoferrin (Lf) belongs to the family of antimicrobial molecules that constitute the principal defense line of nonvertebrate organisms. In human immunity, their roles are considerably extended, and actually exceed mere direct antimicrobial properties. As a result, Lf is involved in both innate and adaptive immunities where its modulating effects not only help the host fight against microbes but also protect the host against harmful effects of inflammation. Such beneficial effects have been noticed in studies using dietary Lf, without the experimenters always explaining the exact modes of action of Lf. Effects on mucosal and systemic immunities are indeed often observed, which make the roles of Lf tricky to decipher. It is now known that the immunomodulatory properties of Lf are due to its ability to interact with numerous cellular and molecular targets. At the cellular level, Lf modulates the migration, maturation, and functions of immune cells. At the molecular level, in addition to iron binding, interactions of Lf with a plethora of compounds, either soluble or cell-surface molecules, account for its modulatory properties. This paper reviews our current understanding of the mechanisms that explain the regulatory properties of Lf in immune and inflammatory processes.
Collapse
Affiliation(s)
- Dominique Legrand
- UMR 8576 CNRS / Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Coombe DR. IL-2 repositioned. Immunol Cell Biol 2011; 90:135-6. [PMID: 21826066 DOI: 10.1038/icb.2011.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deirdre R Coombe
- Molecular Immunology, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6000, Australia.
| |
Collapse
|
11
|
Interleukin-2 is present in human blood vessels and released in biologically active form by heparanase. Immunol Cell Biol 2011; 90:159-67. [PMID: 21606942 PMCID: PMC3162067 DOI: 10.1038/icb.2011.45] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-2 is a multifaceted cytokine with both immunostimulatory and immunosuppressive properties. Our laboratory recently demonstrated that the availability of IL-2 is regulated, in part, by association with perlecan, a heparan sulfate proteoglycan. Given the abundance of perlecan in blood vessels, we asked whether IL-2 is present in vessel walls. Our results indicate that IL-2 is associated with endothelial and smooth muscle cells within the human arterial wall. This IL-2 is released by heparanase, and promotes the proliferation of an IL-2 dependent cell line. Given the presence of IL-2 in human arteries, we asked whether the large vessels of IL-2 deficient mice were normal. The aortas of IL-2 deficient mice exhibited a loss of smooth muscle cells, suggesting that IL-2 may contribute to their survival. In their entirety, these results suggest a here-to-fore unrecognized role of IL-2 in vascular biology, and have significant implications for both the immune and cardiovascular systems.
Collapse
|
12
|
Li Z, Zhang Y, Liu Z, Wu X, Zheng Y, Tao Z, Mao K, Wang J, Lin G, Tian L, Ji Y, Qin M, Sun S, Zhu X, Sun B. ECM1 controls T(H)2 cell egress from lymph nodes through re-expression of S1P(1). Nat Immunol 2011; 12:178-85. [PMID: 21217760 DOI: 10.1038/ni.1983] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/08/2010] [Indexed: 12/13/2022]
Abstract
Type 2 helper T cells (T(H)2) are critically involved in allergies and asthma. Here we demonstrate that extracellular matrix protein-1 (ECM1) is highly and selectively expressed in T(H)2 cells. ECM1 deficiency caused impaired T(H)2 responses and reduced allergic airway inflammation in vivo. Functional analysis demonstrated that although the T(H)2 polarization of ECM1-deficient cells was unimpaired, these cells had a defect in migration and were retained in peripheral lymphoid organs. This was associated with reduced expression of KLF2 and S1P(1). We also found that ECM1 could directly bind the interleukin-2 (IL-2) receptor to inhibit IL-2 signaling and activate S1P(1) expression. Our data identify a previously unknown function of ECM1 in regulating T(H)2 cell migration through control of KLF2 and S1P(1) expression.
Collapse
Affiliation(s)
- Zhenhu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gill S, Wight TN, Frevert CW. Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec (Hoboken) 2010; 293:968-81. [PMID: 20503391 DOI: 10.1002/ar.21094] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure to viruses and bacteria results in lung infections and places a significant burden on public health. The innate immune system is an early warning system that recognizes viruses and bacteria, which results in the rapid production of inflammatory mediators such as cytokines and chemokines and the pulmonary recruitment of leukocytes. When leukocytes emigrate from the systemic circulation through the extracellular matrix (ECM) in response to lung infection they encounter proteoglycans, which consist of a core protein and their associated glycosaminoglycans. In this review, we discuss how proteoglycans serve to modify the pulmonary inflammatory response and leukocyte migration through a number of different mechanisms including: (1) The ability of soluble proteoglycans or fragments of glycosaminoglycans to activate Toll-like receptor (TLRs) signaling pathways; (2) The binding and sequestration of cytokines, chemokines, and growth factors by proteoglycans; (3) the ability of proteoglycans and hyaluronan to facilitate leukocyte adhesion and sequestration; and (4) The interactions between proteoglycans and matrix metalloproteinases (MMP) that alter the function of these proteases. In conclusion, proteoglycans fine-tune tissue inflammation through a number of different mechanisms. Clarification of the mechanisms whereby proteoglycans modulate the pulmonary inflammatory response will most likely lead to new therapeutic approaches to inflammatory lung disease and lung infection.
Collapse
Affiliation(s)
- Sean Gill
- Center for Lung Biology, University of Washington School of Medicine at South Lake Union, Seattle, Washington, USA
| | | | | |
Collapse
|