1
|
Weber-Stout M, Nicholson RJ, Dumaguit CDC, Holland WL, Summers SA. Ceramide microdomains: the major influencers of the sphingolipid media platform. Biochem Soc Trans 2024; 52:1765-1776. [PMID: 39082976 PMCID: PMC11845337 DOI: 10.1042/bst20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Like 'influencers' who achieve fame and power through social media, ceramides are low abundance members of communication platforms that have a mighty impact on their surroundings. Ceramide microdomains form within sphingolipid-laden lipid rafts that confer detergent resistance to cell membranes and serve as important signaling hubs. In cells exposed to excessive amounts of saturated fatty acids (e.g. in obesity), the abundance of ceramide-rich microdomains within these rafts increases, leading to concomitant alterations in cellular metabolism and survival that contribute to cardiometabolic disease. In this mini-review, we discuss the evidence supporting the formation of these ceramide microdomains and describe the spectrum of harmful ceramide-driven metabolic actions under the context of an evolutionary theory. Moreover, we discuss the proximal 'followers' of these ceramide media stars that account for the diverse intracellular actions that allow them to influence obesity-linked disease.
Collapse
Affiliation(s)
- Mariah Weber-Stout
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Carlos Dave C Dumaguit
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| |
Collapse
|
2
|
Suhrland C, Truman JP, Obeid LM, Sitharaman B. Oxidized graphene nanoparticles as a delivery system for the pro-apoptotic sphingolipid C 6 ceramide. J Biomed Mater Res A 2018; 107:25-37. [PMID: 30422374 DOI: 10.1002/jbm.a.36474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
Sphingolipids such as ceramide have attracted much attention as possible anticancer agents due to their potent pro-apoptotic effects. However, due to their extreme hydrophobicity, there is currently no clinically approved delivery method for in vivo use as a therapeutic agent. To this end, we have developed a novel method for loading the short-chain C6 ceramide onto oxidized graphene nanoribbons (O-GNRs) and graphene nanoplatelets (GNPs). Mass spectrometry revealed loading efficiencies of 57% and 51.5% for C6 ceramide onto O-GNRs and GNPs, respectively. The PrestoBlue viability assay revealed that 100 µg/mL of C6 ceramide-loaded O-GNRs and C6 ceramide-loaded GNPs reduced HeLa cell viability by approximately 93% and approximately 76%, respectively, compared to untreated HeLa cells, while equal concentrations of these nanoparticles without C6 ceramide did not significantly reduce HeLa cell viability. We confirmed that this cytotoxicity was apoptotic in nature via capase-3 activity and Hoechst staining. Using live-cell confocal imaging with the fluorescent NBD-ceramide loaded on O-GNRs, we observed robust uptake into HeLa cells within 30 min while NBD-ceramide on its own was uptaken much more rapidly. Transmission electron microscopy confirmed that C6 ceramide-loaded O-GNRs were actually entering cells. Taken together, these data show that O-GNRs are a promising delivery agent for ceramide. To our knowledge, this study is the first to use such a loading method. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 25-37, 2019.
Collapse
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jean-Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, New York, New York
| | - Lina M Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, New York, New York
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
4
|
Aerts JM, Boot RG, van Eijk M, Groener J, Bijl N, Lombardo E, Bietrix FM, Dekker N, Groen AK, Ottenhoff R, van Roomen C, Aten J, Serlie M, Langeveld M, Wennekes T, Overkleeft HS. Glycosphingolipids and insulin resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:99-119. [PMID: 21910085 DOI: 10.1007/978-1-4614-0650-1_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosphingolipids are structural membrane components, residing largely in the plasma membrane with their sugar-moieties exposed at the cell's surface. In recent times a crucial role for glycosphingolipids in insulin resistance has been proposed. A chronic state of insulin resistance is a rapidly increasing disease condition in Western and developing countries. It is considered to be the major underlying cause of the metabolic syndrome, a combination of metabolic abnormalities that increases the risk for an individual to develop Type 2 diabetes, obesity, cardiovascular disease, polycystic ovary syndrome and nonalcoholic fatty liver disease. As discussed in this chapter, the evidence for a direct regulatory interaction of glycosphingolipids with insulin signaling is still largely indirect. However, the recent finding in animal models that pharmacological reduction of glycosphingolipid biosynthesis ameliorates insulin resistance and prevents some manifestations of metabolic syndrome, supports the view that somehow glycosphingolipids act as critical regulators, Importantly, since reductions in glycosphingolipid biosynthesis have been found to be well tolerated, such approaches may have a therapeutic potential.
Collapse
Affiliation(s)
- Johannes M Aerts
- Department of Medical Biochemistry, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stegmaier P, Krull M, Voss N, Kel AE, Wingender E. Molecular mechanistic associations of human diseases. BMC SYSTEMS BIOLOGY 2010; 4:124. [PMID: 20815942 PMCID: PMC2946303 DOI: 10.1186/1752-0509-4-124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/06/2010] [Indexed: 01/05/2023]
Abstract
Background The study of relationships between human diseases provides new possibilities for biomedical research. Recent achievements on human genetic diseases have stimulated interest to derive methods to identify disease associations in order to gain further insight into the network of human diseases and to predict disease genes. Results Using about 10000 manually collected causal disease/gene associations, we developed a statistical approach to infer meaningful associations between human morbidities. The derived method clustered cardiometabolic and endocrine disorders, immune system-related diseases, solid tissue neoplasms and neurodegenerative pathologies into prominent disease groups. Analysis of biological functions confirmed characteristic features of corresponding disease clusters. Inference of disease associations was further employed as a starting point for prediction of disease genes. Efforts were made to underpin the validity of results by relevant literature evidence. Interestingly, many inferred disease relationships correspond to known clinical associations and comorbidities, and several predicted disease genes were subjects of therapeutic target research. Conclusions Causal molecular mechanisms present a unifying principle to derive methods for disease classification, analysis of clinical disorder associations, and prediction of disease genes. According to the definition of causal disease genes applied in this study, these results are not restricted to genetic disease/gene relationships. This may be particularly useful for the study of long-term or chronic illnesses, where pathological derangement due to environmental or as part of sequel conditions is of importance and may not be fully explained by genetic background.
Collapse
Affiliation(s)
- Philip Stegmaier
- BIOBASE GmbH, Halchtersche Strasse 33, D-38304 Wolfenbüttel, Germany.
| | | | | | | | | |
Collapse
|
6
|
Thrush AB, Brindley DN, Chabowski A, Heigenhauser GJ, Dyck DJ. Skeletal muscle lipogenic protein expression is not different between lean and obese individuals: a potential factor in ceramide accumulation. J Clin Endocrinol Metab 2009; 94:5053-61. [PMID: 19837942 DOI: 10.1210/jc.2008-2565] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Skeletal muscle lipid content is increased in obesity. Recent evidence suggests that fatty acid (FA) storage as triacylglycerol (TAG) represents a metabolically safe pool compared to the more bioactive diacylglycerol (DAG) and ceramide. OBJECTIVE/DESIGN The purpose of this study was to compare the expression of lipogenic proteins and ceramide and DAG content in skeletal muscle of lean and obese humans. We hypothesized that lipogenic protein expression would be increased in obese to facilitate the storage of excess FA as TAG. PARTICIPANTS Eighteen lean (BMI < or = 26 kg/m(2)) and 15 obese (BMI > 29 kg/m(2)) women participated in this study. RESULTS There was no difference in the expression of any lipogenic (stearoyl-CoA desaturase-1, stearoyl retinol binding protein-1c, mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase-1) or sphingolipid proteins measured between lean and obese humans. Total ceramide was increased in muscle from obese humans (lean vs. obese, 529.4 +/- 54.8 vs. 672.4 +/- 57.4 nmol/g; P < 0.05), but there was no difference in total DAG content (lean vs. obese, 2244.1 +/- 278.2 vs. 1941.4 +/- 165.0 nmol/g). Content of protein phosphatase 2A, a ceramide target, was increased in muscle of obese humans (P < 0.05). CONCLUSIONS We propose that in muscle of obese humans there is an insufficient lipogenic response to the lipid oversupply, allowing more FA to be stored as reactive lipid species, particularly ceramide, potentially contributing to subsequent metabolic complications.
Collapse
Affiliation(s)
- A Brianne Thrush
- Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, Room 203, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | |
Collapse
|
7
|
Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58:337-43. [PMID: 19008343 PMCID: PMC2628606 DOI: 10.2337/db08-1228] [Citation(s) in RCA: 508] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To quantitate plasma ceramide subspecies concentrations in obese subjects with type 2 diabetes and relate these plasma levels to the severity of insulin resistance. Ceramides are a putative mediator of insulin resistance and lipotoxicity, and accumulation of ceramides within tissues in obese and diabetic subjects has been well described. RESEARCH DESIGN AND METHODS We analyzed fasting plasma ceramide subspecies by quantitative tandem mass spectrometry in 13 obese type 2 diabetic patients and 14 lean healthy control subjects. Results were related to insulin sensitivity measured with the hyperinsulinemic-euglycemic clamp technique and with plasma tumor necrosis factor-alpha (TNF-alpha) levels, a marker of inflammation. Ceramide species (C18:1, 18:0, 20:0, 24:1, and 24:0) were quantified using electrospray ionization tandem mass spectrometry after separation with high-performance liquid chromatography. RESULTS Insulin sensitivity (mg x kg(-1) x min(-1)) was lower in type 2 diabetic patients (4.90 +/- 0.3) versus control subjects (9.6 +/- 0.4) (P < 0.0001). Type 2 diabetic subjects had higher (P < 0.05) concentrations of C18:0, C20:0, C24:1, and total ceramide. Insulin sensitivity was inversely correlated with C18:0, C20:0, C24:1, C24:0, and total ceramide (all P < 0.01). Plasma TNF-alpha concentration was increased (P < 0.05) in type 2 diabetic subjects and correlated with increased C18:1 and C18:0 ceramide subspecies. CONCLUSIONS Plasma ceramide levels are elevated in type 2 diabetic subjects and may contribute to insulin resistance through activation of inflammatory mediators, such as TNF-alpha.
Collapse
Affiliation(s)
- Jacob M Haus
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE. IRS1-independent defects define major nodes of insulin resistance. Cell Metab 2008; 7:421-33. [PMID: 18460333 PMCID: PMC2443409 DOI: 10.1016/j.cmet.2008.04.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/20/2008] [Accepted: 04/07/2008] [Indexed: 12/16/2022]
Abstract
Insulin resistance is a common disorder caused by a wide variety of physiological insults, some of which include poor diet, inflammation, anti-inflammatory steroids, hyperinsulinemia, and dyslipidemia. The common link between these diverse insults and insulin resistance is widely considered to involve impaired insulin signaling, particularly at the level of the insulin receptor substrate (IRS). To test this model, we utilized a heterologous system involving the platelet-derived growth factor (PDGF) pathway that recapitulates many aspects of insulin action independently of IRS. We comprehensively analyzed six models of insulin resistance in three experimental systems and consistently observed defects in both insulin and PDGF action despite a range of insult-specific defects within the IRS-Akt nexus. These findings indicate that while insulin resistance is associated with multiple deficiencies, the most deleterious defects and the origin of insulin resistance occur independently of IRS.
Collapse
Affiliation(s)
- Kyle L Hoehn
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 2007; 56:394-403. [PMID: 17259384 DOI: 10.2337/db06-0823] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In muscle cells, insulin elicits recruitment of the glucose transporter GLUT4 to the plasma membrane. This process engages sequential signaling from insulin receptor substrate (IRS)-1 to phosphatidylinositol (PI) 3-kinase and the serine/threonine kinase Akt. GLUT4 translocation also requires an Akt-independent but PI 3-kinase-and Rac-dependent remodeling of filamentous actin. Although IRS-1 phosphorylation is often reduced in insulin-resistant states in vivo, several conditions eliciting insulin resistance in cell culture spare this early step. Here, we show that insulin-dependent Rac activation and its consequent actin remodeling were abolished upon exposure of L6 myotubes beginning at doses of C2-ceramide or oxidant-producing glucose oxidase as low as 12.5 micromol/l and 12.5 mU/ml, respectively. At 25 micromol/l and 25 mU/ml, glucose oxidase and C2-ceramide markedly reduced GLUT4 translocation and glucose uptake and lowered Akt phosphorylation on Ser473 and Thr308, yet they affected neither IRS-1 tyrosine phosphorylation nor its association with p85 and PI 3-kinase activity. Small interfering RNA-dependent Rac1 knockdown prevented actin remodeling and GLUT4 translocation but spared Akt phosphorylation, suggesting that Rac and actin remodeling do not contribute to overall Akt activation. We propose that ceramide and oxidative stress can each affect two independent arms of insulin signaling to GLUT4 at distinct steps, Rac-GTP loading and Akt phosphorylation.
Collapse
Affiliation(s)
- Lellean JeBailey
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|