1
|
Coppola A, Capuani B, Pacifici F, Pastore D, Arriga R, Bellia A, Andreadi A, Di Daniele N, Lauro R, Della-Morte D, Sconocchia G, Lauro D. Activation of Peripheral Blood Mononuclear Cells and Leptin Secretion: New Potential Role of Interleukin-2 and High Mobility Group Box (HMGB)1. Int J Mol Sci 2021; 22:7988. [PMID: 34360753 PMCID: PMC8347813 DOI: 10.3390/ijms22157988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
Activation of innate immunity and low-grade inflammation contributes to hyperglycemia and an onset of Type 2 Diabetes Mellitus (T2DM). Interleukin-2 (IL-2), leptin, High Mobility Group Box-1 (HMGB-1), and increased glucose concentrations are mediators of these processes also by modulating peripheral blood mononuclear cells (PBMCs) response. The aim of this study was to investigate if HMGB-1 and IL-2 turn on PBMCs and their leptin secretion. In isolated human PBMCs and their subpopulations from healthy individuals and naïve T2DM patients, leptin release, pro-inflammatory response and Toll-like Receptors (TLRs) activation was measured. After treatment with IL-2 and HMGB1, NK (Natural Killer) have the highest amount of leptin secretion, whilst NK-T have the maximal release in basal conditions. TLR4 (TAK242) and/or TLR2 (TLR2-IgA) inhibitors decreased leptin secretion after IL-2 and HMGB1 treatment. A further non-significant increase in leptin secretion was reported in PBMCs of naive T2DM patients in response to IL-2 and HMGB-1 stimulation. Finally, hyperglycemia or hyperinsulinemia might stimulate leptin secretion from PBMCs. The amount of leptin released from PBMCs after the different treatments was enough to stimulate the secretion of IL-1β from monocytes. Targeting leptin sera levels and secretion from PBMCs could represent a new therapeutic strategy to counteract metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Andrea Coppola
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council Rome, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
2
|
Volden PA, Wonder EL, Skor MN, Carmean CM, Patel FN, Ye H, Kocherginsky M, McClintock MK, Brady MJ, Conzen SD. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res (Phila) 2013; 6:634-45. [PMID: 23780289 DOI: 10.1158/1940-6207.capr-12-0458] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of "triple-negative" breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e., during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2, and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed-conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent preinvasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer.
Collapse
Affiliation(s)
- Paul A Volden
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Adipocyte pyruvate dehydrogenase kinase 4 expression is associated with augmented PPARγ upregulation in early-life programming of later obesity. FEBS Open Bio 2012; 2:32-6. [PMID: 23650578 PMCID: PMC3642103 DOI: 10.1016/j.fob.2012.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 01/08/2023] Open
Abstract
We studied adipocytes from 8-week-old control rat offspring (CON) or rat offspring subjected to maternal low (8%) protein (MLP) feeding during pregnancy/lactation, a procedure predisposing to obesity. Acute exposure to isoproterenol or adenosine enhanced PDK4 and PPARγ mRNA gene expression in CON and MLP adipocytes. Enhanced adipocyte Pdk4 expression correlated with increased PPARγ expression. Higher levels of PDK4 and PPARγ were observed in MLP adipocytes. SCD1 is a PPARγ target. Isoproterenol enhanced adipocyte PDK4 and SCD1 gene expression in parallel. This could reflect augmented PPARγ expression together with enhanced lipolytic stimulation to supply endogenous PPARγ ligands, allowing enhanced adipocyte PDK4 and SCD1 expression via PPARγ activation. In contrast, the effect of adenosine to increase PDK4 expression is independent of stimulation of lipolysis and, as SCD1 expression was unaffected by adenosine, unlikely to reflect PPARγ activation. Increased adipocyte expression of both PDK4 and SCD1 in the MLP model could participate as components of a "thrifty" phenotype, favouring the development of obesity.
Collapse
Key Words
- ADO, adenosine
- Adipose tissue
- BSA, bovine serum albumin
- CON, control
- HSL, hormone-sensitive lipase
- ISO, isoproterenol
- KRHB, Krebs–Ringer HEPES buffer
- Lipogenesis
- MLP, maternal low protein
- NEFA, non-esterified fatty acid
- PC, pyruvate carboxylase
- PDC, pyruvate dehydrogenase complex
- PDK, pyruvate dehydrogenase kinase
- PEPCK, phosphoenolpyruvate carboxykinase
- PPAR, peroxisome proliferator-activated receptor
- Programming
- Pyruvate dehydrogenase complex
- SCD, stearoyl-CoA desaturase
- TAG, triacylglycerol
- WAT, white adipose tissue
Collapse
|
4
|
Brunner Y, Schvartz D, Priego-Capote F, Couté Y, Sanchez JC. Glucotoxicity and pancreatic proteomics. J Proteomics 2009; 71:576-91. [DOI: 10.1016/j.jprot.2008.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/29/2008] [Accepted: 10/18/2008] [Indexed: 02/02/2023]
|