1
|
Mangalsana Singh O, Devi KK, Khoiyangbam RS. "The air within: reviewing the sources and health effects of indoor air pollution in households". INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 39440739 DOI: 10.1080/09603123.2024.2415912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Air pollution in the interior of our homes is caused by diverse chemical, physical, and biological entities. This review comprehensively explores the current understanding of sources and health impacts of gaseous and particulate pollutants. Trend analysis of indoor air research worldwide revealed a quantum jump of 2.8 times in the number of publications during the last ten years. Indoor air pollutants are innumerable, but only a few are widely prevalent in most households. The qualitative complexity of pollutants translates to different health problems, including respiratory diseases, cardiovascular conditions, cancer, and deaths. There exist wide-scale disparities in the negative impacts among different economic strata, genders, and age groups; children and elderly populations are more vulnerable. In developing countries, pollutants primarily arise from traditional sources, whereas in developed countries, pollutants from non-conventional sources are comparatively significant. Only a few countries have indoor air regulations, policies, monitoring plans and effective enforcement.
Collapse
|
2
|
Gherasim A, Lee AG, Bernstein JA. Impact of Climate Change on Indoor Air Quality. Immunol Allergy Clin North Am 2024; 44:55-73. [PMID: 37973260 DOI: 10.1016/j.iac.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change may affect the quality of the indoor environment through heat and mass transfer between indoors and outdoors: first by a direct response to global warming itself and related extreme weather phenomena and second by indirect actions taken to reduce greenhouse gas emissions that can lead to increased concentrations of indoor air contaminants. Therefore, both indoor and outdoor air pollution contribute to poor indoor air quality in this context. Exposures to high concentrations of these pollutants contribute to inflammatory respiratory diseases. Climate change adaptation and mitigation measures could minimize these risks and bring associated health benefits.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC Environmental Exposure Chamber, 1 Place de l'Hôpital, Strasbourg, France
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Azanaw J, Melaku MS. Spatial variation and factors associated of solid fuel use in Ethiopia a multilevel and spatial analysis based on EDHS 2016. Sci Rep 2023; 13:20279. [PMID: 37985673 PMCID: PMC10662317 DOI: 10.1038/s41598-023-46897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Cooking and heating using solid fuels, such as dung, wood, agricultural residues, grass, straw, charcoal, and coal, is a main source of household air pollution. This indoor combustion encompasses a diversity of health detrimental pollutants, especially for people from low-income countries like Ethiopia since solid fuels are accessible easily at a lesser cost. Limited studies done showing factors affecting in choosing fuel type and no study, which revealed spatial heterogeneity of solid fuel used based on such nationally representative data. Therefore, this study, aimed at investigating spatial variation and determinants of solid fuel use in Ethiopia. This study was done using the data from the Ethiopian Demographic and Health Survey 2016, a national representative sample (16,650) households were included. Spatial and Multi-level logistic regression analysis was done by considering the DHS data hierarchal nature. Variables in the final model with a p-value < 0.05 were reported as significant predictors of using solid fuel. All analyses were done using ArcGIS V.10.7.1 and STATA V.14 software. The finding of this study revealed that 90.8% (95% CI (87.9%, 91.2%)) of households depend on solid fuel for cooking. Based on the final model ;Male household head (AOR 1.38, 95% CI (1.12-1.71)), age of household head (AOR 1.61, 95% CI (1.20, 2.17)), and 1.49 (OR 1.49, 95% CI (1.12, 1.99)) respectively for the age classes of < 30, and 30-40, education attainment no education (OR 3.14, 95% CI (1.13, 8.71)) and primary education (AOR 2.16, 95% CI (2.78, 5.96), wealth index Poorest (AOR 11.05, 95% CI (5.68, 15.78)), Poorer (OR 5.19, 95% CI (5.43, 13.19)), Middle (OR 3.08, 95% CI (2.44, 8.73)), and Richer (OR 1.30, 95IC (1.07, 13.49)) compared to richest, and not accessibility of electricity (AOR 31.21, 95% CI (35.41, 42.67)), were individual-level factors significantly associated with using solid fuel. Community-level factors like households found at large city (AOR 2.80, 95CI (1.65, 4.77)), small city (AOR 2.58, 95% CI (1.55, 4.32)) town (AOR 4.02, 95% CI (2.46, 6.55)), and countryside (AOR 14.40, 95% CI (6.23, 21.15)) compared households found in capital city, community level media exposure (AOR 6.00, 95% CI (4.61, 7.82)) were statistically predictors in using solid fuel for cooking. This finding revealed that a large proportion of households in Ethiopia heavily depend on biomass, especially wood, for cooking. There was a greater disparity on solid fuel use for cooking in Ethiopia. Implementing major policy interventions should be introduced to reduce solid fuel use for cooking and inequalities in accessing clean fuel in Ethiopia.
Collapse
Affiliation(s)
- Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Mequannent Sharew Melaku
- Department of Health Informatics, Institute of Public Health, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Shi D, Liu Z, Fu J, Yu H. The impact of drivers' short-term exposure to air pollution on traffic deaths. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61323-61333. [PMID: 35442000 DOI: 10.1007/s11356-022-20230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/09/2022] [Indexed: 05/27/2023]
Abstract
Air pollution may decrease drivers' driving performance thus leading to traffic accidents, but this impact is almost ignored in existing literature. We investigate the short-term effect of air pollution on traffic deaths using the high-dimensional fixed effect model and instrument variable method based on the daily-city panel data in China from 2013 to 2018. The results show that drivers' short-term exposure to air pollution significantly increases the number of traffic deaths. For every 1 ug/m3 increase of PM2.5 concentration each day, the daily number of traffic deaths will increase by 0.64%. The impacts of air pollution on traffic deaths can last for 2 days. We also find that impact varies from different driver groups.The male, the young (age under 22), the elderly (age over 60), and the two-wheeler drivers are more vulnerable. Worse air pollution may associate with more bad driving behaviors and less good manners. In this article, we reveal a new factor that leads to traffic deaths, i.e., air pollution, and we also put forward some prevention strategies which may provide policy references for traffic safety.
Collapse
Affiliation(s)
- Daqian Shi
- School of Economics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziwei Liu
- Institute of Quality Development Strategy, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jie Fu
- Institute of Quality Development Strategy, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Hongwei Yu
- Institute of Quality Development Strategy, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
5
|
Maung TZ, Bishop JE, Holt E, Turner AM, Pfrang C. Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148752. [PMID: 35886604 PMCID: PMC9316830 DOI: 10.3390/ijerph19148752] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022]
Abstract
Air pollution affects health, but much of the focus to this point has been on outdoor air. Higher indoor pollution is anticipated due to increasingly energy-efficient and less leaky buildings together with more indoor activities. Studies of indoor air pollution focusing on children and people with respiratory disease from the database Web of Science (1991–2021) were systemically reviewed according to the PRISMA guidelines, with 69 studies included in the final selection. Emissions from building materials affected indoor air quality, and ventilation also had an influence. The main indoor air pollutants are Volatile Organic Compounds (VOCs) and Particulate Matter (PM). PM sources included smoking, cooking, heating, candles, and insecticides, whereas sources of coarse particles were pets, housework and human movements. VOC sources included household products, cleaning agents, glue, personal care products, building materials and vehicle emissions. Formaldehyde levels were particularly high in new houses. Personal exposure related to both indoor and outdoor pollutant levels, highlighting home characteristics and air exchange rates as important factors. Temperature, humidity, educational level, air purifiers and time near sources were also related to personal exposure. There was an association between PM and Fractional exhaled Nitric Oxide (FeNO), lung function, oxygen saturation, childhood asthma and symptoms of chronic obstructive pulmonary disease (COPD) patients. High VOCs were associated with upper airways and asthma symptoms and cancer. Effective interventional studies for PM in the future might focus on human behavior together with air purifiers and increased ventilation, whereas VOC interventions might center more on building materials and household products, alongside purification and ventilation.
Collapse
Affiliation(s)
- Tun Z. Maung
- UHB NHS Foundation Trust, Inflammation and Aging, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Jack E. Bishop
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
| | - Eleanor Holt
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
| | - Alice M. Turner
- UHB NHS Foundation Trust, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Christian Pfrang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.E.B.); (E.H.)
- Correspondence:
| |
Collapse
|
6
|
Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238972. [PMID: 33276576 PMCID: PMC7729884 DOI: 10.3390/ijerph17238972] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: There is increasing awareness that the quality of the indoor environment affects our health and well-being. Indoor air quality (IAQ) in particular has an impact on multiple health outcomes, including respiratory and cardiovascular illness, allergic symptoms, cancers, and premature mortality. (2) Methods: We carried out a global systematic literature review on indoor exposure to selected air pollutants associated with adverse health effects, and related household characteristics, seasonal influences and occupancy patterns. We screened records from six bibliographic databases: ABI/INFORM, Environment Abstracts, Pollution Abstracts, PubMed, ProQuest Biological and Health Professional, and Scopus. (3) Results: Information on indoor exposure levels and determinants, emission sources, and associated health effects was extracted from 141 studies from 29 countries. The most-studied pollutants were particulate matter (PM2.5 and PM10); nitrogen dioxide (NO2); volatile organic compounds (VOCs) including benzene, toluene, xylenes and formaldehyde; and polycyclic aromatic hydrocarbons (PAHs) including naphthalene. Identified indoor PM2.5 sources include smoking, cooking, heating, use of incense, candles, and insecticides, while cleaning, housework, presence of pets and movement of people were the main sources of coarse particles. Outdoor air is a major PM2.5 source in rooms with natural ventilation in roadside households. Major sources of NO2 indoors are unvented gas heaters and cookers. Predictors of indoor NO2 are ventilation, season, and outdoor NO2 levels. VOCs are emitted from a wide range of indoor and outdoor sources, including smoking, solvent use, renovations, and household products. Formaldehyde levels are higher in newer houses and in the presence of new furniture, while PAH levels are higher in smoking households. High indoor particulate matter, NO2 and VOC levels were typically associated with respiratory symptoms, particularly asthma symptoms in children. (4) Conclusions: Household characteristics and occupant activities play a large role in indoor exposure, particularly cigarette smoking for PM2.5, gas appliances for NO2, and household products for VOCs and PAHs. Home location near high-traffic-density roads, redecoration, and small house size contribute to high indoor air pollution. In most studies, air exchange rates are negatively associated with indoor air pollution. These findings can inform interventions aiming to improve IAQ in residential properties in a variety of settings.
Collapse
|
7
|
Lin C, Hu D, Jia X, Chen J, Deng F, Guo X, Heal MR, Cowie H, Wilkinson P, Miller MR, Loh M. The relationship between personal exposure and ambient PM 2.5 and black carbon in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139801. [PMID: 32783824 DOI: 10.1016/j.scitotenv.2020.139801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
This study is part of the "Air Polluion Impacts on Cardiopulmonary disease in Beijing: an integrated study of Exposure Science, Toxicologenomics & Environmental Epidemiology (APIC-ESTEE)" project under the UK-China joint research programme "Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China)". The aim is to capture the spatio-temporal variability in people's exposure to fine particles (PM2.5) and black carbon (BC) air pollution in Beijing, China. A total of 120 students were recruited for a panel study from ten universities in Haidian District in northwestern Beijing from December 2017 to June 2018. Real-time personal concentrations of PM2.5 and BC were measured over a 24-h period with two research-grade portable personal exposure monitors. Personal microenvironments (MEs) were determined by applying an algorithm to the handheld GPS unit data. On average, the participants spent the most time indoors (79% in Residence and 16% in Workplace), and much less time travelling by Walking, Cycling, Bus and Metro. Similar patterns were observed across participant gender and body-mass index classifications. The participants were exposed to 33.8 ± 27.8 μg m-3 PM2.5 and to 1.9 ± 1.2 μg m-3 BC over the 24-h monitoring period, on average 24.3 μg m-3 (42%) and 0.8 μg m-3 (28%) lower, respectively, than the concurrent fixed-site ambient measurements. Relative differences between personal and ambient BC concentrations showed greater variability across the MEs, highlighting significant contributions from Dining and travelling by Bus, which involve potential combustion of fuels. This study demonstrates the potential value of personal exposure monitoring in investigating air pollution related health effects, and in evaluating the effectiveness of pollution control and intervention measures.
Collapse
Affiliation(s)
- Chun Lin
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Dayu Hu
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xu Jia
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Jiahui Chen
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Furong Deng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Mathew R Heal
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Hilary Cowie
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Paul Wilkinson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK.
| |
Collapse
|
8
|
Cortez-Lugo M, Ramírez-Aguilar M, Pérez-Padilla R, Sansores-Martínez R, Ramírez-Venegas A, Barraza-Villarreal A. Effect of Personal Exposure to PM2.5 on Respiratory Health in a Mexican Panel of Patients with COPD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:10635-47. [PMID: 26343703 PMCID: PMC4586633 DOI: 10.3390/ijerph120910635] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
Abstract
Background: Air pollution is a problem, especially in developing countries. We examined the association between personal exposure to particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) on respiratory health in a group of adults with chronic obstructive pulmonary disease (COPD). Methods: All participants resided in Mexico City and during follow-up, personal exposure to PM2.5, respiratory symptoms, medications, and daily activity were registered daily. Peak expiratory flow (PEF) was measured twice daily, from February through December, 2000, in 29 adults with moderate, severe, and very severe COPD. PEF changes were estimated for each 10 µg/m3 increment of PM2.5, adjustment for severity of COPD, minimum temperature, and day of the sampling. Results: For a 10-µg/m3 increase in the daily average of a two-day personal exposure to PM2.5, there was a significant 33% increase in cough (95% CI, range, 5‒69%), and 23% in phlegm (95% CI, range, 2‒54%), a reduction of the PEF average in the morning of −1.4 L/min. (95% CI , range, −2.8 to −0.04), and at night of −3.0 L/min (95% CI, range, −5.7 to −0.3), respectively. Conclusions: Exposure to PM2.5 was associated with reductions in PEF and increased respiratory symptoms in adults with COPD. The PEF reduction was observed both at morning and at night.
Collapse
Affiliation(s)
- Marlene Cortez-Lugo
- Instituto Nacional de Salud Pública, Morelos, Av. Universidad #655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, México.
| | - Matiana Ramírez-Aguilar
- Comisión Federal para la Protección contra Riesgos Sanitarios, Monterrey #33, Col. Roma, Del. Cuauhtémoc, C.P. 06700 México, D.F., México.
| | - Rogelio Pérez-Padilla
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Raúl Sansores-Martínez
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Alejandra Ramírez-Venegas
- Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan #4502, Col. Sección XVI, Del. Tlalpan, C.P. 14080 México, D.F., México.
| | - Albino Barraza-Villarreal
- Instituto Nacional de Salud Pública, Morelos, Av. Universidad #655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, México.
| |
Collapse
|
9
|
Qorbani M, Yunesian M. Solid fuel smoke exposure and risk of obstructive airways disease. IRANIAN JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2012; 9:8. [PMID: 23369551 PMCID: PMC3561047 DOI: 10.1186/1735-2746-9-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022]
Abstract
This study was designed to investigate whether there is an association between Obstructive Airways Disease (OAD) and indoor exposure to baking home-made bread smoke (BHBS) in ground oven at home. In this hospital-based case-control study, 83 patients with OAD (cases) were compared with 72 patients without any known pulmonary diseases from the surgical ward (controls) who were frequently matched with cases on age. The interview was performed using the modified questionnaire recommended by the "American Thoracic Society". The questionnaire comprised of demographic information, occupational history, cigarette smoking and indoor exposure to BHBS in ground oven at home. The exposure to BHBS was considered both as a dichotomous and quantitative variable (number of years being exposed to smoke) and the population attributable fraction (PAF) was estimated due to BHBS exposure. The percentage of indoor exposure to BHBS was measured as 51.8% and 30.6% in the cases and the controls, respectively. The average years of exposure to BHBS was 20.46 years (SD: 11.60) for the cases and 15.38 years (SD: 13.20) for the controls. The univariate analysis comparing the cases and the controls showed that exposure to BHBS (as a binary variable) and occupational exposure to dust was significantly associated with OAD. In the multivariate model, only exposure to BHBS was associated with OAD (OR=2.22, 95%CI = 1.14-4.35). Duration of exposure to BHBS (as a quantitative variable) was significantly associated with OAD in the univariate model. In the multivariate model, only the duration of exposure to BHBS (years) showed a significant association with OAD (OR=1.04, 95% CI=1.01-1.08). Population attributable risk due to BHBS exposure was equal to 28.5%.
Collapse
Affiliation(s)
- Mostafa Qorbani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
10
|
Spira-Cohen A, Chen LC, Kendall M, Sheesley R, Thurston GD. Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2010; 20:446-56. [PMID: 19865073 PMCID: PMC4240219 DOI: 10.1038/jes.2009.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 05/08/2009] [Indexed: 05/19/2023]
Abstract
Personal exposures to fine particulate matter air pollution (PM(2.5)), and to its traffic-related fraction, were investigated in a group of urban children with asthma. The relationships of personal and outdoor school-site measurements of PM(2.5) and elemental carbon (EC) were characterized for a total of 40 fifth-grade children. These students, from four South Bronx, NY schools, each carried air pollution monitoring equipment with them for 24 h per day for approximately 1 month. Daily EC concentrations were estimated using locally calibrated reflectance of the PM(2.5) samples. Personal EC concentration was more closely related to outdoor school-site EC (median subject-specific: r=0.64) than was personal PM(2.5) to school-site PM(2.5) concentration (median subject-specific: r=0.33). Regression models also showed a stronger, more robust association of school site with personal measurements for EC than those for PM(2.5). High traffic pollution exposure was found to coincide with the weekday early morning rush hour, with higher personal exposures for participants living closer to a highway (<500 ft). A significant linear relationship of home distance from a highway with personal EC pollution exposure was also found (up to 1000 ft). This supports the assumptions by previous epidemiological studies using distance from a highway as an index of traffic PM exposure. These results are also consistent with the assumption that traffic, and especially smoke emitted from diesel vehicles, is a significant contributor to personal PM exposure levels in children living in urban areas such as the South Bronx, NY.
Collapse
Affiliation(s)
- Ariel Spira-Cohen
- Nelson Institute of Environmental Medicine, New York University
School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987-5007
| | - Lung Chi Chen
- Nelson Institute of Environmental Medicine, New York University
School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987-5007
| | - Michaela Kendall
- School of Public Health, Faculty of Medicine, Uludag University,
Bursa, Turkey
| | - Rebecca Sheesley
- Environmental Chemistry and Technology Program, University of
Wisconsin-Madison, 660 N. Park St., Madison, WI 53706
| | - George D. Thurston
- Nelson Institute of Environmental Medicine, New York University
School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987-5007
| |
Collapse
|