1
|
Ferrara AL, Cristinziano L, Petraroli A, Bova M, Gigliotti MC, Marcella S, Modestino L, Varricchi G, Braile M, Galdiero MR, Spadaro G, Loffredo S. Roles of Immune Cells in Hereditary Angioedema. Clin Rev Allergy Immunol 2021; 60:369-382. [PMID: 34050913 PMCID: PMC8272703 DOI: 10.1007/s12016-021-08842-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
Hereditary angioedema (HAE) is a rare genetic disease, characterized by recurrent and unexpected potentially life-threatening mucosal swelling. HAE may be further classified into HAE with C1‐inhibitor deficiency (C1‐INH‐HAE) and HAE with normal C1‐INH activity (nlC1‐INH‐HAE), mostly due to mutations leading to increased vascular permeability. Recent evidence implicates also the innate and adaptive immune responses in several aspects of angioedema pathophysiology. Monocytes/macrophages, granulocytes, lymphocytes, and mast cells contribute directly or indirectly to the pathophysiology of angioedema. Immune cells are a source of vasoactive mediators, including bradykinin, histamine, complement components, or vasoactive mediators, whose concentrations or activities are altered in both attacks and remissions of HAE. In turn, through the expression of various receptors, these cells are also activated by a plethora of molecules. Thereby, activated immune cells are the source of molecules in the context of HAE, and on the other hand, increased levels of certain mediators can, in turn, activate immune cells through the engagement of specific surface receptors and contribute to vascular endothelial processes that lead to hyperpemeability and tissue edema. In this review, we summarize recent developments in the putative involvement of the innate and adaptive immune system of angioedema.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Bova
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Celeste Gigliotti
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Walas D, Nowicki-Osuch K, Alibhai D, von Linstow Roloff E, Coghill J, Waterfall C, Paton JF. Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension. J Cereb Blood Flow Metab 2019; 39:1803-1817. [PMID: 29651914 PMCID: PMC6724458 DOI: 10.1177/0271678x18769180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.
Collapse
Affiliation(s)
- Dawid Walas
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - Dominic Alibhai
- 3 Wolfson Bioimaging Facility, School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eva von Linstow Roloff
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Jane Coghill
- 4 Genomics Facility, School of Biological Sciences, Bristol, UK
| | | | - Julian Fr Paton
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,5 Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
3
|
Lee HA, Lee E, Do GY, Moon EK, Quan FS, Kim I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed Pharmacother 2018; 109:921-929. [PMID: 30551546 DOI: 10.1016/j.biopha.2018.10.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition of histone deacetylase (HDAC) suppresses inflammation of pancreatic islets and apoptosis of β-cells. However, the underlying molecular mechanism is unclear. In the present study, we demonstrate that MGCD0103 (MGCD), an HDAC inhibitor, protects the pancreas from streptozotocin (STZ)-induced oxidative stress and cell death. Sprague-Dawley rats were intraperitoneally injected with STZ (40 mg/kg) to induce type I diabetes. MGCD (10 μg/day) was infused with osmotic mini-pump for 4 weeks. Pancreatic insulin and macrophage infiltration were analyzed by immunohistochemistry. Cellular level of reactive oxygen species (ROS) was evaluated with fluorescence-activated cell sorting. Tetramethylrhodamine ethyl ester was used to analyze mitochondrial membrane potential. Activation of caspase-3 was analyzed by western blotting. Chromatin immunoprecipitation was performed to investigate the binding affinity of specificity protein 1 (SP1) on the promoters of target genes. mRNA expression was analyzed by quantitative real-time polymerase chain reaction. As a result, we found that MGCD infusion ameliorated STZ-induced hyperglycemia, islet deformation, decreased insulin level, and macrophage infiltration. STZ injection promoted the production of ROS, which induced caspase activity and β-cell death. 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL), a mimetic of superoxide dismutase (SOD), reduced STZ-induced caspase activity and β-cell death. MGCD treatment increased SOD expression and histone acetylation level on promoters. Infusion of MGCD promoted acetylation of SP1 and its enrichment on SOD promoters. Thus, MGCD protects pancreatic β-cells from STZ-induced oxidative stress and cell death through the induction of antioxidant enzymes such as SODs.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunjo Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ga Young Do
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|