1
|
Popa LG, Giurcaneanu C, Zaharia F, Grigoras A, Oprea AD, Beiu C. Dupilumab, a Potential Novel Treatment for Hailey-Hailey Disease. Clin Pract 2025; 15:48. [PMID: 40136584 PMCID: PMC11941320 DOI: 10.3390/clinpract15030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Hailey-Hailey disease (HHD) is an uncommon genodermatosis with autosomal dominant inheritance caused by loss-of-function mutations in the ATP2C1 gene, which lead to disruption in keratinocyte adhesion and intraepidermal acantholysis. The chronic nature of the disease, its frequent recurrences and the lack of specific treatment pose real challenges in the long-term management of these patients. Recent studies have evaluated the effect of dupilumab, a human monoclonal antibody that blocks interleukin-4 and -13 receptor in refractory HHD, with very promising results. The aim of this study was to review the published data on the use of dupilumab for the treatment of HHD, to present our own experience in the field, and to discuss the mechanisms underlying dupilumab's beneficial effects in HHD and the future treatment perspectives. Methods: A search of the medical literature on the use of dupilumab in the treatment of HHD was conducted. The terms "Hailey-Hailey disease", "benign familial pemphigus", "benign chronic pemphigus", and "dupilumab" were searched across multiple databases (Medline, Chrocane Library, EMBASE) from inception until 30 September 2024. Results: To date, six manuscripts describing 11 refractory HHD cases treated with dupilumab have been published. All the patients experienced significant clinical improvement. The authors reported sustained disease quiescence in seven patients (64%), monitored for 5 to 24 months. None of the patients experienced adverse effects related to dupilumab. To the existing evidence, we add a new case of recalcitrant HHD successfully treated with dupilumab. Conclusions: Mounting evidence indicates dupilumab as a safe and efficient therapeutic alternative in patients with severe, refractory HHD. However, the long-term efficacy of dupilumab and the optimal therapeutic regimen for HHD are yet to be determined.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Calin Giurcaneanu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Florentina Zaharia
- Dermatology Department, CF 2 Clinical Hospital, 63 Marasti Bd., District 1, 011464 Bucharest, Romania
| | - Andreea Grigoras
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Alexandra Denisa Oprea
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Cristina Beiu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
3
|
Kim SW, Im GB, Jeong GJ, Baik S, Hyun J, Kim YJ, Pang C, Jang YC, Bhang SH. Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials 2021; 275:120954. [PMID: 34130141 DOI: 10.1016/j.biomaterials.2021.120954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Low cell engraftment is a major problem in tissue engineering. Although various methods related with cell sheets have been attempted to resolve the issue, low cell viability due to oxygen and nutrient depletion remains an obstacle toward advanced therapeutic applications. Cell therapy using fibroblasts is thought of as a good alternative due to the short doubling times of fibroblasts together with their immunomodulatory properties. Furthermore, three-dimensional (3D) fibroblasts exhibit unique angiogenic and inflammation-manipulating properties that are not present in two-dimensional (2D) forms. However, the therapeutic effect of 3D fibroblasts in tissue regeneration has not been fully elucidated. Macrophage polarization has been widely studied, as it stimulates the transition from the inflammation to the proliferation phase of wound healing. Although numerous strategies have been developed to achieve better polarization of macrophages, the low efficacy of these strategies and safety issues remain problematic. To this end, we introduced a biocompatible flat patch with specifically designed holes that form a spheroids-incorporated human dermal fibroblast sheet (SIS) to mediate the activity of inflammatory cytokines for M2 polarization and increase angiogenic efficacy. We further confirmed in vivo enhancement of wound healing with an SIS-laden skin patch (SISS) compared to conventional cell therapy.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gun-Jae Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sangyul Baik
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Young Charles Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
4
|
Roy AS, Miskinyte S, Garat A, Hovnanian A, Krzewinski-Recchi MA, Foulquier F. SPCA1 governs the stability of TMEM165 in Hailey-Hailey disease. Biochimie 2020; 174:159-170. [PMID: 32335229 DOI: 10.1016/j.biochi.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
TMEM165 is a Golgi protein whose deficiency causes a Congenital Disorder of Glycosylation (CDG). We have demonstrated that Mn2+ supplementation could suppress the glycosylation defects observed in TMEM165-deficient cells and that TMEM165 was a Mn2+-sensitive protein. In the Golgi, the other transmembrane protein capable to regulate Mn2+/Ca2+ homeostasis is SPCA1, encoded by the ATP2C1 gene. A loss of one copy of the ATP2C1 gene leads to Hailey-Hailey Disease (HHD), an acantholytic skin disorder in Humans. Our latest results suggest an unexpected functional link between SPCA1 and TMEM165. In order to clarify this link in case of partial SPCA1 deficiency, HHD fibroblasts were used to assess TMEM165 expression, subcellular localization and Mn2+-induced degradation. No differences were observed regarding TMEM165 expression and localization in HHD patients' fibroblasts compared to control fibroblasts. Nevertheless, we demonstrated both for fibroblasts and keratinocytes that TMEM165 expression is more sensitive to MnCl2 exposure in HHD cells than in control cells. We linked, using ICP-MS and GPP130 as a Golgi Mn2+ sensor, this higher Mn2+-induced sensitivity to a cytosolic Mn accumulation in MnCl2 supplemented HHD fibroblasts. Altogether, these results link the function of SPCA1 to the stability of TMEM165 in a pathological context of Hailey-Hailey disease.
Collapse
Affiliation(s)
- Anne-Sophie Roy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Snaigune Miskinyte
- Laboratory of Genetic Skin Diseases, INSERM UMR1163 Imagine Institute, Paris, France; University Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, F-59000, Lille, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM UMR1163 Imagine Institute, Paris, France; University Paris Descartes - Sorbonne Paris Cité, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, France
| | - Marie-Ange Krzewinski-Recchi
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
5
|
Park U, Lee MS, Jeon J, Lee S, Hwang MP, Wang Y, Yang HS, Kim K. Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomater 2019; 90:179-191. [PMID: 30936036 DOI: 10.1016/j.actbio.2019.03.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Although there are numerous medical applications to recover damaged skin tissue, scarless wound healing is being extensively investigated to provide a better therapeutic outcome. The exogenous delivery of therapeutic growth factors (GFs) is one of the engineering strategies for skin regeneration. This study presents an exogenous GF delivery platform developed using coacervates (Coa), a tertiary complex of poly(ethylene argininyl aspartate diglyceride) (PEAD) polycation, heparin, and cargo GFs (i.e., transforming growth factor beta 3 (TGF-β3) and interleukin 10 (IL-10)). Coa encompasses the advantage of high biocompatibility, facile preparation, protection of cargo GFs, and sustained GF release. We therefore speculated that coacervate-mediated dual delivery of TGF-β3/IL-10 would exhibit synergistic effects for the reduction of scar formation during physiological wound healing. Our results indicate that the exogenous administration of dual GF via Coa enhances the proliferation and migration of skin-related cells. Gene expression profiles using RT-PCR revealed up-regulation of ECM formation at early stage of wound healing and down-regulation of scar-related genes at later stages. Furthermore, direct injection of the dual GF Coa into the edges of damaged skin in a rat skin wound defect model demonstrated accelerated wound closure and skin regeneration after 3 weeks. Histological evaluation and immunohistochemical staining also revealed enhanced formation of the epidermal layer along with facilitated angiogenesis following dual GF Coa delivery. Based on these results, we conclude that polycation-mediated Coa fabrication and exogenous dual GF delivery via the Coa platform effectively augments both the quantity and quality of regenerated skin tissues without scar formation. STATEMENT OF SIGNIFICANCE: This study was conducted to develop a simple administration platform for scarless skin regeneration using polycation-based coacervates with dual GFs. Both in vitro and in vivo studies were performed to confirm the therapeutic efficacy of this platform toward scarless wound healing. Our results demonstrate that the platform developed by us enhances the proliferation and migration of skin-related cells. Sequential modulation in various gene expression profiles suggests a balanced collagen-remodeling process by dual GFs. Furthermore, in vivo histological evaluation demonstrates that our technique enhances clear epidermis formation with less scab and thicker woven structure of collagen bundle, similar to that of a normal tissue. We propose that simple administration of dual GFs with Coa has the potential to be applied as a clinical approach for fundamental scarless skin regeneration.
Collapse
Affiliation(s)
- Uiseon Park
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.
| | - Kyobum Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
6
|
Xu K, Shi B, Diao Q, Jiang X, Xiao Y. Identification of 2 Novel Mutations in ATP2C1 Gene in Hailey-Hailey Disease and a Literature Review of Variations in a Chinese Han Population. Med Sci Monit Basic Res 2017; 23:352-361. [PMID: 29104283 PMCID: PMC5687790 DOI: 10.12659/msmbr.906137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Hailey-Hailey disease (HHD) is a rare autosomal dominant skin condition. The ATP2C1 gene was identified as the defective gene in HHD. To date, 166 pathogenic mutations in ATP2C1 have been observed worldwide. The aim of this study was to identify variations in HHD and summarize the features of the mutations identified in China. Material/Methods We examined 2 familial and 2 sporadic cases of HHD. Genomic DNA polymerase chain reaction and direct sequencing of the ATP2C1 were performed from HHD patients, unaffected family members, and 200 healthy individuals. We also searched the published literature for data about the ATP2C1 gene using PubMed and the Chinese Biological Medicine Database. Results We detected 3 heterozygous mutations, including 2 novel frameshift mutations (c.819insA (273LfsX) and c.1264insTAGATGG (421LfsX)) and 1 recurrent nonsense mutation (c.115C>T (R39X)). To the best of our knowledge, 90 different mutations (including our current results) have been reported in China, all of which occurred in the Chinese Han population. Conclusions Our data may add to the existing list of ATP2C1 mutations and provide new insight into genetic variants of HHD in China.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Bingjun Shi
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Qingchun Diao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Xue Jiang
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Yujuan Xiao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| |
Collapse
|
7
|
Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 2016; 7:e2259. [PMID: 27277681 PMCID: PMC5143377 DOI: 10.1038/cddis.2016.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
Collapse
Affiliation(s)
- M Micaroni
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - G Giacchetti
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - R Plebani
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - G G Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - L Federici
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
8
|
Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3062765. [PMID: 27340655 PMCID: PMC4909930 DOI: 10.1155/2016/3062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.
Collapse
|
9
|
Affiliation(s)
- Angoori Gnaneshwar Rao
- Department of Dermatology, SVS Medical College, MBNR, Hyderabad, Andhra Pradesh, India. E-mail:
| |
Collapse
|
10
|
Hou M, Man M, Man W, Zhu W, Hupe M, Park K, Crumrine D, Elias PM, Man MQ. Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Exp Dermatol 2012; 21:337-340. [PMID: 22509829 PMCID: PMC3335754 DOI: 10.1111/j.1600-0625.2012.01455.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Orange peel extract appears to exhibit beneficial effects on skin whitening, inflammation, UVB protection, as well as keratinocyte proliferation. In the present study, we determine whether topical hesperidin influences epidermal permeability barrier function and its underlying mechanisms. Hairless mice were treated topically with 2% hesperidin or 70% ethanol alone twice daily for 6 days. At the end of treatment, basal transepidermal water loss (TEWL) was measured 2 and 4 h post barrier disruption. Epidermal proliferation and differentiation were evaluated by immunohistochemical staining and Western blot analysis. Additionally, lamellar body density and secretion were assessed by electron microscopy. Although there were no significant differences in basal barrier function, in comparison with control animals, topical hesperidin significantly accelerated barrier recovery at both 2 and 4 h after acute barrier abrogation. Enhanced barrier function in hesperidin-treated skin correlated with stimulation of both epidermal proliferation and differentiation, as well as enhanced lamellar body secretion. These results indicate that topical hesperidin enhances epidermal permeability barrier homeostasis at least in part due to stimulation of epidermal proliferation, differentiation, as well as lamellar body secretion.
Collapse
Affiliation(s)
- Maihua Hou
- Department of Dermatology, Nanjing Medical University, Nanjing, P. R. China
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Mona Man
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Wenyan Man
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Wenyuan Zhu
- Department of Dermatology, Nanjing Medical University, Nanjing, P. R. China
| | - Melanie Hupe
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Kyungho Park
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
11
|
Celli A, Mackenzie DS, Crumrine DS, Tu CL, Hupe M, Bikle DD, Elias PM, Mauro TM. Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J Dermatol 2010; 164:16-25. [PMID: 20846312 DOI: 10.1111/j.1365-2133.2010.10046.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) Ca(2+) depletion, previously shown to signal pathological stress responses, has more recently been found also to trigger homeostatic physiological processes such as differentiation. In keratinocytes and epidermis, terminal differentiation and barrier repair require physiological apoptosis and differentiation, as evidenced by protein synthesis, caspase 14 expression, lipid secretion and stratum corneum (SC) formation. OBJECTIVES To investigate the role of Ca(2+) depletion-induced ER stress in keratinocyte differentiation and barrier repair in vivo and in cell culture. METHODS The SERCA2 Ca(2+) pump inhibitor thapsigargin (TG) was used to deplete ER calcium both in cultured keratinocytes and in mice. Levels of the ER stress factor XBP1, loricrin, caspase 14, lipid synthesis and intracellular Ca(2+) were compared after both TG treatment and barrier abrogation. RESULTS We showed that these components of terminal differentiation and barrier repair were signalled by physiological ER stress, via release of stratum granulosum (SG) ER Ca(2+) stores. We first found that keratinocyte and epidermal ER Ca(2+) depletion activated the ER-stress-induced transcription factor XBP1. Next, we demonstrated that external barrier perturbation resulted in both intracellular Ca(2+) emptying and XBP1 activation. Finally, we showed that TG treatment of intact skin did not perturb the permeability barrier, yet stimulated and mimicked the physiological processes of barrier recovery. CONCLUSIONS This report is the first to quantify and localize ER Ca(2+) loss after barrier perturbation and show that homeostatic processes that restore barrier function in vivo can be reproduced solely by releasing ER Ca(2+), via induction of physiological ER stress.
Collapse
Affiliation(s)
- A Celli
- Department of Dermatology, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121-1545, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci U S A 2010; 107:9198-203. [PMID: 20439740 DOI: 10.1073/pnas.1004702107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Taking advantage of a fluorescent Ca(2+) indicator selectively targeted to the trans-Golgi lumen, we here demonstrate that its Ca(2+) homeostatic mechanisms are distinct from those of the other Golgi subcompartments: (i) Ca(2+) uptake depends exclusively on the activity of the secretory pathway Ca(2+) ATPase1 (SPCA1), whereas the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) is excluded; (ii) IP(3) generated by receptor stimulation causes Ca(2+) uptake rather than release; (iii) Ca(2+) release can be triggered by activation of ryanodine receptors in cells endowed with robust expression of the latter channels (e.g., in neonatal cardiac myocyte). Finally, we show that, knocking down the SPCA1, and thus altering the trans-Golgi Ca(2+) content, specific functions associated with this subcompartment, such as sorting of proteins to the plasma membrane through the secretory pathway, and the structure of the entire Golgi apparatus are dramatically altered.
Collapse
|
13
|
Cialfi S, Oliviero C, Ceccarelli S, Marchese C, Barbieri L, Biolcati G, Uccelletti D, Palleschi C, Barboni L, De Bernardo C, Grammatico P, Magrelli A, Salvatore M, Taruscio D, Frati L, Gulino A, Screpanti I, Talora C. Complex multipathways alterations and oxidative stress are associated with Hailey-Hailey disease. Br J Dermatol 2009; 162:518-26. [DOI: 10.1111/j.1365-2133.2009.09500.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kassar S, Charfeddine C, Zribi H, Tounsi-Kettiti H, Bchetnia M, Jerbi E, Cassio D, Mokni M, Abdelhak S, Ben Osman A, Boubaker S. Immunohistological study of involucrin expression in Darier's disease skin. J Cutan Pathol 2008; 35:635-40. [DOI: 10.1111/j.1600-0560.2007.00880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|