1
|
Palaniswamy S, Ashoor S, Eskasalam SR, Jang YS. Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives. Front Bioeng Biotechnol 2023; 11:1272429. [PMID: 37954017 PMCID: PMC10634440 DOI: 10.3389/fbioe.2023.1272429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.
Collapse
Affiliation(s)
- Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Selim Ashoor
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Syafira Rizqi Eskasalam
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
2
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
3
|
Lauer I, Philipps G, Jennewein S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO 2 and H 2. Microb Cell Fact 2022; 21:85. [PMID: 35568911 PMCID: PMC9107641 DOI: 10.1186/s12934-022-01802-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO2 as carbon source. However the conversion into high titers of butanol and hexanol is challenging. RESULTS Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L-1 butanol and 133 mg L-1 hexanol from fructose in complex medium, and 174 mg L-1 butanol and 15 mg L-1 hexanol from gaseous substrate (20% CO2 and 80% H2) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L-1) at the expense of butanol (158 mg L-1), when grown on CO2 and H2 in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L-1 butanol and 393 mg L-1 hexanol. CONCLUSIONS We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.
Collapse
Affiliation(s)
- Ira Lauer
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Gabriele Philipps
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Stefan Jennewein
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Dai Z, Zhu Y, Dong H, Zhao C, Zhang Y, Li Y. Enforcing ATP hydrolysis enhanced anaerobic glycolysis and promoted solvent production in Clostridium acetobutylicum. Microb Cell Fact 2021; 20:149. [PMID: 34325704 PMCID: PMC8320212 DOI: 10.1186/s12934-021-01639-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background The intracellular ATP level is an indicator of cellular energy state and plays a critical role in regulating cellular metabolism. Depletion of intracellular ATP in (facultative) aerobes can enhance glycolysis, thereby promoting end product formation. In the present study, we examined this s trategy in anaerobic ABE (acetone-butanol-ethanol) fermentation using Clostridium acetobutylicum DSM 1731. Results Following overexpression of atpAGD encoding the subunits of water-soluble, ATP-hydrolyzing F1-ATPase, the intracellular ATP level of 1731(pITF1) was significantly reduced compared to control 1731(pIMP1) over the entire batch fermentation. The glucose uptake was markedly enhanced, achieving a 78.8% increase of volumetric glucose utilization rate during the first 18 h. In addition, an early onset of acid re-assimilation and solventogenesis in concomitant with the decreased intracellular ATP level was evident. Consequently, the total solvent production was significantly improved with remarkable increases in yield (14.5%), titer (9.9%) and productivity (5.3%). Further genome-scale metabolic modeling revealed that many metabolic fluxes in 1731(pITF1) were significantly elevated compared to 1731(pIMP1) in acidogenic phase, including those from glycolysis, tricarboxylic cycle, and pyruvate metabolism; this indicates significant metabolic changes in response to intracellular ATP depletion. Conclusions In C. acetobutylicum DSM 1731, depletion of intracellular ATP significantly increased glycolytic rate, enhanced solvent production, and resulted in a wide range of metabolic changes. Our findings provide a novel strategy for engineering solvent-producing C. acetobutylicum, and many other anaerobic microbial cell factories. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01639-7.
Collapse
Affiliation(s)
- Zongjie Dai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yan Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
5
|
Modeling Growth Kinetics, Interspecies Cell Fusion, and Metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii Syntrophic Coculture. mSystems 2021; 6:6/1/e01325-20. [PMID: 33622858 PMCID: PMC8573953 DOI: 10.1128/msystems.01325-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum and Clostridium ljungdahlii grown in a syntrophic culture were recently shown to fuse membranes and exchange cytosolic contents, yielding hybrid cells with significant shifts in gene expression and growth phenotypes. Here, we introduce a dynamic genome-scale metabolic modeling framework to explore how cell fusion alters the growth phenotype and panel of metabolites produced by this binary community. Computational results indicate C. ljungdahlii persists in the coculture through proteome exchange during fusing events, which endow C. ljungdahlii cells with expanded substrate utilization, and access to additional reducing equivalents from C. acetobutylicum-evolved H2 and through acquisition of C. acetobutylicum-native cofactor-reducing enzymes. Simulations predict maximum theoretical ethanol and isopropanol yields that are increased by 0.64 mmol and 0.39 mmol per mmol hexose sugar consumed, respectively, during exponential growth when cell fusion is active. This modeling effort provides a mechanistic explanation for the metabolic outcome of cellular fusion and altered homeostasis achieved in this syntrophic clostridial community.IMPORTANCE Widespread cell fusion and protein exchange between microbial organisms as observed in synthetic C. acetobutylicum/C. ljungdahlii culture is a novel observation that has not been explored in silico The mechanisms responsible for the observed cell fusion events in this culture are still unknown. In this work, we develop a modeling framework that captures the observed culture composition and metabolic phenotype, use it to offer a mechanistic explanation for how the culture achieves homeostasis, and identify C. ljungdahlii as primary beneficiary of fusion events. The implications for the events described in this study are far reaching, with potential to reshape our understanding of microbial community behavior synthetically and in nature.
Collapse
|
6
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
7
|
Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon. Appl Microbiol Biotechnol 2019; 103:8283-8292. [PMID: 31396679 DOI: 10.1007/s00253-019-10072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
Abstract
The utilized biomass is an important consideration for sustainable biofuel production. To avoid competing with food needs, researchers have turned their attention to non-food lignocellulosic biomasses as potential feedstocks for biofuel production. However, the saccharification of a lignocellulosic biomass produces a large amount of lignin as waste. To overcome this hurdle, biomass gasification has been suggested as an alternative to saccharification. During biomass gasification, oxides of carbon (CO, CO2) and hydrogen are produced as a major product. Accordingly, microorganisms capable of utilizing these oxides of carbon have gained attention as hosts for the production of biofuels, such as ethanol and butanol. In this work, we reviewed the Calvin cycle and Wood-Ljungdahl pathway for utilizing oxides of carbon in cyanobacteria and acetogens, respectively, and discussed the metabolic engineering strategies that may be used to produce ethanol and butanol from oxides of carbon through these routes.
Collapse
|
8
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
9
|
|
10
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
11
|
Ralston MT, Papoutsakis ET. RNAseq‐based transcriptome assembly of
Clostridium acetobutylicum
for functional genome annotation and discovery. AIChE J 2018. [DOI: 10.1002/aic.16396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew T. Ralston
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute University of Delaware Newark DE 19711
- Center for Bioinformatics and Computational Biology University of Delaware Newark DE 19711
| | - Eleftherios T. Papoutsakis
- Dept. of Chemical and Biomolecular Engineering University of Delaware Newark DE 19711
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute University of Delaware Newark DE 19711
| |
Collapse
|
12
|
Solvent production from xylose. Appl Microbiol Biotechnol 2018; 102:8707-8715. [PMID: 30109398 DOI: 10.1007/s00253-018-9254-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/04/2023]
Abstract
Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild type or engineered cells are goals for biofuel production. Issues arise with xylose utilization because of carbohydrate catabolite repression, which is the preferential utilization of glucose relative to xylose in fermentations with both pure and mixed cultures. Taken together the low substrate utilization rates and solvent yields with xylose compared to glucose, many industrial fermentations ignore the xylolytic portion of the reaction in lieu of methods to maintain high glucose. This is shortsighted given the massive potential for xylose generation from a number of sustainable biomass feedstocks, based on utilization of the hemicellulose fraction(s) that enter pretreatment. A number of strategies have been developed in recent years to address xylose utilization and solvent production from xylose in systems with just xylose, or in systems with mixtures of glucose plus xylose, which are more typical of pretreated lignocellulose. The approaches vary in terms of complexity, stability, and ease of introduction to existing fermentation infrastructure (i.e., so-called drop-in fermentation strategies). Some approaches can be considered traditional engineering approaches (e.g., change the reaction conditions), while others are more subtle cellular approaches to eliminate the impacts of catabolite repression. Finally, genetic engineering has been used to increase xylose utilization, although this can be considered a relatively nascent approach compared to manipulations completed to date for glucose utilization.
Collapse
|
13
|
Liao Z, Suo Y, Xue C, Fu H, Wang J. Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway. Appl Microbiol Biotechnol 2018; 102:8107-8119. [DOI: 10.1007/s00253-018-9208-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
|
14
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
15
|
Popovic J, Ye X, Haluska A, Finneran KT. Ferric iron and extracellular electron shuttling increase xylose utilization and butanol production during fermentation with multiple solventogenic bacteria. Appl Microbiol Biotechnol 2017; 101:8053-8061. [PMID: 28963627 DOI: 10.1007/s00253-017-8533-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/18/2023]
Abstract
Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild-type cells are goals for biofuel production. Xylose consumption, butanol production, and hydrogen production increased in both Clostridium beijerinckii and a novel solventogenic bacterium (strain DC-1) when anthraquinone-2,6,-disulfonate (AQDS) or riboflavin were used as redox mediators to transfer electrons to poorly crystalline Fe(OH)3 as an extracellular electron sink. Strain DC-1 was most closely related to Rhizobiales bacterium Mfc52 based on 95% 16S rRNA gene sequence similarity, which demonstrates that this response is not limited to a single genus of xylose-fermenting bacteria. Xylose utilization and butanol production were negligible in control incubations containing cells plus 3% (w/v) xylose alone during a 10-day batch fermentation, for both strains tested (n-butanol titers of 0.05 g L-1). Micromolar concentrations of AQDS and riboflavin were added as electron shuttling compounds with poorly crystalline Fe(OH)3 as an insoluble electron acceptor, and respective n-butanol titers increased to 6.35 and 7.46 g L-1. Increases in xylose consumption for the iron treatments were relatively high, from less than 0.49 g L-1 (xylose alone, no iron or electron shuttling molecules) to 25.98 and 29.15 g L-1 for the AQDS and riboflavin treatments, respectively. Hydrogen production was also 3.68 times greater for the AQDS treatment and 5.27 greater for the riboflavin treatment relative to controls. Strain DC-1 data were similar, again indicating that the effects are not specific to the genus Clostridium.
Collapse
Affiliation(s)
- Jovan Popovic
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Falcon Heights, MN, 55108, USA
| | - Xiaofeng Ye
- Novozymes North America, Franklinton, NC, 27525, USA
| | - Anne Haluska
- Civil and Environmental Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Kevin T Finneran
- Department of Environmental Engineering and Earth Sciences, Clemson University, 105 Collings St., Clemson, SC, USA.
| |
Collapse
|
16
|
Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. J Biotechnol 2017; 252:1-10. [DOI: 10.1016/j.jbiotec.2017.04.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
|
17
|
Reiße S, Haack M, Garbe D, Sommer B, Steffler F, Carsten J, Bohnen F, Sieber V, Brück T. In Vitro Bioconversion of Pyruvate to n-Butanol with Minimized Cofactor Utilization. Front Bioeng Biotechnol 2016; 4:74. [PMID: 27800475 PMCID: PMC5066087 DOI: 10.3389/fbioe.2016.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/12/2016] [Indexed: 12/03/2022] Open
Abstract
Due to enhanced energy content and reduced hygroscopicity compared with ethanol, n-butanol is flagged as the next generation biofuel and platform chemical. In addition to conventional cellular systems, n-butanol bioproduction by enzyme cascades is gaining momentum due to simplified process control. In contrast to other bio-based alcohols like ethanol and isobutanol, cell-free n-butanol biosynthesis from the central metabolic intermediate pyruvate involves cofactors [NAD(P)H, CoA] and acetyl-CoA-dependent intermediates, which complicates redox and energy balancing of the reaction system. We have devised a biochemical process for cell-free n-butanol production that only involves three enzyme activities, thereby eliminating the need for acetyl-CoA. Instead, the process utilizes only NADH as the sole redox mediator. Central to this new process is the amino acid catalyzed enamine–aldol condensation, which transforms acetaldehyde directly into crotonaldehyde. Subsequently, crotonaldehyde is reduced to n-butanol applying a 2-enoate reductase and an alcohol dehydrogenase, respectively. In essence, we achieved conversion of the platform intermediate pyruvate to n-butanol utilizing a biocatalytic cascade comprising only three enzyme activities and NADH as reducing equivalent. With reference to previously reported cell-free n-butanol reaction cascades, we have eliminated five enzyme activities and the requirement of CoA as cofactor. Our proof-of-concept demonstrates that n-butanol was synthesized at neutral pH and 50°C. This integrated reaction concept allowed GC detection of all reaction intermediates and n-butanol production of 148 mg L−1 (2 mM), which compares well with other cell-free n-butanol production processes.
Collapse
Affiliation(s)
- Steven Reiße
- Department of Chemistry, Technical University of Munich, Garching, Germany; B&B Sustainable Innovations GmbH, Köln, Germany
| | - Martina Haack
- Department of Chemistry, Technical University of Munich , Garching , Germany
| | - Daniel Garbe
- Department of Chemistry, Technical University of Munich , Garching , Germany
| | - Bettina Sommer
- Department of Chemistry, Technical University of Munich , Garching , Germany
| | - Fabian Steffler
- Straubing Center of Science, Technical University of Munich , Straubing , Germany
| | - Jörg Carsten
- Straubing Center of Science, Technical University of Munich , Straubing , Germany
| | - Frank Bohnen
- B&B Sustainable Innovations GmbH , Köln , Germany
| | - Volker Sieber
- Straubing Center of Science, Technical University of Munich , Straubing , Germany
| | - Thomas Brück
- Department of Chemistry, Technical University of Munich, Garching, Germany; B&B Sustainable Innovations GmbH, Köln, Germany
| |
Collapse
|
18
|
Raganati F, Procentese A, Olivieri G, Russo M, Gotz P, Salatino P, Marzocchella A. Butanol production by Clostridium acetobutylicum in a series of packed bed biofilm reactors. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
20
|
Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum. Sci Rep 2016; 6:28189. [PMID: 27321949 PMCID: PMC4913296 DOI: 10.1038/srep28189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.
Collapse
|
21
|
Kök MS. An integrated approach: advances in the use ofClostridiumfor biofuel. Biotechnol Genet Eng Rev 2016; 31:69-81. [DOI: 10.1080/02648725.2016.1168075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 2016; 363:fnw020. [PMID: 26832641 DOI: 10.1093/femsle/fnw020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
The heavy dependence on petroleum-derived fuel has raised concerns about energy sustainability and climate change, which have prompted researchers to explore fuel production from renewable sources. 1-Butanol and isobutanol are promising biofuels that have favorable properties and can also serve as solvents or chemical feedstocks. Microbial production of these alcohols provides great opportunities to access a wide spectrum of renewable resources. In recent years, research has improved the native 1-butanol production and has engineered isobutanol production in various organisms to explore metabolic diversity and a broad range of substrates. This review focuses on progress in metabolic engineering for the production of these two compounds using various resources.
Collapse
Affiliation(s)
- Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Oh YH, Eom GT, Kang KH, Joo JC, Jang YA, Choi JW, Song BK, Lee SH, Park SJ. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess Biosyst Eng 2016; 39:555-63. [DOI: 10.1007/s00449-016-1537-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
|
24
|
|
25
|
Köhler KAK, Rühl J, Blank LM, Schmid A. Integration of biocatalyst and process engineering for sustainable and efficientn-butanol production. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Jana Rühl
- Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB); Aachen Biology and Biotechnology (ABBt); RWTH Aachen University; Aachen Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Leipzig Germany
| |
Collapse
|
26
|
Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 2014; 99:1011-22. [DOI: 10.1007/s00253-014-6249-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/07/2023]
|
27
|
Wang J, Yang X, Chen CC, Yang ST. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2014.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Zaki AM, Wimalasena TT, Greetham D. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol. J Ind Microbiol Biotechnol 2014; 41:1627-36. [PMID: 25242291 DOI: 10.1007/s10295-014-1511-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/12/2014] [Indexed: 11/29/2022]
Abstract
Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.
Collapse
Affiliation(s)
- A M Zaki
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | | |
Collapse
|
29
|
Li X, Li ZG, Shi ZP. Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by Clostridium acetobutylicum using cassava substrate. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0013-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
|
31
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
32
|
Panitz J, Zverlov V, Pham V, Stürzl S, Schieder D, Schwarz W. Isolation of a solventogenic Clostridium sp. strain: Fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements. Syst Appl Microbiol 2014; 37:1-9. [DOI: 10.1016/j.syapm.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022]
|
33
|
|
34
|
Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC, Papoutsakis ET. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 2013; 14:849. [PMID: 24299206 PMCID: PMC3879012 DOI: 10.1186/1471-2164-14-849] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
Background Small non-coding RNAs (sRNA) are emerging as major components of the cell’s regulatory network, several possessing their own regulons. A few sRNAs have been reported as being involved in general or toxic-metabolite stress, mostly in Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of sRNAs in the stress response remains poorly understood at the genome-scale level. It was previously shown that toxic-metabolite stress is one of the most comprehensive and encompassing stress responses in the cell, engaging both the general stress (or heat-shock protein, HSP) response as well as specialized metabolic programs. Results Using RNA deep sequencing (RNA-seq) we examined the sRNome of C. acetobutylicum in response to the native but toxic metabolites, butanol and butyrate. 7.5% of the RNA-seq reads mapped to genome outside annotated ORFs, thus demonstrating the richness and importance of the small RNome. We used comparative expression analysis of 113 sRNAs we had previously computationally predicted, and of annotated mRNAs to set metrics for reliably identifying sRNAs from RNA-seq data, thus discovering 46 additional sRNAs. Under metabolite stress, these 159 sRNAs displayed distinct expression patterns, a select number of which was verified by Northern analysis. We identified stress-related expression of sRNAs affecting transcriptional (6S, S-box & solB) and translational (tmRNA & SRP-RNA) processes, and 65 likely targets of the RNA chaperone Hfq. Conclusions Our results support an important role for sRNAs for understanding the complexity of the regulatory network that underlies the stress response in Clostridium organisms, whether related to normophysiology, pathogenesis or biotechnological applications.
Collapse
|
35
|
Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 2013; 31:1575-84. [DOI: 10.1016/j.biotechadv.2013.08.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 01/26/2023]
|
36
|
Zingaro KA, Nicolaou SA, Papoutsakis ET. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends Biotechnol 2013; 31:643-53. [DOI: 10.1016/j.tibtech.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/15/2022]
|
37
|
Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P. Butanol fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1691-1710. [PMID: 24350428 DOI: 10.1080/09593330.2013.827746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review provides an overview on bacterial butanol production and recent developments concerning strain improvement, newly built butanol production plants, and the importance of alternative substrates, especially lignocellulosic hydrolysates. The butanol fermentation using solventogenic clostridial strains, particularly Clostridium acetobutylicum, is a very old industrial process (acetone-butanol-ethanol-ABE fermentation). The genome of this organism has been sequenced and analysed, leading to important improvements in rational strain construction. As the traditional ABE fermentation process is economically unfavourable, novel butanol production strains are being developed. In this review, some newly engineered solvent-producing Clostridium strains are described and strains of which sequences are available are compared with C. acetobutylicum. Furthermore, the past and present of commercial butanol fermentation are presented, including active plants and companies. Finally, the use of biomass as substrate for butanol production is discussed. Some advances concerning processing of biomass in a biorefinery are highlighted, which would allow lowering the price of the butanol fermentation process at industrial scale.
Collapse
Affiliation(s)
- Bettina Schiel-Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - José Montoya
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Sonja Linder
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
38
|
Eom MH, Kim W, Lee J, Cho JH, Seung D, Park S, Lee JH. Modeling of a Biobutanol Adsorption Process for Designing an Extractive Fermentor. Ind Eng Chem Res 2013. [DOI: 10.1021/ie301249z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moon-Ho Eom
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, Republic of Korea
- Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Woohyun Kim
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, Republic of Korea
| | - Julia Lee
- Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Jung-Hee Cho
- Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Doyoung Seung
- Biofuel & Biochemical Team, R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Sunwon Park
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, Republic of Korea
| | - Jay H. Lee
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, Republic of Korea
| |
Collapse
|
39
|
Chen BY, Chuang FY, Lin CL, Chang JS. Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving biobutanol production. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
|
41
|
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 2012; 23:364-81. [DOI: 10.1016/j.copbio.2011.10.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/06/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
|
42
|
McAnulty MJ, Yen JY, Freedman BG, Senger RS. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC SYSTEMS BIOLOGY 2012; 6:42. [PMID: 22583864 PMCID: PMC3495714 DOI: 10.1186/1752-0509-6-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 05/14/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. RESULTS A new method called "flux balance analysis with flux ratios (FBrAtio)" was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490) that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. CONCLUSIONS FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.
Collapse
Affiliation(s)
- Michael J McAnulty
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
43
|
The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 2012; 96:749-61. [PMID: 22576944 DOI: 10.1007/s00253-012-4112-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
Solventogenic clostridia are characterised by their biphasic fermentative metabolism, and the main final product n-butanol is of particular industrial interest because it can be used as a superior biofuel. During exponential growth, Clostridium acetobutylicum synthesises acetic and butyric acids which are accompanied by the formation of molecular hydrogen and carbon dioxide. During the stationary phase, the solvents acetone, butanol and ethanol are produced. However, the molecular mechanisms of this metabolic switch are largely unknown so far. In this study, in silico, in vitro and in vivo analyses were performed to elucidate the function of the CAC2713-encoded redox-sensing transcriptional repressor Rex and its role in the solventogenic shift of C. acetobutylicum ATCC 824. Electrophoretic mobility shift assays showed that Rex controls the expression of butanol biosynthetic genes as a response to the cellular NADH/NAD(+) ratio. Interestingly, the Rex-negative mutant C. acetobutylicum rex::int(95) produced high amounts of ethanol and butanol, while hydrogen and acetone production were significantly reduced. Both ethanol and butanol (but not acetone) formation started clearly earlier than in the wild type. In addition, the rex mutant showed a de-repression of the bifunctional aldehyde/alcohol dehydrogenase 2 encoded by the adhE2 gene (CAP0035) as demonstrated by increased adhE2 expression as well as high NADH-dependent alcohol dehydrogenase activities. The results presented here clearly indicated that Rex is involved in the redox-dependent solventogenic shift of C. acetobutylicum.
Collapse
|
44
|
Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, van Heiningen A, Granström T. Butanol production from lignocellulosics. Biotechnol Lett 2012; 34:1415-34. [PMID: 22526420 DOI: 10.1007/s10529-012-0926-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Clostridium spp. produce n-butanol in the acetone/butanol/ethanol process. For sustainable industrial scale butanol production, a number of obstacles need to be addressed including choice of feedstock, the low product yield, toxicity to production strain, multiple-end products and downstream processing of alcohol mixtures. This review describes the use of lignocellulosic feedstocks, bioprocess and metabolic engineering, downstream processing and catalytic refining of n-butanol.
Collapse
Affiliation(s)
- German Jurgens
- Department of Biotechnology and Chemical Technology, Aalto University, 00076, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnol J 2011; 6:1348-57. [DOI: 10.1002/biot.201100046] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
SpoIIE is necessary for asymmetric division, sporulation, and expression of sigmaF, sigmaE, and sigmaG but does not control solvent production in Clostridium acetobutylicum ATCC 824. J Bacteriol 2011; 193:5130-7. [PMID: 21784928 DOI: 10.1128/jb.05474-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to better characterize the initial stages of sporulation past Spo0A activation and the associated solventogenesis in the important industrial and model organism Clostridium acetobutylicum, the spoIIE gene was successfully disrupted and its expression was silenced. By silencing spoIIE, sporulation was blocked prior to asymmetric division, and no mature spores or any distinguishable morphogenetic changes developed. Upon plasmid-based complementation of spoIIE, sporulation was restored, although the number of spores formed was below that of the plasmid control strain. To investigate the impact of silencing spoIIE on the regulation of sporulation, transcript levels of sigF, sigE, and sigG were examined by semiquantitative reverse transcription-PCR, and the corresponding σF, σE, and σG protein levels were determined by Western analysis. Expression of sigF was significantly reduced in the inactivation strain, and this resulted in very low σF protein levels. Expression of sigE was barely detected, and no sigG transcript was detected at all; consequently, no σE or σG proteins were detected. These data suggest an autostimulatory role for σF in C. acetobutylicum, in contrast to the model organism for endospore formation, Bacillus subtilis, and confirm that high-level expression of σF is required for expression of σE and σG. Unlike the σF and σE inactivation strains, the SpoIIE inactivation strain did not exhibit inoculum-dependent solvent formation and produced good levels of solvents from both exponential- and stationary-phase inocula. Thus, we concluded that SpoIIE does not control solvent formation.
Collapse
|
47
|
Dürre P. Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 2011; 22:331-6. [DOI: 10.1016/j.copbio.2011.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/16/2011] [Accepted: 04/18/2011] [Indexed: 12/18/2022]
|
48
|
Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 2011; 22:337-43. [DOI: 10.1016/j.copbio.2011.02.004] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/20/2023]
|
49
|
Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 2011; 91:1305-13. [DOI: 10.1007/s00253-011-3322-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
50
|
Molecular breeding of advanced microorganisms for biofuel production. J Biomed Biotechnol 2011; 2011:416931. [PMID: 21318120 PMCID: PMC3035169 DOI: 10.1155/2011/416931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022] Open
Abstract
Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.
Collapse
|