1
|
Zhang YW, Sun L, Wang YN, Zhan SY. Role of macrophage polarization in diabetic foot ulcer healing: A bibliometric study. World J Diabetes 2025; 16:99755. [PMID: 39817209 PMCID: PMC11718451 DOI: 10.4239/wjd.v16.i1.99755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges. Hence, this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing. AIM To examine the relevant literature on macrophage polarization in DFU healing. METHODS A bibliometric analysis was conducted using the Web of Science database. Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software (VOSviewer and CiteSpace) and bibliometric online platforms. The obtained literature was then subjected to visualization and analysis of different countries/regions, institutions, journals, authors, and keywords to reveal the research's major trends and focus. RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023, especially in the latter period. Chinese researchers were the most prolific in this field, with 217 publications, while American researchers had been engaged in this field for a longer period. Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field. Shanghai Jiao Tong University was the institution with the most publications (27). The keywords "bone marrow", "adjustment, replacement, response, tissue repair", and "activation, repair, differentiation" appeared more frequently. The study of macrophage polarization in DFU healing focused on the regulatory mechanism, gene expression, and other aspects. CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database. The key hotspots in this field mainly include the regulation of macrophage activation, gene expression, wound tissue repair, and new wound materials. This study provides references for future research directions.
Collapse
Affiliation(s)
- You-Wen Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Lei Sun
- Department of Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong Province, China
| | - Yan-Nan Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Shi-Yu Zhan
- Department of Surgery, Longkou Traditional Chinese Medicine Hospital, Yantai 265701, Shandong Province, China
| |
Collapse
|
2
|
Selvakumar B, Sekar P, Samsudin AR. Intestinal macrophages in pathogenesis and treatment of gut leakage: current strategies and future perspectives. J Leukoc Biol 2024; 115:607-619. [PMID: 38198217 DOI: 10.1093/jleuko/qiad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Macrophages play key roles in tissue homeostasis, defense, disease, and repair. Macrophages are highly plastic and exhibit distinct functional phenotypes based on micro-environmental stimuli. In spite of several advancements in understanding macrophage biology and their different functional phenotypes in various physiological and pathological conditions, currently available treatment strategies targeting macrophages are limited. Macrophages' high plasticity and diverse functional roles-including tissue injury and wound healing mechanisms-mark them as potential targets to mine for efficient therapeutics to treat diseases. Despite mounting evidence on association of gut leakage with several extraintestinal diseases, there is no targeted standard therapy to treat gut leakage. Therefore, there is an urgent need to develop therapeutic strategies to treat this condition. Macrophages are the cells that play the largest role in interacting with the gut microbiota in the intestinal compartment and exert their intended functions in injury and repair mechanisms. In this review, we have summarized the current knowledge on the origins and phenotypes of macrophages. The specific role of macrophages in intestinal barrier function, their role in tissue repair mechanisms, and their association with gut microbiota are discussed. In addition, currently available therapies and the putative tissue repair mediators of macrophages for treating microbiota dysbiosis induced gut leakage are also discussed. The overall aim of this review is to convey the intense need to screen for microbiota induced macrophage-released prorepair mediators, which could lead to the identification of potential candidates that could be developed for treating the leaky gut and associated diseases.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Priyadharshini Sekar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - A Rani Samsudin
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
3
|
Zhang X, Yang Y, Zhao Y. Macrophage phenotype and its relationship with renal function in human diabetic nephropathy. PLoS One 2019; 14:e0221991. [PMID: 31509552 PMCID: PMC6738594 DOI: 10.1371/journal.pone.0221991] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
This study aimed to examine the macrophage phenotype and its relationship to renal function and histological changes in human DN and the effect of TREM-1 on high-glucose-induced macrophage activation. We observed that in renal tissue biopsies, the expression of CD68 and M1 was apparent in the glomeruli and interstitium, while accumulation of M2 and TREM-1 was primarily observed in the interstitium. The numbers of CD68, M1, and M2 macrophages infiltrating in the DN group were increased in a process-dependent manner compared with the control group, and the intensities of the infiltrates were proportional to the rate of subsequent decline in renal function. M1 macrophages were recruited into the kidney at an early stage (I+IIa) of DN. The M1-to-M2 macrophage ratio peaked at this time, whereas M2 macrophages predominated at later time points (III) when the percentage of M1/M2 macrophages was at its lowest level. In an in vitro study, we showed that under high glucose conditions, macrophages began to up-regulate their expression of TREM-1, M1, and marker iNOS and decreased the M2 marker MR. However, the above effects of high-glucose were abolished when TREM-1 expression was inhibited by TREM-1 siRNA. In conclusion, our study demonstrated that there was a positive correlation between the M1/M2 activation state and the progress of DN, and TREM-1 played an important role in high-glucose-induced macrophage phenotype transformation.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
- * E-mail:
| | - Ying Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Chen H, Erndt-Marino J, Diaz-Rodriguez P, Kulwatno J, Jimenez-Vergara AC, Thibeault SL, Hahn MS. In vitro evaluation of anti-fibrotic effects of select cytokines for vocal fold scar treatment. J Biomed Mater Res B Appl Biomater 2019; 107:1056-1067. [PMID: 30184328 PMCID: PMC7011756 DOI: 10.1002/jbm.b.34198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Scarring of the vocal fold lamina propria (LP) can cause considerable voice disorders due to reduced pliability in scar tissue, attributed in part to abnormal extracellular matrix (ECM) deposition produced by the fibrotic vocal fold fibroblast (fVFF). Cytokines with anti-fibrotic potential have been investigated to limit abnormal LP ECM, but are limited by the need for repeat injections. Moreover, the potentially significant role played by activated macrophages (AMOs) is usually not considered even though the interaction between AMO and fibrotic fibroblasts is known to regulate scar formation across different tissues. AMO are also regulated by cytokines that are used for LP scar removal, but little is known about AMO behaviors in response to these cytokines within the context of LP scar. In the present study, we evaluated anti-fibrotic effects of hepatocyte growth factor (HGF), interleukin-10 (IL-10) and interleukin-6 (IL-6) in a 3D, in vitro fVFF-AMO co-culture system using poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Data from all cytokines was synthesized into a heat-map that enabled assessment of specific associations between AMO and fVFF phenotypes. Cumulatively, our results indicated that both HGF and IL-10 are potentially anti-fibrotic (reduction in fibrotic markers and enhancement in normal, anti-fibrotic VFF markers), while IL-6 displays more complex, marker specific effects. Possible associations between AMO and fVFF phenotypes were found and may highlight a potential desirable macrophage phenotype. These data support the therapeutic potential of HGF and IL-10 for LP scar treatment, and shed light on future strategies aimed at targeting specific AMO phenotypes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1056-1067, 2019.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan L Thibeault
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
5
|
In-Site Monocyte Implantation in Bone Grafting for Maxillary Atrophy Reconstruction: A Preliminary Observational Proof of Concept Study. IMPLANT DENT 2019; 27:529-541. [PMID: 30239370 DOI: 10.1097/id.0000000000000813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The main objective of this study, involving 11 patients, is to share our experience on an integrated treatment modality, namely, the use of cellular therapy simultaneously with surgical reconstruction. Published works show that the implantation of monocytes in ischemic tissue enhances healing by providing neo-angiogenesis, a key mechanism in tissue regenerative processes. MATERIALS AND METHODS Our approach included the utilization of autologous monocytes and endothelial precursor cells in the bone graft itself to improve the success rate of the integration of the bone graft and its long-term viability/survival by promoting angiogenesis. We compared the standard regenerative procedures, namely sinus lift grafting performed with xenogeneic particle bone graft and posterior mandible grafting performed with on-lay or in-lay autologous cortical/medullary bone-block graft harvested from the iliac crest, with and without the use of cellular implementation. We evaluated results by both radiological and histological assessment. RESULTS Autologous cortical/medullary bone-block graft had a different response to implementation with monocytes, showing a better osteointegration than expected conversely to the xenogeneic particle bone graft. CONCLUSIONS Monocytes seem to improve autologous bone-block graft according to the "Therapeutic Angiogenesis" concept. Implementation with monocytes does not always improve xenogeneic particle bone graft.
Collapse
|
6
|
Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016; 44:450-462. [PMID: 26982353 PMCID: PMC4794754 DOI: 10.1016/j.immuni.2016.02.015] [Citation(s) in RCA: 2879] [Impact Index Per Article: 319.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 11/18/2022]
Abstract
Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.
Collapse
Affiliation(s)
- Thomas A Wynn
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Kevin M Vannella
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
8
|
Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, Lotersztajn S, Pavoine C. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 2014; 59:130-42. [PMID: 23832548 DOI: 10.1002/hep.26607] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Alcoholic and nonalcoholic fatty liver disease (ALD and NAFLD) are the predominant causes of liver-related mortality in Western countries. We have shown that limiting classical (M1) Kupffer cell (KC) polarization reduces alcohol-induced liver injury. Herein, we investigated whether favoring alternatively activated M2 KCs may protect against ALD and NAFLD. Ongoing alcohol drinkers and morbidly obese patients, with minimal hepatic injury and steatosis, displayed higher hepatic expression of M2 genes, as compared to patients with more severe liver lesions; individuals with limited liver lesions showed negligible hepatocyte apoptosis but significant macrophage apoptosis. Experiments in mouse models of ALD or NAFLD further showed that BALB/c or resveratrol-treated mice fed alcohol or a high-fat diet displayed preponderant M2 KC polarization, M1 KC apoptosis, and resistance to hepatocyte steatosis and apoptosis, as compared to control C57BL6/J mice. In vitro experiments in isolated KC, peritoneal, and Raw264.7 macrophages demonstrated that M1 macrophage apoptosis was promoted by conditioned medium from macrophages polarized into an M2 phenotype by either interleukin (IL)4, resveratrol, or adiponectin. Mechanistically, IL10 released from M2 cells promoted M1 death, and anti-IL10 antibodies blunted the proapoptic effects of M2-conditioned media. IL10 secreted by M2 KCs promoted selective M1 death by a mechanism involving activation of arginase in high inducible nitric oxide synthase-expressing M1 KCs. In alcohol-exposed mice, neutralization of IL10 impaired M1 apoptosis. CONCLUSION These data uncover a novel mechanism regulating the M1/M2 balance that relies on apoptotic effects of M2 KCs towards their M1 counterparts. They suggest that promoting M2-induced M1 KC apoptosis might prove a relevant strategy to limit alcohol- and high fat-induced inflammation and hepatocyte injury.
Collapse
Affiliation(s)
- Jinghong Wan
- INSERM, U955, Team 17, Créteil, France; Université Paris-Est, UMR_S955, UPEC, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang X, Li ZL, Woollard JR, Eirin A, Ebrahimi B, Crane JA, Zhu XY, Pawar AS, Krier JD, Jordan KL, Tang H, Textor SC, Lerman A, Lerman LO. Obesity-metabolic derangement preserves hemodynamics but promotes intrarenal adiposity and macrophage infiltration in swine renovascular disease. Am J Physiol Renal Physiol 2013; 305:F265-76. [PMID: 23657852 DOI: 10.1152/ajprenal.00043.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity-metabolic disorders (ObM) often accompany renal artery stenosis (RAS). We hypothesized that the coexistence of ObM and RAS magnifies inflammation and microvascular remodeling in the stenotic kidney (STK) and aggravates renal scarring. Twenty-eight obesity-prone Ossabaw pigs were studied after 16 wk of a high-fat/high-fructose diet or standard chow including ObM-sham, ObM-RAS, Lean-RAS, or Lean-sham (normal control) groups. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed by multidetector computed tomography (CT), renal oxygenation and tubular transport capability by blood-oxygen-level-dependent MRI, and microcirculation by micro-CT for vessel density, and Western blotting for protein expressions of angiogenic factors (VEGF/FLK-1). Renal vein and inferior vena cava levels of inflammatory cytokines were measured to evaluate systemic and kidney inflammation. Macrophage (MØ) infiltration and subpopulations, fat deposition in the kidney, and inflammation in perirenal and abdominal fat were also examined. GFR and RBF were decreased in Lean-STK but relatively preserved in ObM-STK. However, ObM-STK showed impaired tubular transport function, suppressed microcirculation, and stimulated glomerulosclerosis. ObM diet interacted with RAS to blunt angiogenesis in the STK, facilitated the release of inflammatory cytokines, and led to greater oxidative stress than Lean-STK. The ObM diet also induced fat deposition in the kidney and infiltration of proinflammatory M1-MØ, as also in perirenal and abdominal fat. Coexistence of ObM and RAS amplifies renal inflammation, aggravates microvascular remodeling, and accelerates glomerulosclerosis. Increased adiposity and MØ-accentuated inflammation induced by an ObM diet may contribute to structural injury in the post-STK kidney.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Since its discovery over 20 years ago endothelin-1 (ET-1) has been implicated in a number of physiological and pathophysiological processes. Its role in the development and progression of chronic kidney disease (CKD) is well established and is an area of ongoing intense research. There are now available a number of ET receptor antagonists many of which have been used in trials with CKD patients and shown to reduce BP and proteinuria. However, ET-1 has a number of BP-independent effects. Importantly, and in relation to the kidney, ET-1 has clear roles to play in cell proliferation, podocyte dysfunction, inflammation and fibrosis, and arguably, these actions of ET-1 may be more significant in the progression of CKD than its prohypertensive actions. This review will focus on the potential role of ET-1 in renal disease with an emphasis on its BP-independent actions.
Collapse
Affiliation(s)
- Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
11
|
Hong S, Lu Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol 2013; 4:13. [PMID: 23386851 PMCID: PMC3558681 DOI: 10.3389/fimmu.2013.00013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation, in conjunction with leukocytes, plays a key role in most acute kidney injury (AKI). Non-resolving renal inflammation leads to chronic fibrosis and renal failure. Resolvin D series (RvDs) and E series (RvEs), protectins, and maresins (MaRs) are endogenous omega-3 fatty acid-derived lipid mediators (LMs) that potently promote inflammation resolution by shortening neutrophil life span and promoting macrophage (Mf) non-phelogistic phagocytosis of apoptotic cells and the subsequent exit of Mfs from inflammatory tissue. 14S,21R-dihydroxy docosahexaenoic acid (14S,21R-diHDHA), a Mf-produced autacrine, reprograms Mfs to rescue vascular endothelia. RvD1, RvE1, or 14S,21R-diHDHA also switches Mfs to the phenotype that produces pro-resolving interleukin-10. RvDs or protectin/neuroprotectin D1 (PD1/NPD1) inhibits neutrophil infiltration into injured kidneys, blocks toll-like receptor -mediated inflammatory activation of Mfs and mitigates renal functions. RvDs also repress renal interstitial fibrosis, and PD1 promotes renoprotective heme-oxygenase-1 expression. These findings provide novel approaches for targeting inflammation resolution and LMs or modulation of LM-associated pathways for developing better clinical treatments for AKI.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Health Science Center, Louisiana State University New Orleans, LA, USA
| | | |
Collapse
|
12
|
Camici M, Galetta F, Abraham N, Carpi A. Obesity-related glomerulopathy and podocyte injury: a mini review. Front Biosci (Elite Ed) 2012. [PMID: 22201936 DOI: 10.2741/441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity-related glomerulopathy (ORG) is morphologically defined as focal segmental glomerulosclerosis and glomerulomegaly. Podocyte hypertrophy and reduced density are related to proteinuria which in a portion of patients is in the nephrotic range and evolvs towards renal failure. This article reviews the pathogenetic mechanisms of podocyte injury or dysfunction and lists new possible antiproteinuric strategies based on pharmaceutical targeting of the reported pathogenetic mechanisms. The pathogenetic mechnisms discussed include: renin angiotensin system, plasminogen activation inhibitor-1 (PAI-1), lipid metabolism, adiponectin, macrophages and proinflammatory cytokines, oxidative stress. The proposed antiproteinuric strategies include: AT2 receptor blockers; adipokine complement C19 TNF-related protein-1 blocker; selective PAI-1 inhibitor; farnesoid x receptor activation; increase of circulating adiponectin; selective antiinflammatory drugs; more potent antioxidants (Heme oxigenase, NOX4 inhibitors). However, because ORG is a rare disease, the need for a long term pharmaceutical approach in obese proteinuric patients should be carefully evaluated and limited to the cases with progressive loss of renal function.
Collapse
|
13
|
Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 2011; 121:3425-41. [PMID: 21821915 DOI: 10.1172/jci57582] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/08/2011] [Indexed: 12/23/2022] Open
Abstract
Renal tubulointerstitial damage is the final common pathway leading from chronic kidney disease to end-stage renal disease. Inflammation is clearly involved in tubulointerstitial injury, but it remains unclear how the inflammatory processes are initiated and regulated. Here, we have shown that in the mouse kidney, the transcription factor Krüppel-like factor-5 (KLF5) is mainly expressed in collecting duct epithelial cells and that Klf5 haploinsufficient mice (Klf5+/- mice) exhibit ameliorated renal injury in the unilateral ureteral obstruction (UUO) model of tubulointerstitial disease. Additionally, Klf5 haploinsufficiency reduced accumulation of CD11b+ F4/80(lo) cells, which expressed proinflammatory cytokines and induced apoptosis among renal epithelial cells, phenotypes indicative of M1-type macrophages. By contrast, it increased accumulation of CD11b+ F4/80(hi) macrophages, which expressed CD206 and CD301 and contributed to fibrosis, in part via TGF-β production--phenotypes indicative of M2-type macrophages. Interestingly, KLF5, in concert with C/EBPα, was found to induce expression of the chemotactic proteins S100A8 and S100A9, which recruited inflammatory monocytes to the kidneys and promoted their activation into M1-type macrophages. Finally, assessing the effects of bone marrow-specific Klf5 haploinsufficiency or collecting duct- or myeloid cell-specific Klf5 deletion confirmed that collecting duct expression of Klf5 is essential for inflammatory responses to UUO. Taken together, our results demonstrate that the renal collecting duct plays a pivotal role in the initiation and progression of tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Ma LJ, Corsa BA, Zhou J, Yang H, Li H, Tang YW, Babaev VR, Major AS, Linton MF, Fazio S, Hunley TE, Kon V, Fogo AB. Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am J Physiol Renal Physiol 2011; 300:F1203-13. [PMID: 21367915 DOI: 10.1152/ajprenal.00468.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms for increased risk of chronic kidney disease (CKD) in obesity remain unclear. The renin-angiotensin system is implicated in the pathogenesis of both adiposity and CKD. We investigated whether the angiotensin type 1 (AT(1)) receptor, composed of dominant AT(1a) and less expressed AT(1b) in wild-type (WT) mice, modulates development and progression of kidney injury in a high-fat diet (HFD)-induced obesity model. WT mice had increased body weight, body fat, and insulin levels and decreased adiponectin levels after 24 wk of a high-fat diet. Identically fed AT(1a) knockout (AT1aKO) mice gained weight similarly to WT mice, but had lower body fat and higher plasma cholesterol. Both obese AT1aKO and obese WT mice had increased visceral fat and kidney macrophage infiltration, with more proinflammatory M1 macrophage markers as well as increased mesangial expansion and tubular vacuolization, compared with lean mice. These abnormalities were heightened in the obese AT1aKO mice, with downregulated M2 macrophage markers and increased macrophage AT(1b) receptor. Treatment with an AT(1) receptor blocker, which affects both AT(1a) and AT(1b), abolished renal macrophage infiltration with inhibition of renal M1 and upregulation of M2 macrophage markers in obese WT mice. Our data suggest obesity accelerates kidney injury, linked to augmented inflammation in adipose and kidney tissues and a proinflammatory shift in macrophage and M1/M2 balance.
Collapse
Affiliation(s)
- Li-Jun Ma
- Department of Pathology, Vanderbilt Univ. Medical Center, Nashville, TN 37232-2561, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Obesity is established as an important contributor of increased diabetes mellitus, hypertension, and cardiovascular disease, all of which can promote chronic kidney disease (CKD). Recently, there is a growing appreciation that, even in the absence of these risks, obesity itself significantly increases CKD and accelerates its progression. RECENT FINDINGS Experimental and clinical studies reveal that adipose tissue, especially visceral fat, elaborates bioactive substances that contribute to the pathophysiologic renal hemodynamic and structural changes leading to obesity-related nephropathy. Adipocytes contain all the components of the renin-angiotensin-aldosterone system, plasminogen activator inhibitor, as well as adipocyte-specific metabolites such as free fatty acids, leptin, and adiponectin, which affect renal function and structure. In addition, fat is infiltrated by macrophages that can alter their phenotype and foster a proinflammatory milieu, which advances pathophysiologic changes in the kidney associated with obesity. SUMMARY Obesity is an independent risk factor for development and progression of renal damage. Although the current therapies aimed at slowing progressive renal damage include reduction in weight and rely on inhibition of the renin-angiotensin system, the approach will likely be supplemented by interventions aimed at obesity-specific targets including adipocyte-driven cytokines and inflammatory factors.
Collapse
|
16
|
Behmoaras J, Smith J, D'Souza Z, Bhangal G, Chawanasuntoropoj R, Tam FWK, Pusey CD, Aitman TJ, Cook HT. Genetic loci modulate macrophage activity and glomerular damage in experimental glomerulonephritis. J Am Soc Nephrol 2010; 21:1136-44. [PMID: 20488952 DOI: 10.1681/asn.2009090968] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Wistar Kyoto (WKY) rat is uniquely susceptible to experimentally induced crescentic glomerulonephritis. Two major quantitative trait loci (QTLs) on chromosomes 13 (Crgn1) and 16 (Crgn2) with logarithm of odds >8, as well as five other loci (Crgn3 through 7), largely explain this genetic susceptibility. To understand further the effects of Crgn1 and Crgn2, we generated a double-congenic strain by introgressing these loci from glomerulonephritis-resistant Lewis rats onto the WKY genetic background. Induction of nephrotoxic nephritis in the double-congenic rats (WKY.LCrgn1,2) produced markedly fewer glomerular crescents, reduced macrophage infiltration, and decreased expression of glomerular TNF-alpha and inducible nitric oxide synthase expression compared with control animals. Bone marrow and kidney transplantation studies between parental and WKY.LCrgn1,2 strains, together with in vitro experiments, demonstrated that Crgn1 and Crgn2 contribute exclusively to circulating cell-related glomerular injury by regulating macrophage infiltration and activation. The residual genetic susceptibility to crescentic glomerulonephritis in WKY.LCrgn1,2 rats associated with macrophage activity (especially with enhanced metalloelastase expression) rather than macrophage infiltration. Taken together, these results demonstrate that a genetic influence on macrophage activation, rather than number, determines glomerular damage in immune-mediated glomerulonephritis.
Collapse
Affiliation(s)
- Jacques Behmoaras
- Department of Renal Medicine, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue remodeling during embryonic development, acquired kidney disease, and renal allograft responses. This review summarizes macrophage phenotype and function in the orchestration of kidney repair and replacement of specialized renal cells following injury. Recent advances in our understanding of macrophage heterogeneity in response to their microenvironment raise new and exciting therapeutic possibilities to attenuate or conceivably reverse progressive renal disease in the context of fibrosis. Furthermore, parallels with pathological processes in many other organs also exist.
Collapse
Affiliation(s)
- Sharon D Ricardo
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Behmoaras J, Bhangal G, Smith J, McDonald K, Mutch B, Lai PC, Domin J, Game L, Salama A, Foxwell BM, Pusey CD, Cook HT, Aitman TJ. Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat Genet 2008; 40:553-9. [PMID: 18443593 PMCID: PMC2742200 DOI: 10.1038/ng.137] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/17/2008] [Indexed: 11/08/2022]
Abstract
Crescentic glomerulonephritis is an important cause of human kidney failure for which the underlying molecular basis is largely unknown. In previous studies, we mapped several susceptibility loci, Crgn1-Crgn7, for crescentic glomerulonephritis in the Wistar Kyoto (WKY) rat. Here we show by combined congenic, linkage and microarray studies that the activator protein-1 (AP-1) transcription factor JunD is a major determinant of macrophage activity and is associated with glomerulonephritis susceptibility. Introgression of Crgn2 from the nonsusceptible Lewis strain onto the WKY background leads to significant reductions in crescent formation, macrophage infiltration, Fc receptor-mediated macrophage activation and cytokine production. Haplotype analysis restricted the Crgn2 linkage interval to a 430-kb interval containing Jund, which is markedly overexpressed in WKY macrophages and glomeruli. Jund knockdown in rat and human primary macrophages led to significantly reduced macrophage activity and cytokine secretion, indicating conservation of JunD function in macrophage activation in rats and humans and suggesting in vivo inhibition of Jund as a possible new therapeutic strategy for diseases characterized by inflammation and macrophage activation.
Collapse
Affiliation(s)
- Jacques Behmoaras
- Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|