1
|
Liu HX, Zhou XQ, Jiang WD, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Feng L. Optimal α-lipoic acid strengthen immunity of young grass carp (Ctenopharyngodon idella) by enhancing immune function of head kidney, spleen and skin. FISH & SHELLFISH IMMUNOLOGY 2018; 80:600-617. [PMID: 30018021 DOI: 10.1016/j.fsi.2018.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
This study was for the first time to investigate the effects of α-lipoic acid (LA) on growth and immune function of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (with initial body weight at 216.59 ± 0.33 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of LA for 70 days. Un-supplemented group did not find LA and its concentrations in the other five diets were 203.25, 403.82, 591.42, 781.25 and 953.18 mg kg-1, respectively. After the growth trial, fish were challenged with A. hydrophila for 14 days. The results showed that, compared with the un-supplemented group, optimal LA improved lysozyme (LZ) and acid phosphatase (ACP) activities, enhanced complement 3 (C3), C4 and immunoglobulin (Ig) M contents and up-regulated hepcidin, liver expressed antimicrobial peptide (LEAP)-2A, LEAP-2B and β-defensin-1 mRNA levels in the head kidney, spleen and skin of young grass carp; meanwhile, optimal LA up-regulated anti-inflammatory cytokines transforming growth factor (TGF)-β1, TGF-β2, interleukin (IL)-4/13A (not IL-4/13B), IL-10 and IL-11 mRNA levels partly related to target of rapamycin (TOR) signaling and down-regulated pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interferon (IFN)-γ2, IL-1β, IL-6, IL-8, IL-12p40 (not IL-12p35), IL-15 (not in the skin) and IL-17D mRNA levels partially associated with nuclear factor-kappa B (NF-κB) signaling in the head kidney, spleen and skin of young grass carp. Above results indicated that optimal LA enhanced the immune function of head kidney, spleen and skin in fish. Interestingly, excessive LA decreased the growth and impaired the immune function of head kidney, spleen and skin in fish. Finally, on the basis of the percent weight gain (PWG), the ability against skin hemorrhage and lesion, the IgM content in the head kidney and the LZ activity in the spleen, the optimal dietary LA levels were estimated to be 315.37, 382.33, 353.19 and 318.26 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Hua-Xi Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Abstract
mTOR is a serine/threonine kinase and plays a critical role in mammalian cell growth, survival, and metabolism. mTOR is present in two cellular complexes: mTORC1 and mTORC2. Dysregulation of the mTOR pathway has been related to tumorigenesis, poor prognosis and/or chemotherapy resistance in a variety of malignancies. Inhibition of mTORC1 by Rapamycin and its analogs has been explored to treat a number of tumors. However, the effectiveness of patient response is limited and not all patients respond. Second generation of mTOR inhibitors have recently been developed to target mTOR kinase activity and to suppress both mTORC1 and mTORC2. Dual mTORC1/mTORC2 inhibitors generally are more efficacious in preclinical studies and clinical trials. We and others have recently found that dual mTORC1/mTORC2 inhibitors sensitize T-cell acute lymphocytic leukemia and rhabdomyosarcoma cells to DNA damaging agents by suppression of expression of FANCD2 of the Fanconi anemia pathway, an important DNA repair mechanism that is associated with drug resistance of multiple types of cancer. This review will highlight mTOR and the Fanconi anemia pathway in cancer, with a particular attention to our newly discovered connection between mTOR and the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 2010; 24:729-39. [PMID: 20200558 DOI: 10.1038/leu.2010.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid (RA) relieves the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. However, RA treatment alone invariably results in RA resistance, both in vivo and in vitro. RA-resistant cell lines have been shown to serve as useful models for elucidation of mechanisms of resistance. Previously, we identified topoisomerase II beta (TOP2B) as a novel mediator of RA-resistance in APL cell lines. In this study, we show that both TOP2B protein stability and activity are regulated by a member of the protein kinase C (PRKC) family, PRKC delta (PRKCD). Co-treatment with a pharmacologic inhibitor of PRKCD and RA resulted in the induction of an RA responsive reporter construct, as well as the endogenous RA target genes, CEBPE, CYP26A1 and RIG-I. Furthermore, the co-treatment overcame the differentiation block in RA-resistant cells, as assessed by morphological analysis, restoration of promyelocytic leukemia nuclear bodies, induction of CD11c cell surface expression and an increase in nitro-blue-tetrazolium reduction. Cumulatively, our data suggest a model whereby inhibition of PRKCD decreases TOP2B protein levels, leading to a loss of TOP2B-mediated repressive effects on RA-induced transcription and granulocytic differentiation.
Collapse
|
4
|
Kjellerup R, Iversen L, Kragballe K, Johansen C. The expression and phosphorylation of eukaryotic initiation factor 4E are increased in lesional psoriatic skin. Br J Dermatol 2009; 161:1059-66. [DOI: 10.1111/j.1365-2133.2009.09303.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Fu Z, Kim J, Vidrich A, Sturgill TW, Cohn SM. Intestinal cell kinase, a MAP kinase-related kinase, regulates proliferation and G1 cell cycle progression of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G632-40. [PMID: 19696144 PMCID: PMC2763805 DOI: 10.1152/ajpgi.00066.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal cell kinase (ICK), originally cloned from the intestine and expressed in the intestinal crypt epithelium, is a highly conserved serine/threonine protein kinase that is similar to mitogen-activated protein kinases (MAPKs) in the catalytic domain and requires dual phosphorylation within a MAPK-like TDY motif for full activation. Despite these similarities to MAPKs, the biological functions of ICK remain unknown. In this study, we report that suppression of ICK expression in cultured intestinal epithelial cells by short hairpin RNA (shRNA) interference significantly impaired cellular proliferation and induced features of gene expression characteristic of colonic or enterocytic differentiation. Downregulation of ICK altered expression of cell cycle regulators (cyclin D1, c-Myc, and p21(Cip1/WAF1)) of G(1)-S transition, consistent with the G(1) cell cycle delay induced by ICK shRNA. ICK deficiency also led to a significant decrease in the expression and/or activity of p70 ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E), concomitant with reduced expression of their upstream regulators, the mammalian target of rapamycin (mTOR) and the regulatory associated protein of mTOR (Raptor). Furthermore, ICK interacts with the mTOR/Raptor complex in vivo and phosphorylates Raptor in vitro. These results suggest that disrupting ICK function may downregulate protein translation of specific downstream targets of eIF4E and S6K1 such as cyclin D1 and c-Myc through the mTOR/Raptor signaling pathway. Taken together, our findings demonstrate an important role for ICK in proliferation and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Zheng Fu
- Digestive Health Center of Excellence, Univ. of Virginia Health System, PO Box 800708, Charlottesville, VA 22908, USA.
| | - Jungeun Kim
- 1Digestive Health Center of Excellence and Department of Medicine and
| | - Alda Vidrich
- 1Digestive Health Center of Excellence and Department of Medicine and
| | - Thomas W. Sturgill
- 2Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Steven M. Cohn
- 1Digestive Health Center of Excellence and Department of Medicine and
| |
Collapse
|
6
|
Olson KE, Booth GC, Poulin F, Sonenberg N, Beretta L. Impaired myelopoiesis in mice lacking the repressors of translation initiation, 4E-BP1 and 4E-BP2. Immunology 2008; 128:e376-84. [PMID: 19175792 DOI: 10.1111/j.1365-2567.2008.02981.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated the role of two repressors of translation initiation in granulocytic differentiation using mice with a null mutation in the 4E-BP1 gene or with a null mutation in the 4E-BP2 gene. We show that 4E-BP1(-/-) and 4E-BP2(-/-) mice exhibit an increased number of immature granulocytic precursors, associated with a decreased number of mature granulocytic elements compared with wild-type mice, which is suggestive of an impaired granulocytic differentiation. Clonogenetic analyses revealed a reduced number of granulocytic colonies and concomitant increase in granulo-monocytic colonies in 4E-BP(-/-) mice. Finally, a slight expansion of monocytic cells was observed in the 4E-BP2(-/-) mice. In contrast, we did not observe any significant difference in thymocyte maturation in these mice. These results, together with the fact that 4E-BPs are markedly induced during granulo-monocytic differentiation of myeloid cells in vitro, highlight the pivotal role of 4E-BP1 and 4E-BP2 in the early phases of myelopoiesis. These results represent the first in vivo evidence of the involvement of translation in the early phases of granulo-monocytic differentiation and further extend the role of translation in haematopoietic differentiation.
Collapse
Affiliation(s)
- Katie E Olson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
7
|
Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008; 11:63-76. [PMID: 18440854 DOI: 10.1016/j.drup.2008.03.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a central role in regulating protein synthesis, ribosomal protein translation, and cap-dependent translation. Deregulations in mTOR signaling are frequently associated with tumorigenesis, angiogenesis, tumor growth and metastasis. This review highlights the role of the mTOR in anticancer drug resistance. We discuss the network of signaling pathways in which the mTOR kinase is involved, including the structure and activation of the mTOR complex and the pathways upstream and downstream of mTOR as well as other molecular interactions of mTOR. Major upstream signaling components in control of mTOR activity are PI3K/PTEN/AKT and Ras/Raf/MEK/ERK pathways. We discuss the central role of mTOR in mediating the translation of mRNAs of proteins related to cell cycle progression, those involved in cell survival such as c-myc, hypoxia inducible factor 1* (HIF-1*) and vascular endothelial growth factor (VEGF), cyclin A, cyclin dependent kinases (cdk1/2), cdk inhibitors (p21(Cip1) and p27(Kip1)), retinoblastoma (Rb) protein, and RNA polymerases I and III. We then discuss the potential therapeutic opportunities for using mTOR inhibitors rapamycin, CCI-779, RAD001, and AP-23573 in cancer therapy as single agents or in combinations to reverse drug resistance.
Collapse
Affiliation(s)
- Bing-Hua Jiang
- Department of Microbiology, Mary Babb Randolph Cancer Center, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
8
|
Kim HJ, Lotan R. Identification of retinoid-modulated proteins in squamous carcinoma cells using high-throughput immunoblotting. Cancer Res 2004; 64:2439-48. [PMID: 15059897 DOI: 10.1158/0008-5472.can-03-2643] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoids have shown clinical efficacy in cancer chemoprevention and therapy presumably by modulating the growth, differentiation, and apoptosis of normal, premalignant, and malignant cells. To better understand the mechanisms by which retinoids exert their effects, we used a high-throughput Western blotting method (Becton-Dickinson PowerBlot) to evaluate changes in the levels of cellular signaling proteins in head and neck squamous cell carcinoma cells treated with the cytostatic all-trans-retinoic acid or with the proapoptotic retinoids 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid or N-(4-hydroxyphenyl)retinamide. Treatments of the head and neck squamous cell carcinoma cells with these retinoids for 24 h resulted in increased levels of 14, 22, and 22 proteins and decreased levels of 5, 10, and 7 proteins, respectively. The changes in the levels of the following proteins were confirmed by conventional western immunoblotting: all-trans-retinoic acid increased ELF3, topoisomerase II alpha, RB2/p130, RIG-G, and EMAPII and decreased MEF2D and cathepsin L. N-(4-Hydroxyphenyl)retinamide up-regulated ELF3, c-Jun, Rb2/p130, JAK1, p67phox, Grb2, O(6)-methylguanine-DNA methyltransferase, and Ercc-1. 6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid increased Rb2/p130, c-Jun, Sp1, Sin, and tomosyn and decreased cathepsin L, Mre11, and topoisomerase II alpha. Some of these proteins were also modulated by these retinoids in other human cancer cell lines. A subset of the proteins were modulated similarly by the different retinoids, whereas changes in other proteins were unique for each retinoid. These results suggest that the mechanisms by which these retinoids modulate proteins are distinct but may overlap. Some of the retinoid-modulated proteins identified in this study may be novel candidates for mediating different responses to retinoids.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
9
|
Rolli-Derkinderen M, Machavoine F, Baraban JM, Grolleau A, Beretta L, Dy M. ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1. J Biol Chem 2003; 278:18859-67. [PMID: 12618431 DOI: 10.1074/jbc.m211696200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4E-BP1 plays a major role in translation by inhibiting cap-dependent translation initiation. Several reports have investigated the regulation of 4E-BP1 phosphorylation, which varies along with cell differentiation and upon various stimulations, but very little is known about the regulation of its expression. In a first part, we show that the expression of 4E-BP1 protein and transcript decreases in hematopoietic cell lines cultivated in the presence of phorbol 12-myristate 13-acetate (PMA). This decrease depends on the activation of the ERK/mitogen-activated protein kinases. 4E-BP1 expression also decreases when the p38/mitogen-activated protein kinase pathway is activated by granulocyte/macrophage colony-stimulating factor but to a lesser extent than with PMA. In a second part, we examine how 4e-bp1 promoter activity is regulated. PMA and granulocyte/macrophage colony-stimulating factor induce Egr-1 expression through ERK and p38 activation, respectively. Using a dominant negative mutant of Egr, ZnEgr, we show that this transcription factor is responsible for the inhibition of 4e-bp1 promoter activity. In a third part we show that histidine decarboxylase, whose activity and expression are inversely correlated with 4E-BP1 expression, is a potential target for the translational machinery. These data (i) are the first evidence of a new role of ERK and p38 on the translational machinery and (ii) demonstrate that 4E-BP1 is a new target for Egr-1.
Collapse
Affiliation(s)
- Malvyne Rolli-Derkinderen
- CNRS FRE 2444, Université René Descartes Paris V, Hôpital Necker, Institut Federatif de Recherche Necker Enfants Malades, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
10
|
Walsh D, Meleady P, Power B, Morley SJ, Clynes M. Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines. Differentiation 2003; 71:126-34. [PMID: 12641566 DOI: 10.1046/j.1432-0436.2003.710203.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rates of eukaryotic protein synthesis and proliferation are dependent upon the availability of eIF4F, the cap-binding translation initiation complex that guides the ribosome onto the mRNA. One possible rate-limiting factor in eIF4F complex formation is the availability of eIF4E, which interacts specifically with the mRNA cap structure. As such, it has a potential role in the selective translation of growth-related mRNAs, with overexpression of eIF4E resulting in aberrant cell growth and transformation. A number of studies suggest that eIF4E may play a role in cellular differentiation as well as proliferation. We have previously reported that post-transcriptional regulation is involved in the induction of keratins in epithelial lung tumor cell lines exposed to the differentiation-modulating agent, bromo-deoxyuridine (BrdU). Here, we demonstrate that these BrdU-treated lung cells express elevated levels of eIF4E protein and enhanced phosphorylation of eIF4E. Overexpression of eIF4E by cDNA transfection in the poorly differentiated, keratin-negative human lung cell line, DLKP, was found to promote a flattened, more epithelial appearance to these cells, coupled with the induction of simple keratins (keratins 8 and 18). In contrast, levels of eIF4E expression were found to decrease during BrdU-induced differentiation of the leukemic cell line, HL-60, suggesting that there are cell-type differences in the response to BrdU and in the requirement for eIF4E during differentiation.
Collapse
Affiliation(s)
- Derek Walsh
- National Cell and Tissue Culture Centre/National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Ireland
| | | | | | | | | |
Collapse
|
11
|
Strudwick S, Borden KLB. Finding a role for PML in APL pathogenesis: a critical assessment of potential PML activities. Leukemia 2002; 16:1906-17. [PMID: 12357342 DOI: 10.1038/sj.leu.2402724] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 04/02/2002] [Indexed: 01/10/2023]
Abstract
In normal mammalian cells the promyelocytic leukemia protein (PML) is primarily localized in multiprotein nuclear complexes called PML nuclear bodies. However, both PML and PML nuclear bodies are disrupted in acute promyelocytic leukemia (APL). The treatment of APL patients with all-trans retinoic acid (ATRA) results in clinical remission associated with blast cell differentiation and reformation of the PML nuclear bodies. These observations imply that the structural integrity of the PML nuclear body is critically important for normal cellular functions. Indeed, PML protein is a negative growth regulator capable of causing growth arrest in the G(1) phase of the cell cycle, transformation suppression, senescence and apoptosis. These PML-mediated, physiological effects can be readily demonstrated. However, a discrete biochemical and molecular model of PML function has yet to be defined. Upon first assessment of the current PML literature there appears to be a seemingly endless list of potential PML partner proteins implicating PML in a variety of regulatory mechanisms at every level of gene expression. The purpose of this review is to simplify this confusing field of research by using strict criteria to deduce which models of PML body function are well supported.
Collapse
Affiliation(s)
- S Strudwick
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | |
Collapse
|
12
|
Benoit G, Roussel M, Pendino F, Ségal-Bendirdjian E, Lanotte M. Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation. Oncogene 2001; 20:7161-77. [PMID: 11704845 DOI: 10.1038/sj.onc.1204760] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite intensive molecular biology investigations over the past 10 years, and an important breakthrough on how PML-RARalpha, the fusion protein resulting from t(15;17), can alter RARalpha and PML functions, no definitive views on how leukemia is generated and by what mechanism(s) the normal phenotype is restored, are yet available. 'Resistances' to pharmacological levels of all-trans-retinoic acid (ATRA) have been observed in experimental in vivo and in vitro models. In this review, we emphasize the key role played by signal cross-talk for both normal and neoplastic hemopoiesis. After an overview of reported experimental data on APL-cell maturation and apoptosis, we apply our current knowledge on signaling pathways to underline those which might generate signal cross-talks. The design of biological models suitable to decipher the integration of signal cross-talks at the transcriptional level should be our first priority today, to generate some realistic therapeutic approaches After 'Ten Years of Molecular APL', we still know very little about how the disease develops and how effective medicines work.
Collapse
MESH Headings
- Apoptosis
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Differentiation
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Hematopoiesis
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/physiopathology
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Receptor Cross-Talk
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factors/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- G Benoit
- INSERM U-496, Hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | | | |
Collapse
|
13
|
Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, Borden KL. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J Mol Biol 2001; 312:609-23. [PMID: 11575918 DOI: 10.1006/jmbi.2001.5003] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The promyelocytic leukemia protein (PML) is a mammalian regulator of cell growth which is characteristically disrupted in acute promyelocytic leukemia and by a variety of viruses. PML contains a RING domain which is required for its growth-suppressive and antiviral properties. Although normally nuclear, in certain pathogenic conditions, including arenaviral infection, PML is relocated to the cytoplasm, where its functions are poorly understood. Here, we observe that PML and arenavirus protein Z use regions around the first zinc-binding site of their respective RING domains to directly interact, with sub-micromolar affinity, with the dorsal surface of translation initiation factor eIF4E, representing a novel mode of eIF4E recognition. PML and Z profoundly reduce the affinity of eIF4E for its substrate, the 5' 7-methyl guanosine cap of mRNA, by over 100-fold. Association with the dorsal surface of eIF4E and direct antagonism of mRNA cap binding by PML and Z lead to direct inhibition of translation. These activities of the RING domains of PML and Z do not involve ubiquitin-mediated protein degradation, in contrast to many RINGs which have been observed to do so. Although PML and Z have well characterized physiological functions in regulation of growth and apoptosis, this work establishes the first discrete biochemical mechanism which underlies the biological activities of their RING domains. Thus, we establish PML and Z as translational repressors, with potential contributions to the pathogenesis of acute promyelocytic leukemia and variety of viral infections.
Collapse
Affiliation(s)
- A Kentsis
- Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|