1
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells 2020; 9:cells9112423. [PMID: 33167477 PMCID: PMC7716236 DOI: 10.3390/cells9112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation. In keeping with this, we reasoned that a better understanding of the molecular mechanisms pivotal for ATRA-driven differentiation could definitely bolster the identification of new therapeutic strategies in APL patients. We thus performed an in-depth high-throughput transcriptional profile analysis and metabolic characterization of a well-established APL experimental model based on NB4 cells that represent an unevaluable tool to dissect the complex mechanism associated with ATRA-induced granulocytic differentiation. Pathway-reconstruction analysis using genome-wide transcriptional data has allowed us to identify the activation/inhibition of several cancer signaling pathways (e.g., inflammation, immune cell response, DNA repair, and cell proliferation) and master regulators (e.g., transcription factors, epigenetic regulators, and ligand-dependent nuclear receptors). Furthermore, we provide evidence of the regulation of a considerable set of metabolic genes involved in cancer metabolic reprogramming. Consistently, we found that ATRA treatment of NB4 cells drives the activation of aerobic glycolysis pathway and the reduction of OXPHOS-dependent ATP production. Overall, this study represents an important resource in understanding the molecular “portfolio” pivotal for APL differentiation, which can be explored for developing new therapeutic strategies.
Collapse
|
4
|
Crawford LJ, Johnston CK, Irvine AE. TRIM proteins in blood cancers. J Cell Commun Signal 2017; 12:21-29. [PMID: 29110249 PMCID: PMC5842186 DOI: 10.1007/s12079-017-0423-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Post-translational modification of proteins with ubiquitin plays a central role in regulating numerous cellular processes. E3 ligases determine the specificity of ubiquitination by mediating the transfer of ubiquitin to substrate proteins. The family of tripartite motif (TRIM) proteins make up one of the largest subfamilies of E3 ligases. Accumulating evidence suggests that dysregulation of TRIM proteins is associated with a variety of diseases. In this review we focus on the involvement of TRIM proteins in blood cancers.
Collapse
Affiliation(s)
- Lisa J Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Cliona K Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Alexandra E Irvine
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
5
|
Chen Y, Guo Y, Yang H, Shi G, Xu G, Shi J, Yin N, Chen D. TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget 2016; 6:23708-19. [PMID: 26247633 PMCID: PMC4695146 DOI: 10.18632/oncotarget.4291] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
TRIM66 belongs to the family of tripartite motif (TRIM)-containing proteins. Alterations in TRIM proteins have been implicated in several malignancies. This study was aimed at elucidating the expression and biological function of TRIM66 in osteosarcoma. Here, TRIM66 expression level was higher in osteosarcoma tissues than in normal tissues. High TRIM66 expression was correlated with high rate of local recurrence and lung metastasis, and short survival time. Then, we found that knockdown of TRIM66 in two osteosarcoma cell lines, MG63 and HOS, significantly inhibited cell proliferation and induced G1-phase arrest. Moreover, inhibition of TRIM66 in osteosarcoma cells significantly induced cell apoptosis, while remarkably inhibited cell migration, invasion as well as tumorigenicity in nude mice. Gene set enrichment analysis in Gene Expression Omnibus dataset revealed that apoptosis, epithelial-mesenchymal transition (EMT) and transforming growth factor-β (TGF-β) signaling pathway-related genes were enriched in TRIM66 higher expression patients, which was confirmed by western blot analysis in osteosarcoma cells with TRIM66 silenced. In conclusion, TRIM66 may act as an oncogene through suppressing apoptosis pathway and promoting TGF-β signaling in osteosarcoma carcinogenesis. TRIM66 may be a prognostic factor and potential therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yongfei Guo
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Haisong Yang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Na Yin
- Department of Anesthesiology & Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Deyu Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
6
|
Nichita C, Ciarloni L, Monnier-Benoit S, Hosseinian S, Dorta G, Rüegg C. A novel gene expression signature in peripheral blood mononuclear cells for early detection of colorectal cancer. Aliment Pharmacol Ther 2014; 39:507-17. [PMID: 24428642 DOI: 10.1111/apt.12618] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.
Collapse
Affiliation(s)
- C Nichita
- Gastroenterology and Hepatology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene 2014; 34:600-10. [PMID: 24469053 DOI: 10.1038/onc.2013.593] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/14/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.
Collapse
|
8
|
Cui Z, Cao W, Li J, Song X, Mao L, Chen W. TRIM24 overexpression is common in locally advanced head and neck squamous cell carcinoma and correlates with aggressive malignant phenotypes. PLoS One 2013; 8:e63887. [PMID: 23717505 PMCID: PMC3661592 DOI: 10.1371/journal.pone.0063887] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/08/2013] [Indexed: 02/05/2023] Open
Abstract
Tripartite motif-containing 24 (TRIM24), a member of the transcriptional intermediary factor 1 family, functions as a co-regulator that positively or negatively modulates the transcriptional activities of several nuclear receptors. The aim of this study was to investigate TRIM24 expression and its clinical significance in head and neck squamous cell carcinoma. The expression levels of TRIM24 variants were examined in head and neck squamous cell carcinoma (HNSCC) samples and cell lines by real-time PCR and WB. The expression levels of TRIM24 measured in 91 locally advanced HNSCC tumors were measured by immunohistochemistry and correlated with clinical and pathological parameters. The functional role of TRIM24 in HNSCC was further investigated by silencing its expression in HNSCC cell lines. TRIM24 variants were up-regulated in 56 HNSCC samples (P<.001) and 9 HNSCC cell lines (P<.05). TRIM24 protein was overexpressed in 6 of 8 HNSCC cell lines and in 2 of 3 HNSCC samples. Furthermore, 54.95% (50/91) of HNSCC samples exhibited remarkably elevated expression of TRIM24 by immunohistochemistry. Univariate analysis revealed that high TRIM24 expression was associated with worse overall survival (P = .020). In multivariate analysis, TRIM24 expression was identified as an independent predictor of overall survival (P = .030), after adjusting for other clinicopathological parameters. Upon TRIM24 silencing, the proliferation of HNSCC cells was notably inhibited due to the induction of apoptosis. These results suggest that aberrant TRIM24 expression may play an important role in the development of HNSCC and is a promising prognostic indicator for patients with locally advanced HNSCC.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiang Li
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Li Mao
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, United States of America
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
9
|
Abstract
Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.
Collapse
|
10
|
Abstract
Emerging clinical evidence shows that the deregulation of ubiquitin-mediated degradation of oncogene products or tumour suppressors is likely to be involved in the aetiology of carcinomas and leukaemias. Recent studies have indicated that some members of the tripartite motif (TRIM) proteins (one of the subfamilies of the RING type E3 ubiquitin ligases) function as important regulators for carcinogenesis. This Review focuses on TRIM proteins that are involved in tumour development and progression.
Collapse
Affiliation(s)
- Shigetsugu Hatakeyama
- Department of Biochemistry, Institute for Animal Experimentation, and Central Institute of Isotope Science, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
11
|
Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1461-9. [PMID: 21435435 DOI: 10.1016/j.ajpath.2010.12.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022]
Abstract
In this study, we have analyzed the expression of TRIM24/TIF-1α, a negative regulator of various transcription factors (including nuclear receptors and p53) at the genomic, mRNA, and protein levels in human breast tumors. In breast cancer biopsy specimens, TRIM24/TIF-1α mRNA levels (assessed by Real-Time Quantitative PCR or microarray expression profiling) were increased as compared to normal breast tissues. At the genomic level, array comparative genomic hybridization analysis showed that the TRIM24/TIF-1α locus (7q34) exhibited both gains and losses that correlated with mRNA levels. By re-analyzing a series of 238 tumors, high levels of TRIM24/TIF-1α mRNA significantly correlated with various markers of poor prognosis (such as the molecular subtype) and were associated with worse overall survival. By using a rabbit polyclonal antibody for immunochemistry, the TRIM24/TIF-1α protein was detected in nuclei of normal luminal epithelial breast cells, but not in myoepithelial cells. Tissue microarray analysis confirmed that its expression was increased in epithelial cells from normal to breast infiltrating duct carcinoma and correlated with worse overall survival. Altogether, this work is the first study that shows that overexpression of the TRIM24/TIF-1α gene in breast cancer is associated with poor prognosis and worse survival, and it suggests that this transcription coregulator may play a role in mammary carcinogenesis and represent a novel prognostic marker.
Collapse
|