1
|
Gross SA, Paustenbach DJ. Shanghai Health Study (2001-2009): What was learned about benzene health effects? Crit Rev Toxicol 2017; 48:217-251. [PMID: 29243948 DOI: 10.1080/10408444.2017.1401581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Shanghai Health Study (SHS) was a large epidemiology study conducted as a joint effort between the University of Colorado and Fudan University in Shanghai, China. The study was funded by members of the American Petroleum Institute between 2001 and 2009 and was designed to evaluate the human health effects associated with benzene exposure. Two arms of the SHS included: an occupational-based molecular epidemiology study and several hospital-based case control studies. Consistent with historical literature, following sufficient exposure to relatively high airborne concentrations and years of exposure, the SHS concluded that exposure to benzene resulted in an increased risk of various blood and bone marrow abnormalities such as benzene poisoning, aplastic anemia (AA), myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). Non-Hodgkin lymphoma (NHL) was not significantly increased for the exposures examined in this study. Perhaps the most important contribution of the SHS was furthering our understanding of the mechanism of benzene-induced bone marrow toxicity and the importance of identifying the proper subset of MDS relevant to benzene. Investigators found that benzene-exposed workers exhibited bone marrow morphology consistent with an immune-mediated inflammatory response. Contrary to historic reports, no consistent pattern of cytogenetic abnormalities was identified in these workers. Taken together, findings from SHS provided evidence that the mechanism for benzene-induced bone marrow damage was not initiated by chromosome abnormalities. Instead, chronic inflammation, followed by an immune-mediated response, is likely to play a more significant role in benzene-induced disease initiation and progression than previously thought.
Collapse
|
2
|
Kerzic PJ, Irons RD. Distribution of chromosome breakpoints in benzene-exposed and unexposed AML patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:212-216. [PMID: 28926803 DOI: 10.1016/j.etap.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Results of laboratory studies and investigations of occupationally exposed healthy individuals have been used to develop a mode of action for benzene-induced leukemia that mirrors disease following treatment with chemotherapeutic agents. Recently we have described series of AML and MDS cases with benzene exposure history, and have provided cytogenetic, molecular, and pathologic evidence that these cases differ significantly in many features from therapy-related disease. Here we have extended this work, and describe chromosome breakpoints across 441 identifiable regions, in terms of gains or losses, in 710 AML cases collected during the Shanghai Health Study, which include 75 with a history of benzene exposure. Using FISH and cytogenetic analysis, we developed prevalence information and risk ratios for benzene exposure across all regions with a lesion in at least one exposed and unexposed case. These results indicate that AML following benzene exposure mirrors de novo disease, and supports a mechanism for development of hematopoietic disease that bears no resemblance to therapy-related disease.
Collapse
Affiliation(s)
- Patrick J Kerzic
- California Environmental Protection Agency, 9211 Oakdale Ave, Chatsworth, CA, 91311, USA.
| | - Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
3
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke. BMC Cancer 2014; 14:6. [PMID: 24386979 PMCID: PMC3898384 DOI: 10.1186/1471-2407-14-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/27/2013] [Indexed: 01/30/2023] Open
Abstract
Background Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Methods Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Results Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Conclusions Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.
Collapse
|
5
|
Stokes SE, Winn LM. NF-κB Signaling Is Increased in HD3 Cells Following Exposure to 1,4-Benzoquinone: Role of Reactive Oxygen Species and p38-MAPK a. Toxicol Sci 2013; 137:303-10. [DOI: 10.1093/toxsci/kft256] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Chen YJ, Chang LS. Hydroquinone-induced miR-122 down-regulation elicits ADAM17 up-regulation, leading to increased soluble TNF-α production in human leukemia cells with expressed Bcr/Abl. Biochem Pharmacol 2013; 86:620-31. [PMID: 23791922 DOI: 10.1016/j.bcp.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/10/2023]
Abstract
Studies on HQ-treated human leukemia K562 (Bcr/Abl-positive) cells were conducted to address the hydroquinone (HQ) mechanism that promotes soluble TNF-α (sTNF-α) production. HQ post-translationally down-regulated cell surface TNF-α expression increases the release of sTNF-α into K562 cell culture medium. Meanwhile, HQ increased ADAM17 mRNA stability, leading to ADAM17 up-regulation in HQ-treated cells. Knock-down of ADAM17 abrogated HQ-induced sTNF-α secretion. HQ-evoked miR-122 down-regulation was proven to promote ADAM17 mRNA stability and up-regulate ADAM17 expression. HQ-induced p38 MAPK and JNK activation were responsible for suppression of miR-122 promoter luciferase activity and miR-122 expression. Activation of p38 MAPK and JNK elicited phosphorylation of c-Jun, ATF-2 and c-Fos, and knock-down of c-Jun, ATF-2 and c-Fos restored miR-122 expression in HQ-treated cells. Chromatin immunoprecipitating and DNA affinity purification assay revealed c-Jun, ATF-2 and c-Fos binding to the miR-122 gene promoter region. Moreover, HQ-induced sTNF-α production in Bcr/Abl-positive leukemia cell lines KU812 and MEG-01 was also connected with miR-122 down-regulation and ADAM17 up-regulation, while HQ was unable to affect miR-122 and ADAM-17 expression on Bcr/Abl-negative leukemia U937 cells. Taken together, our data indicate that HQ induces down-regulation of miR-122 expression, leading to ADAM17 up-regulation and ADAM17-mediated TNF-α shedding. Consequently, HQ treatment increases the production of sTNF-α in leukemia cells with expressed Bcr/Abl.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | |
Collapse
|
7
|
Liu WH, Chou WM, Chang LS. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 2013; 34:818-27. [PMID: 23288922 DOI: 10.1093/carcin/bgs409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study investigated tumor necrosis factor-α (TNF-α)-mediated death pathway contribution to hydroquinone (HQ) cytotoxicity in human leukemia U937 cells. HQ-induced apoptosis of human leukemia U937 cells was characterized by the increase in mitochondrial membrane depolarization, procaspase-8 degradation and tBid production. Downregulation of Fas-associated death domain protein (FADD) blocked HQ-induced procaspase-8 degradation and rescued the viability of HQ-treated cells, suggesting the involvement of a death receptor-mediated pathway in HQ-induced cell death. HQ induced increased TNF-α mRNA stability led to TNF-α protein expression upregulation, whereas HQ suppressed TNF-α-mediated NFκB pathway activation. HQ elicited protein phosphatase 2A catalytic subunit α (PP2Acα) upregulation via p38 mitogen-activated protein kinase (MAPK)-mediated CREB/c-Jun/ATF-2 phosphorylation, and PP2Acα upregulation was found to promote tristetraprolin (TTP) degradation. Suppression of p38 MAPK activation and protein phosphatase 2A (PP2A) activity abrogated TNF-α upregulation and procaspase degradation in HQ-treated cells. Overexpression of TTP suppressed HQ-induced TNF-α upregulation and restored the viability of HQ-treated cells. Moreover, TTP overexpression increased TNF-α mRNA decay in HQ-treated cells. Taken together, our data indicate that HQ elicits TNF-α upregulation via p38 MAPK/PP2A-mediated TTP downregulation, and suggest that the TNF-α-mediated death pathway is involved in HQ-induced U937 cell death. The same pathway was also proven to be involved in the HQ-induced death of human leukemia HL-60 and Jurkat cells.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
8
|
Hebeda CB, Pinedo FJ, Vinolo MAR, Curi R, Farsky SHP. Hydroquinone Stimulates Inflammatory Functions in Microvascular Endothelial Cells via NF-κB Nuclear Activation. Basic Clin Pharmacol Toxicol 2011; 109:372-80. [DOI: 10.1111/j.1742-7843.2011.00739.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Irons RD, Gross SA, Le A, Wang XQ, Chen Y, Ryder J, Schnatter AR. Integrating WHO 2001-2008 criteria for the diagnosis of Myelodysplastic Syndrome (MDS): a case-case analysis of benzene exposure. Chem Biol Interact 2009; 184:30-8. [PMID: 19941839 DOI: 10.1016/j.cbi.2009.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
We characterized the prevalence of hematopoietic and lymphoid disease for 2923 consecutive patients presenting at 29 hospitals from August 2003 to June 2007. Diagnoses were made in our laboratory using WHO criteria based on morphologic, immunophenotypic, cytogenetic, FISH and molecular data. A total of 611 subjects (322 males/289 females) were prospectively diagnosed with MDS using WHO (2001) criteria. Update and re-evaluation of cases using MDS (2008) criteria resulted in 649 MDS cases. Using WHO (2008) criteria, refractory cytopenia with multilineage dysplasia (RCMD) accounted for 68% of total cases, refractory anemia with excess blasts (RAEB), 16.3%; refractory anemia (RA), 6.5%; refractory cytopenia with unilineage dysplasia (RCUD), 4%; and MDS-unclassifiable (MDS-U), 4.5%. Subjects were administered questionnaires and information on previous disease, work histories and exposures to potential etiologic agents such as benzene (BZ) was obtained. A total of 80/649 (13.2%) were determined to have some BZ exposure. The frequency of clonal cytogenetic abnormalities in all MDS was 30%, the most common being +8>del(20)q>del(7q)>del(5q), while the analogous frequency in BZ-exposed cases was only 24%. To further investigate the characteristics of MDS associated with BZ, we identified a subset of cases with high BZ exposure. These BZ signal cases were each matched by age and gender to two cases with no known BZ exposure. When contrasting BZ signal cases vs matched cases with no BZ exposure, we found a high odds ratio (OR) for the WHO subtype MDS-U (OR=11.1), followed by RAEB and RCUD (OR=1), RA (OR=0.7) and RCMD (OR=0.6). Multilineage dysplasia with abnormal eosinophils (MDS-Eo) was strongly associated with BZ exposure, whereas the relative risk of clonal cytogenetic abnormalities was reduced for high BZ-exposed cases (OR=0.5). These findings are strongly indicative that MDS subtypes are influenced by BZ exposure, and taken together with previous studies, the features of MDS-Eo suggest that altered immune regulation plays a major role in the pathogenesis of MDS following chronic exposure to BZ.
Collapse
Affiliation(s)
- Richard D Irons
- Fudan-Cinpathogen Clinical and Molecular Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ross D, Zhou H. Relationships between metabolic and non-metabolic susceptibility factors in benzene toxicity. Chem Biol Interact 2009; 184:222-8. [PMID: 19941840 DOI: 10.1016/j.cbi.2009.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 01/26/2023]
Abstract
Reactive metabolites formed from benzene include benzene oxide, trans,trans muconaldehyde, quinones, thiol adducts, phenolic metabolites and oxygen radicals. Susceptibility to the toxic effects of benzene has been suggested to occur partly because of polymorphisms in enzymes involved in benzene metabolism which include cytochrome P450 2E1, epoxide hydrolases, myeloperoxidase, glutathione-S-transferases and quinone reductases. However, susceptibility factors not directly linked to benzene metabolism have also been associated with its toxicity and include p53, proteins involved in DNA repair, genomic stability and expression of cytokines and/or cell adhesion molecules. In this work, we examine potential relationships between metabolic and non-metabolic susceptibility factors using the enzyme NAD(P)H:quinone oxidoreductase (NQO1) as an example. NQO1 may also impact pathways in addition to metabolism of quinones due to protein-protein interactions or other mechanisms related to NQO1 activity. NQO1 has been implicated in stabilizing p53 and in maintaining microtubule integrity. Inhibition or knockdown of NQO1 in bone marrow endothelial cells has been found to lead to deficiencies of E-selectin, ICAM-1 and VCAM-1 adhesion molecule expression after TNFalpha stimulation. These examples illustrate how the metabolic susceptibility factor NQO1 may influence non-metabolic susceptibility pathways for benzene toxicity.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, School of Pharmacy and Cancer Center, University of Colorado Anschutz Medical Campus, C238-P15 Research 2, 12700 East 19th Avenue, Aurora, CO 80045, United States.
| | | |
Collapse
|
11
|
Badham HJ, Winn LM. In utero exposure to benzene disrupts fetal hematopoietic progenitor cell growth via reactive oxygen species. Toxicol Sci 2009; 113:207-15. [PMID: 19812361 DOI: 10.1093/toxsci/kfp242] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is hypothesized that the increasing incidence of childhood leukemia may be due to in utero exposure to environmental pollutants, such as benzene, but the mechanisms involved remain unknown. We hypothesize that reactive oxygen species (ROS) contribute to the deregulation of fetal hematopoiesis caused by in utero benzene exposure. To evaluate this hypothesis, pregnant C57Bl/6N mice were exposed to benzene or polyethylene glycol-conjugated catalase (PEG-catalase) (antioxidative enzyme) and benzene. Colony formation assays on fetal liver cells were performed to measure erythroid and myeloid progenitor cell growth potential. The presence of ROS in CD117(+) fetal liver cells was measured by flow cytometric analysis. Oxidative cellular damage was assessed by Western blot analysis of 4-hydroxynonenol (4-HNE) and nitrotyrosine products, as well as reduced to oxidized glutathione ratios. Alterations in the redox-sensitive signaling pathway nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappaB) were measured by Western blot analysis of Inhibitor of NF-kB-alpha (IkappaB-alpha) protein levels in fetal liver tissue. In utero exposure to benzene caused a significant increase in ROS production and significantly altered fetal liver erythroid and myeloid colony numbers but did not increase the levels of 4-HNE or nitrotyrosine products or alter reduced to oxidized glutathione ratios. However, in utero exposure to benzene did cause a significant decrease in fetal liver IkappaB-alpha protein levels, suggesting activation of the NF-kappaB pathway. Benzene-induced ROS formation, abnormal colony growth, and decreased IkappaB-alpha levels were all abrogated by pretreatment with PEG-catalase. These results suggest that ROS play a key role in the development of in utero-initiated benzene toxicity potentially through disruption of hematopoietic cell signaling pathways.
Collapse
Affiliation(s)
- Helen J Badham
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
12
|
Zhou H, Kepa JK, Siegel D, Miura S, Hiraki Y, Ross D. Benzene metabolite hydroquinone up-regulates chondromodulin-I and inhibits tube formation in human bone marrow endothelial cells. Mol Pharmacol 2009; 76:579-87. [PMID: 19525446 PMCID: PMC2730389 DOI: 10.1124/mol.109.057323] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/12/2009] [Indexed: 01/28/2023] Open
Abstract
Bone marrow is a major target of benzene toxicity, and NAD-(P)H:quinone oxidoreductase (NQO1), an enzyme protective against benzene toxicity, is present in human bone marrow endothelial cells, which form the hematopoietic stem cell vascular niche. In this study, we have employed a transformed human bone marrow endothelial cell (TrHBMEC) line to study the adverse effects induced by the benzene metabolite hydroquinone. Hydroquinone inhibited TrHBMEC tube formation at concentrations that were not overtly toxic, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or sulforhodamine B analysis. Hydroquinone was found to up-regulate chondromodulin-I (ChM-I), a protein that promotes chondrocyte growth and inhibits endothelial cell growth and tube formation. Recombinant human ChM-I protein inhibited tube formation in TrHBMECs, suggesting that up-regulation of ChM-I may explain the ability of hydroquinone to inhibit TrHB-MEC tube formation. To explore this possibility further, anti-ChM-I small interfering RNA (siRNA) was used to deplete ChM-I mRNA and protein. Pretreatment with anti-ChM-I siRNA markedly abrogated hydroquinone-induced inhibition of tube formation in TrHBMECs. Overexpression of the protective enzyme NQO1 in TrHBMECs inhibited the up-regulation of ChM-I and abrogated the inhibition of tube formation induced by hydroquinone. In summary, hydroquinone treatment up-regulated ChM-I and inhibited tube formation in TrHBMECs; NQO1 inhibited hydroquinone-induced up-regulation of ChM-I in TrHB-MECs and protected cells from hydroquinone-induced inhibition of tube formation. This study demonstrates that ChM-I up-regulation is one of the underlying mechanisms of inhibition of tube formation and provides a mechanism that may contribute to benzene-induced toxicity at the level of bone marrow endothelium.
Collapse
Affiliation(s)
- Hongfei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy and Cancer Center, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
13
|
Makropoulos V, Alexopoulos EC. Case report: Hydroquinone and/or glutaraldehyde induced acute myeloid leukaemia? J Occup Med Toxicol 2006; 1:19. [PMID: 16872480 PMCID: PMC1544343 DOI: 10.1186/1745-6673-1-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 07/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposures to high doses of irradiation, to chemotherapy, benzene, petroleum products, paints, embalming fluids, ethylene oxide, herbicides, pesticides, and smoking have been associated with an increased risk of acute myelogenous leukemia (AML). Although there in no epidemiological evidence of relation between X-ray developer, fixer and replenisher liquids and AML, these included glutaraldehyde which has weakly associated with lymphocytic leukemia in rats and hydroquinone has been increasingly implicated in producing leukemia, causing DNA and chromosomal damage, inhibits topo-isomerase II, alter hematopoiesis and inhibit apoptosis of neoplastic cells. CASE PRESENTATION Two white females (A and B) hired in 1985 as medical radiation technologists in a primary care center, in Greece. In July 2001, woman A, 38-years-old, was diagnosed as having acute monocytic leukaemia (FAB M5). The patient did not respond to therapy and died three weeks later. In August 2001, woman B, 35-year-old, was diagnosed with acute promyelocytic leukaemia (FAB M3). Since discharge, she is in continuous complete remission. Both women were non smokers without any medical history. Shortly after these incidents official inspectors and experts inspected workplace, examined equipment, archives of repairs, notes, interviewed and monitored employees. They concluded that shielding was inadequate for balcony's door but personal monitoring did not show any exceeding of TLV of 20 mSv yearly and cytogenetics analysis did not reveal findings considered to be characteristics of ionizing exposure. Equipment for developing photos had a long list of repairs, mainly leakages of liquids and increases of temperature. On several occasions the floor has been flooded especially during 1987-1993 and 1997-2001. Inspection confirmed a complete lack of ventilation and many spoiled medical x-ray films. Employees reported that an "osmic" level was continuously evident and frequently developed symptoms of respiratory irritation and dizziness. CONCLUSION The findings support the hypothesis that the specific AML cases might have originated from exposure to chemicals, especially hydroquinone and/or glutaraldehyde. The report also emphasises the crucial role of inspection of facilities and enforcement of compliance with regulations in order to prevent similar incidents.
Collapse
Affiliation(s)
- Vassilios Makropoulos
- Hellenic Institute for Occupational Health and Safety, Athens, Greece, Department of Occupational and Industrial Hygiene, National School of Public Health, Athens, Greece
| | - Evangelos C Alexopoulos
- Occupational Health Department, Hellenic Shipyards SA, Athens, Greece, Department of Hygiene and Epidemiology, Medical School, University of Athens, Greece
| |
Collapse
|
14
|
Gross SA, Zheng JH, Le AT, Kerzic PJ, Irons RD. PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells. Cell Biol Toxicol 2006; 22:229-41. [PMID: 16642264 DOI: 10.1007/s10565-006-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 02/02/2005] [Indexed: 12/12/2022]
Abstract
The transcriptional regulatory factor PU.1 is important for the regulation of a diverse group of hematopoietic and myeloid genes. Posttranslational phosphorylation of PU.1 has been demonstrated in the regulation of a variety of promoters in normal cells. In leukemia cells, differing patterns of PU.1 phosphorylation have been described among acute myelogenous leukemia (AML) subtypes. Therefore, we hypothesized that modulation of PU.1-dependent gene expression might be a molecular mediator of alterations in myeloid cell growth and differentiation that have been demonstrated to be early events in benzene-induced leukemogenesis. We found that freshly isolated human CD34(+) hematopoietic progenitor cells (HPC) exhibit multiple PU.1-DNA binding species that represent PU.1 proteins in varying degrees of phosphorylation states as determined by phosphatase treatment in combination with electrophoretic mobility shift assay (EMSA). Maturation of granulocyte and monocyte lineages is also accompanied by distinct changes in PU.1-DNA binding patterns. Experiments reveal that increasing doses of the benzene metabolite, hydroquinone (HQ) induce a time-and dose-dependent alteration in the pattern of PU.1-DNA binding in cultured human CD34(+) cells, corresponding to hyperphosphorylation of the PU.1 protein. HQ-induced alterations in PU.1-DNA binding are concomitant with a sustained immature CD34(+) phenotype and cytokine-dependent enhanced clonogenic activity in cultured human HPC. These results suggest that HQ induces a dysregulation in the external signals modulating PU.1 protein phosphorylation and this dysregulation may be an early event in the generation of benzene-induced AML.
Collapse
Affiliation(s)
- S A Gross
- Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|