1
|
Tang G, Jain P, Hu S, Ok CY, Wang WJ, Quesada AE, Wei Q, Li S, Xu J, Loghavi S, Toruner GA, Medeiros LJ. Optical genome mapping reveals diverse mechanisms of cyclin activation in mantle cell lymphomas lacking IGH::CCND1. Hum Pathol 2025; 159:105793. [PMID: 40381701 DOI: 10.1016/j.humpath.2025.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The t(11;14)(q13; q32)/IGH::CCND1 is a genetic hallmark of mantle cell lymphoma (MCL), reported to be present in about 95% of cases. In this study, we performed optical genome mapping (OGM) on 91 patients with MCL, in conjunction with next-generation sequencing (NGS), conventional chromosomal analysis and fluorescence in situ hybridization (FISH). The t(11;14)/IGH::CCND1 was detected in 82 cases, whereas 9 (10%) cases lacked this abnormality. OGM and NGS identified alternative CCND1 abnormalities in 7 cases: IGK::CCND1 (n = 3), IGL::CCND1 (n = 1), an insertion adjacent to the 5' region of CCND1 (n = 1); a deletion at the 5' region of CCND1 (n = 1), and a mutation in the 3' untranslated region of CCND1 (n = 1). OGM detected CCND2 rearrangement with IGK or IGL in the other 2 cases. All 7 cases exhibiting CCND1 aberrations expressed cyclin D1, although some lacked SOX11 or CD5 expression. The two cases with CCND2 rearrangement were SOX11-positive. Six cases showed highly complex genome detected by OGM and the affected patients were refractory to chemotherapy and/or had poorer survival. In conclusion, approximately 10% of MCL cases lack the classic t(11;14)/IGH::CCND1. OGM is valuable in identifying variant CCND1 and CCND2 rearrangements, and the presence of high genome complexity may correlate with treatment resistance and poor outcomes.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei J Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Wei
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gocke A Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Zhang S, Huang F, Wang J, You R, Huang Q, Chen Y. SQSTM1/p62 predicts prognosis and upregulates the transcription of CCND1 to promote proliferation in mantle cell lymphoma. PROTOPLASMA 2025; 262:635-647. [PMID: 39786615 DOI: 10.1007/s00709-024-02023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Mantle cell lymphoma (MCL) is a rare, highly invasive non-Hodgkin's lymphoma. The main pathogenesis of MCL is associated with the formation of the IgH/CCND1 fusion gene and nuclear overexpression of cyclin D1, which accelerates the cell cycle, leading to tumorigenesis. The prognosis with current standard chemotherapy is still unsatisfactory. SQSTM1/p62 is a multifunctional adaptor that plays an important role in various tumors. Here, we found that the expression of p62 in MCL tissues was higher than that in hyperplastic lymphadenitis patients. Patients with low p62 expression in MCL cells had better overall survival and progression-free survival rates than those with high expression (p = 0.024 and p = 0.025, respectively). Multivariate Cox analysis indicated that the calculated death risk (hazard ratio [HR]) in patients with high expression levels of p62 increased to 2.742 (95% confidence interval (CI) of 1.268-5.852, p = 0.01), which was higher than those with low levels. Silencing p62 impaired Jeko-1 and Granta519 cell proliferation while downregulating CCND1 mRNA and protein expression, thereby inducing G0/G1 cell cycle arrest. However, silencing p62 does not affect the fusion of IgH and CCND1. Luciferase reporter gene analysis and chromatin immunoprecipitation analysis demonstrated that p62 may regulate CCND1 gene expression through Nrf2. These results provide evidence that p62 can predict poor prognosis in MCL. The precise targeting of p62 therapy reduces the promoting effect of Nrf2 on CCND1, thereby preventing cell cycle progression and effectively inhibiting tumor proliferation. Therefore, p62 may provide a potential target for MCL.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Feichao Huang
- Minimally Invasive Surgery, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Jin Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qiqi Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yuanzhong Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Quesada AE, Hu S, Li S, Toruner GA, Wei Q, Loghavi S, Ok CY, Jain P, Thakral B, Nwogbo OV, Kim D, Iyer SP, You MJ, Medeiros LJ, Tang G. Optical genomic mapping is a helpful tool for detecting CCND1 rearrangements in CD5-negative small B-cell lymphoma: Two cases of leukemic non-nodal mantle cell lymphoma. Hum Pathol 2024; 144:71-76. [PMID: 38301962 DOI: 10.1016/j.humpath.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Optical genome mapping (OGM) is a new DNA-based technology which provides comprehensive examination of the entire genome. We report two patients who presented with splenomegaly and leukocytosis with lymphocytosis including villous lymphocytes. Neither patient had lymphadenopathy. Bone marrow evaluation showed involvement by small B-cell lymphoma in a sinusoidal and interstitial distribution, and immunophenotypic analysis showed that the neoplastic cells were positive for B-cell markers and cyclin D1 but were negative for SOX11 and CD5. Initially, the clinicopathologic features in both patients were thought to be suspicious for hairy cell leukemia variant or splenic marginal zone lymphoma. However, OGM detected CCND1 rearrangement: t(2;11)/IGK::CCND1 in one case and t(11;14)/IGH::CCND1 in the other case. These cases illustrate the valuable role OGM can play in establishing the diagnosis of MCL. Case 1 also contributes to the paucity of literature on the rare occurrence of IGK::CCND1 in MCL.
Collapse
Affiliation(s)
- Andres E Quesada
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Shimin Hu
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qing Wei
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - O Valentine Nwogbo
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Do Kim
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Zheng YC, Zhao JW, Guo X, Yi SH, Tao Y, Li CW. [IGL-CCND1 positive mantle cell lymphoma: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:598-601. [PMID: 37749044 PMCID: PMC10509628 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 09/27/2023]
Affiliation(s)
- Y C Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J W Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Tao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - C W Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
5
|
Dai L, Zhang H, Chen W, Xia Y, Qin S, Shao Y, Li J, Miao Y, Li B, Zhu H. Case report: Identification of atypical mantle cell lymphoma with CCND3 rearrangement by next-generation sequencing. Front Oncol 2023; 13:1145376. [PMID: 37064110 PMCID: PMC10090691 DOI: 10.3389/fonc.2023.1145376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The t(11;14) (q13;q32) translocation resulting in overexpression of cyclin D1 is the major oncogenic mechanism in mantle cell lymphoma (MCL). Most MCLs can be diagnosed based on morphological features, cyclin D1 expression, and IGH/CCND1 rearrangement. However, in some atypical cases where conventional FISH studies fail to detect IGH/CCND1 rearrangement or immunohistochemistry for cyclin D1 is negative, the diagnosis of the disease can be difficult. Hence, next-generation sequencing (NGS) may allow the identification of molecular alterations and assist in the diagnosis of atypical MCL. In this study, we reported a case of a patient diagnosed as asymptomatic MCL who presented with lymphadenopathy during the initial assessment. A lymph node biopsy was performed and the results revealed a high Ki67 index. However, initial diagnosis of aggressive MCL was difficult since the IGH/CCND1 rearrangement result was negative. Ultimately, by the aid of NGS we identified a rare CCND3 rearrangement in the patient, which lead to overexpression of cyclin D3, thereby facilitating the diagnosis of MCL.
Collapse
Affiliation(s)
- Luomengjia Dai
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Chen
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuchao Qin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Yi Miao, ; Bingzong Li, ; Huayuan Zhu,
| | - Bingzong Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yi Miao, ; Bingzong Li, ; Huayuan Zhu,
| | - Huayuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Pukou Chronic Lymphocytic Leukemia (CLL) Center, Pukou division of Jiangsu Province Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Yi Miao, ; Bingzong Li, ; Huayuan Zhu,
| |
Collapse
|
6
|
[Interpretation of the guidelines for diagnosis and treatment of mantle cell lymphoma in China (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:903-909. [PMID: 36709180 PMCID: PMC9808859 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Mulcahy EQX, Zhang Y, Colόn RR, Cain SR, Gibert MK, Dube CJ, Hafner M, Abounader R. MicroRNA 3928 Suppresses Glioblastoma through Downregulation of Several Oncogenes and Upregulation of p53. Int J Mol Sci 2022; 23:3930. [PMID: 35409289 PMCID: PMC8998958 DOI: 10.3390/ijms23073930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor. Despite decades of research, therapeutic advances that significantly prolong life are non-existent. In recent years, microRNAs (miRNAs) have been a focus of study in the pathobiology of cancer because of their ability to simultaneously regulate multiple genes. The aim of this study was to determine the functional and mechanistic effects of miR-3928 in GBM both in vitro and in vivo. To the best of our knowledge, this is the first article investigating the role of miR-3928 in GBM. We measured endogenous miR-3928 expression levels in a panel of patient-derived GBM tissue samples and cell lines. We found that GBM tissue samples and cell lines express lower levels of miR-3928 than normal brain cortex and astrocytes, respectively. Therefore, we hypothesized that miR-3928 is a tumor suppressive microRNA. We verified this hypothesis by showing that exogenous expression of miR-3928 has a strong inhibitory effect on both cell growth and invasiveness of GBM cells. Stable ex vivo overexpression of miR-3928 in GBM cells led to a reduction in tumor size in nude mice xenografts. We identified many targets (MDM2, CD44, DDX3X, HMGA2, CCND1, BRAF, ATOH8, and BMI1) of miR-3928. Interestingly, inhibition of the oncogene MDM2 also led to an upregulation of wild-type p53 expression and phosphorylation. In conclusion, we find that miR-3928, through the downregulation of several oncogenes and upregulation and activation of wild-type p53, is a strong tumor suppressor in GBM. Furthermore, the fact that miR-3928 can target many important dysregulated proteins in GBM suggests it might be a "master" regulatory microRNA that could be therapeutically exploited.
Collapse
Affiliation(s)
- Elizabeth Q. X. Mulcahy
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Ying Zhang
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Rossymar R. Colόn
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Shelby R. Cain
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Myron K. Gibert
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Collin J. Dube
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Markus Hafner
- National Institutes of Health (NIH), Bethesda, MD 20894, USA;
| | - Roger Abounader
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Cabirta A, Hidalgo-Gómez G, Marín-Niebla A, Gallur L, Saumell S, Castellví J, Catalá E, Blanco A, López-Andreoni L, Montoro MJ, Navarrete M, Palacio-García C, Tazón-Vega B, Bobillo S, Bosch F, Ortega M. Variant t(11;22)(q13;q11.2) with IGL involvement in mantle cell lymphoma. Leuk Lymphoma 2022; 63:1746-1749. [PMID: 35129412 DOI: 10.1080/10428194.2022.2034158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alba Cabirta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gloria Hidalgo-Gómez
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Gallur
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silvia Saumell
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Castellví
- Department of Pathology, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Catalá
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Adoración Blanco
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura López-Andreoni
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Julia Montoro
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mayda Navarrete
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carlos Palacio-García
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bárbara Tazón-Vega
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sabela Bobillo
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Margarita Ortega
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
9
|
Sethi S, Epstein-Peterson Z, Kumar A, Ho C. Current Knowledge in Genetics, Molecular Diagnostic Tools, and Treatments for Mantle Cell Lymphomas. Front Oncol 2021; 11:739441. [PMID: 34888236 PMCID: PMC8649949 DOI: 10.3389/fonc.2021.739441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Mantle Cell lymphoma (MCL) is a mature B-cell lymphoma with a well-known hallmark genetic alteration in most cases, t (11,14)(q13q32)/CCND1-IGH. However, our understanding of the genetic and epigenetic alterations in MCL has evolved over the years, and it is now known that translocations involving CCND2, or cryptic insertion of enhancer elements of IGK or IGL gene, can also lead to MCL. On a molecular level, MCL can be broadly classified into two subtypes, conventional MCL (cMCL) and non-nodal MCL (nnMCL), each with different postulated tumor cell origin, clinical presentation and behavior, mutational pattern as well as genomic complexity. This article reviews both the common and rare alterations in MCL on a gene mutational, chromosomal arm, and epigenetic level, in the context of their contribution to the lymphomagenesis and disease evolution in MCL. This article also summarizes the important prognostic factors, molecular diagnostic tools, and treatment options based on the most recent MCL literature.
Collapse
Affiliation(s)
- Shenon Sethi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Anita Kumar
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
10
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
11
|
Truncation of 3' CCND1 by t(11;22) leads to negative SP4 CCND1 immunohistochemistry in blastoid mantle cell lymphoma. Blood Adv 2021; 5:61-65. [PMID: 33570637 DOI: 10.1182/bloodadvances.2020003417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
|
12
|
Navarro A, Beà S, Jares P, Campo E. Molecular Pathogenesis of Mantle Cell Lymphoma. Hematol Oncol Clin North Am 2020; 34:795-807. [PMID: 32861278 DOI: 10.1016/j.hoc.2020.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with heterogeneous clinical behavior molecularly characterized by the constitutive overexpression of cyclin D1 and deregulation of different signaling pathways. SOX11 expression determines an aggressive phenotype associated with accumulation of many chromosomal alterations and somatic gene mutations. A subset of patients with the SOX11-negative leukemic non-nodal MCL subtype follows an initial indolent clinical evolution and may not require treatment at diagnosis, although eventually may progress to an aggressive disease. We discuss the genetic and molecular alterations with impact on the cancer hallmarks that characterize the lymphomagenesis of the 2 MCL subtypes.
Collapse
Affiliation(s)
- Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain.
| |
Collapse
|
13
|
Polonis K, Schultz MJ, Olteanu H, Smadbeck JB, Johnson SH, Vasmatzis G, Xu X, Greipp PT, Ketterling RP, Hoppman NL, Baughn LB, Peterson JF. Detection of cryptic CCND1 rearrangements in mantle cell lymphoma by next generation sequencing. Ann Diagn Pathol 2020; 46:151533. [PMID: 32408254 DOI: 10.1016/j.anndiagpath.2020.151533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
The accurate detection of recurrent genetic abnormalities for most hematologic neoplasms is critical for diagnosis, prognosis and/or treatment. Rearrangements involving CCND1 are observed in a subset of mature B-cell neoplasms and can be reliably detected by fluorescence in situ hybridization (FISH) in most cases. However, cryptic and complex chromosomal rearrangements may pose a technical challenge for accurate diagnosis. Herein, we describe two patients with suspected mantle cell lymphoma that lacked obvious CCND1 rearrangements by FISH studies. A next generation sequencing (NGS) based assay, mate-pair sequencing (MPseq), was utilized in each case to investigate potential cryptic CCND1 rearrangements and revealed cryptic insertional events resulting in CCND1/IGH and CCND1/IGK rearrangements. These cases demonstrate that NGS-based assays, including MPseq, are a powerful approach to identify cryptic rearrangements of clinical importance that are not detected by current clinical genomics evaluation.
Collapse
Affiliation(s)
- Katarzyna Polonis
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Matthew J Schultz
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, MN, United States of America
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Division of Hematopathology, Mayo Clinic, Rochester, MN, United States of America
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
14
|
Fuster C, Martín-Garcia D, Balagué O, Navarro A, Nadeu F, Costa D, Prieto M, Salaverria I, Espinet B, Rivas-Delgado A, Terol MJ, Giné E, Forcada P, Ashton-Key M, Puente XS, Swerdlow SH, Beà S, Campo E. Cryptic insertions of the immunoglobulin light chain enhancer region near CCND1 in t(11;14)-negative mantle cell lymphoma. Haematologica 2019; 105:e408-e411. [PMID: 31753927 DOI: 10.3324/haematol.2019.237073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Carla Fuster
- Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - David Martín-Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Dolors Costa
- Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miriam Prieto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Barcelona, Spain Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Programme, IMIM-Hospital del Mar, Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hematology Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria José Terol
- Department of Hematology, Hospital Clínico, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Hematology Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pilar Forcada
- Department of Pathology, Hospital Mutua Terrassa, Terrassa, Spain
| | - Margaret Ashton-Key
- Department of Cellular Pathology, Southampton University Hospitals National Health Service Trust, UK
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sílvia Beà
- Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Hematopathology Section, Laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Peterson JF, Meyer RG, Smoley SA, Webley M, Smadbeck JB, Vasmatzis G, Pearce K, Greipp PT, Ketterling RP, Craig FE, Stewart AK, Baughn LB. Whole Genome Mate-pair Sequencing of Plasma Cell Neoplasm as a Novel Diagnostic Strategy: A Case of Unrecognized t(2;11) Structural Variation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:598-602. [DOI: 10.1016/j.clml.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/17/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023]
|
16
|
Marrero WD, Cruz-Chacón A, Cabanillas F. Mantle Cell Lymphoma with t(11;22) (q13;q11.2) an indolent clinical variant? Leuk Lymphoma 2018; 59:2509-2511. [PMID: 29415598 DOI: 10.1080/10428194.2018.1427863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Mantle cell lymphoma with a novel t(11;12)(q13;p11.2): a proposed alternative mechanism of CCND1 up-regulation. Hum Pathol 2017; 64:207-212. [DOI: 10.1016/j.humpath.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/27/2022]
|
18
|
Grange B, Callet-Bauchu E, Salles G, Sujobert P. Advances in the role of cytogenetic analysis in the molecular diagnosis of B-cell lymphomas. Expert Rev Mol Diagn 2017; 17:623-632. [DOI: 10.1080/14737159.2017.1327811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Mantle cell lymphoma—a spectrum from indolent to aggressive disease. Virchows Arch 2015; 468:245-57. [DOI: 10.1007/s00428-015-1840-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 01/18/2023]
|
20
|
Kahl BS, Gordon LI, Dreyling M, Gascoyne RD, Sotomayor EM. Advances and issues in mantle cell lymphoma research: report of the 2014 Mantle Cell Lymphoma Consortium Workshop. Leuk Lymphoma 2015; 56:2505-11. [DOI: 10.3109/10428194.2015.1045903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Delas A, Sophie D, Brousset P, Laurent C. Unusual concomitant rearrangements of Cyclin D1 and MYC genes in blastoid variant of mantle cell lymphoma: Case report and review of literature. Pathol Res Pract 2013; 209:115-9. [PMID: 23313364 DOI: 10.1016/j.prp.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/01/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
We report herein a case of blastoid variant mantle cell lymphoma (MCL) with both aberrant phenotype and unusual genetics. Unexpectedly, lymphoma cells were CD5(-) and CD10(+). Standard karyotype and FISH techniques showed that tumor cells carried two distinct translocations which had not been reported together in a same tumor. The first translocation juxtaposed the immunoglobulin lambda light chain locus with CCND1 locus, leading to Cyclin D1 overexpression. The second translocation revealed MYC rearrangement with a non-immunoglobulin gene partner located on the short arm of chromosome 4. The interpretation of the case on tissue sections alone could have been challenging. Indeed, the lack of CD5 and expression of CD10 associated with MYC rearrangement detected on interphasic nuclei could support the diagnosis of diffuse large B-cell lymphoma or Burkitt lymphoma. This distinction is also especially important as these lymphoma subtypes require specific treatment.
Collapse
Affiliation(s)
- Audrey Delas
- Laboratoire de Pathologie du Pr P. Brousset, Hôpital Purpan, CHU Purpan Place du Dr Baylac, Toulouse 31059, France
| | | | | | | |
Collapse
|
22
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
23
|
Hao JJ, Shi ZZ, Zhao ZX, Zhang Y, Gong T, Li CX, Zhan T, Cai Y, Dong JT, Fu SB, Zhan QM, Wang MR. Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors. BMC Cancer 2012; 12:367. [PMID: 22920630 PMCID: PMC3561653 DOI: 10.1186/1471-2407-12-367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/17/2012] [Indexed: 01/29/2023] Open
Abstract
Background Chromosomal and genomic aberrations are common features of human cancers. However, chromosomal numerical and structural aberrations, breakpoints and disrupted genes have yet to be identified in esophageal squamous cell carcinoma (ESCC). Methods Using multiplex-fluorescence in situ hybridization (M-FISH) and oligo array-based comparative hybridization (array-CGH), we identified aberrations and breakpoints in six ESCC cell lines. Furthermore, we detected recurrent breakpoints in primary tumors by dual-color FISH. Results M-FISH and array-CGH results revealed complex numerical and structural aberrations. Frequent gains occurred at 3q26.33-qter, 5p14.1-p11, 7pter-p12.3, 8q24.13-q24.21, 9q31.1-qter, 11p13-p11, 11q11-q13.4, 17q23.3-qter, 18pter-p11, 19 and 20q13.32-qter. Losses were frequent at 18q21.1-qter. Breakpoints that clustered within 1 or 2 Mb were identified, including 9p21.3, 11q13.3-q13.4, 15q25.3 and 3q28. By dual-color FISH, we observed that several recurrent breakpoint regions in cell lines were also present in ESCC tumors. In particular, breakpoints clustered at 11q13.3-q13.4 were identified in 43.3% (58/134) of ESCC tumors. Both 11q13.3-q13.4 splitting and amplification were significantly correlated with lymph node metastasis (LNM) (P = 0.004 and 0.022) and advanced stages (P = 0.004 and 0.039). Multivariate logistic regression analysis revealed that only 11q13.3-q13.4 splitting was an independent predictor for LNM (P = 0.026). Conclusions The combination of M-FISH and array-CGH helps produce more accurate karyotypes. Our data provide significant, detailed information for appropriate uses of these ESCC cell lines for cytogenetic and molecular biological studies. The aberrations and breakpoints detected in both the cell lines and primary tumors will contribute to identify affected genes involved in the development and progression of ESCC.
Collapse
Affiliation(s)
- Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Science, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Abstract
The prognostic role of the transcription factor SOX11 in mantle cell lymphoma (MCL) is controversial. We investigated prognostic markers in a population-based cohort of 186 MCL cases. Seventeen patients (9%) did not require any therapy within the first 2 years after diagnosis and were retrospectively defined as having an indolent disease. As expected, indolent MCL had less frequent B symptoms and extensive nodal involvement and 88% of these cases expressed SOX11. In our cohort 13 cases (7.5%) lacked nuclear SOX11 at diagnosis. SOX11− MCL had a higher frequency of lymphocytosis, elevated level of lactate dehydrogenase (LDH), and p53 positivity. The overall survival in the whole cohort, excluding 37 patients receiving autologous stem cell transplantation, was 3.1 year and in patients with indolent or nonindolent disease, 5.9 and 2.8 years, respectively (P = .004). SOX11− cases had a shorter overall survival, compared with SOX11+ cases, 1.5 and 3.2 years, respectively (P = .014). In multivariate analysis of overall survival, age > 65 (P = .001), Eastern Cooperative Oncology Group score ≥ 2 (P = .022), elevated LDH level (P = .001), and p53 expression (P = .001) remained significant, and SOX11 lost significance. We conclude that most indolent MCLs are SOX11+ and that SOX11 cannot be used for predicting an indolent disease course.
Collapse
|
25
|
|
26
|
Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Beà S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 2011; 21:322-34. [DOI: 10.1016/j.semcancer.2011.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
|
27
|
Dreyling M, Kluin-Nelemans HC, Beà S, Hartmann E, Salaverria I, Hutter G, Perez-Galan P, Roue G, Pott C, Gouill SL, Cortelazzo S, Rule S, Hess G, Zaja F, Vitolo U, Szymczyk M, Walewski J, Ribrag V, Unterhalt M, Hermine O, Hoster E. Update on the molecular pathogenesis and clinical treatment of mantle cell lymphoma: report of the 10th annual conference of the European Mantle Cell Lymphoma Network. Leuk Lymphoma 2011; 52:2226-36. [DOI: 10.3109/10428194.2011.600488] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Sander B. Mantle cell lymphoma: recent insights into pathogenesis, clinical variability, and new diagnostic markers. Semin Diagn Pathol 2011; 28:245-55. [DOI: 10.1053/j.semdp.2011.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Rocha CK, Praulich I, Gehrke I, Hallek M, Kreuzer KA. A rare case of t(11;22) in a mantle cell lymphoma like B-cell neoplasia resulting in a fusion of IGL and CCND1: case report. Mol Cytogenet 2011; 4:8. [PMID: 21457541 PMCID: PMC3077317 DOI: 10.1186/1755-8166-4-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/01/2011] [Indexed: 12/20/2022] Open
Abstract
The chromosomal translocation (11;14)(q13;q32) rearranging the locus for cyclin D1 (CCND1) to that of the immunoglobulin heavy chain (IGH) can be found in virtually all cases of mantle cell lymphoma (MCL), while other CCND1 translocations are extremely rare. As CCND1 overexpression and activation is a hallmark of MCL it is regarded as a central biological mechanism in the development and maintenance of this disease. Here we present a patient initially diagnosed with chronic lymphocytic leukemia (CLL) where chromosome banding analysis revealed, among other aberrations, a translocation (11;22)(q13;q11.2). We show by fluorescence in situ hybridization (FISH) analysis that on chromosome 22 the immunoglobulin light chain lambda (IGL) is involved in this cytogenetic aberration. Additionally, we demonstrate the resulting overexpression of CCND1 on the RNA and protein level, thereby consolidating the new diagnosis of a MCL-like B-cell neoplasia. Summing up, we described a rare case of t(11;22)(q13;q11.2) in a MCL-like neoplasia and showed that this aberration leads to an overexpression of CCND1 which is regarded as a key biological feature in MCL. This case underlines the importance of cytogenetic analyses especially in atypical cases of B cell lymphomas.
Collapse
|
30
|
Klein B, Seckinger A, Moehler T, Hose D. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 2011; 183:39-86. [PMID: 21509680 DOI: 10.1007/978-3-540-85772-3_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.
Collapse
|
31
|
Espinet B, Salaverria I, Beà S, Ruiz-Xivillé N, Balagué O, Salido M, Costa D, Carreras J, Rodríguez-Vicente AE, Luís García J, Hernández-Rivas JM, Calasanz MJ, Siebert R, Ferrer A, Salar A, Carrió A, Polo N, García-Marco JA, Domingo A, González-Barca E, Romagosa V, Marugán I, López-Guillermo A, Millá F, Luís Mate J, Luño E, Sanzo C, Collado R, Oliver I, Monzó S, Palacín A, González T, Sant F, Salinas R, Ardanaz MT, Font L, Escoda L, Florensa L, Serrano S, Campo E, Solé F. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer 2010; 49:439-51. [PMID: 20143418 DOI: 10.1002/gcc.20754] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with an aggressive behavior, characterized by the t(11;14)(q13;q32). Several secondary genetic abnormalities with a potential role in the oncogenic process have been described. Studies of large MCL series using conventional cytogenetics, and correlating with proliferation and survival, are scarce. We selected 145 MCL cases at diagnosis, displaying an aberrant karyotype, from centers belonging to the Spanish Cooperative Group for Hematological Cytogenetics. Histological subtype, proliferative index and survival data were ascertained. Combined cytogenetic and molecular analyses detected CCND1 translocations in all cases, mostly t(11;14)(q13;q32). Secondary aberrations were present in 58% of patients, the most frequent being deletions of 1p, 13q and 17p, 10p alterations and 3q gains. The most recurrent breakpoints were identified at 1p31-32, 1p21-22, 17p13, and 1p36. Aggressive blastoid/pleomorphic variants displayed a higher karyotypic complexity, a higher frequency of 1p and 17p deletions and 10p alterations, a higher proliferation index and poor survival. Gains of 3q and 13q and 17p13 losses were associated with reduced survival times. Interestingly, gains of 3q and 17p losses added prognostic significance to the morphology in a multivariate analysis. Our findings confirm previous observations indicating that proliferation index, morphology and several secondary genetic alterations (3q gains and 13q and 17p losses) have prognostic value in patients with MCL. Additionally, we observed that 3q gains and 17p losses detected by conventional cytogenetics are proliferation-independent prognostic markers indicating poor outcome.
Collapse
Affiliation(s)
- Blanca Espinet
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Servei d'Hematologia Clínica, GRETNHE, IMIM-Hospital del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sadikovic B, Al-Romaih K, Squire J, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 2008; 9:394-408. [PMID: 19506729 PMCID: PMC2691666 DOI: 10.2174/138920208785699580] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 12/16/2022] Open
Abstract
Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.
Collapse
Affiliation(s)
- B Sadikovic
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - K Al-Romaih
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - J.A Squire
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | - M Zielenska
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
33
|
Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood 2008; 111:5683-90. [PMID: 18391076 DOI: 10.1182/blood-2007-10-118794] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The genetics of t(11;14)(q13;q32)/cyclin D1-negative mantle cell lymphoma (MCL) is poorly understood. We report here 8 MCL cases lacking t(11;14) or variant CCND1 rearrangement that showed expression of cyclin D1 (2 cases), D2 (2 cases), and D3 (3 cases). One case was cyclin D negative. Cytogenetics and fluorescence in situ hybridization detected t(2;12)(p11;p13)/IGK-CCND2 in one of the cyclin D2-positive cases and t(6;14)(p21;q32)/IGH-CCND3 in one of the cyclin D3-positive cases. Moreover, we identified a novel cryptic t(2;14)(p24;q32) targeting MYCN in 2 blastoid MCLs: one negative for cyclin D and one expressing cyclin D3. Interestingly, both cases showed expression of cyclin E. Notably, all 3 blastoid MCLs showed a monoallelic deletion of RB1 associated with a lack of expression of RB1 protein and monoallelic loss of p16. In sum-mary, this study confirms frequent aberrant expression of cyclin D2 and D3 in t(11;14)-negative MCLs and shows a t(11;14)-independent expression of cy-clin D1 in 25% of present cases. Novel findings include cyclin E expression in 2 t(11;14)-negative MCLs characterized by a cryptic t(2;14)(p24;q32) and identification of MYCN as a new lymphoma oncogene associated with a blastoid MCL. Clinically important is a predisposition of t(11;14)-negative MCLs to the central nervous system involvement.
Collapse
|
34
|
Bernicot I, Douet-Guilbert N, Le Bris MJ, Herry A, Morel F, De Braekeleer M. Molecular cytogenetics of IGH rearrangements in non-Hodgkin B-cell lymphoma. Cytogenet Genome Res 2007; 118:345-52. [DOI: 10.1159/000108319] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
|
35
|
Woroniecka R, Grygalewicz B, Pienkowska-Grela B, Rymkiewicz G, Konecki R, Swoboda P, Janik P. Variant t(2;11)(p11.2;q13) without IGK involvement in a case of mantle cell lymphoma. ACTA ACUST UNITED AC 2007; 175:154-8. [PMID: 17556072 DOI: 10.1016/j.cancergencyto.2007.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/15/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by the t(11;14)(q13;q32) translocation, which leads to overexpression of the cyclin D1 (CCND1) gene. This translocation is observed in almost all cases of MCL. In this alteration, the involvement of immunoglobulin heavy chain (IGH) locus plays a key role in the activation of the CCND1 oncogene. Translocations affecting IGH loci are mostly prevalent in B-cell lymphomas, but variant translocations involving immunoglobulin kappa (IGK) or lambda (IGL) light chain loci have been observed in a minority of B-lymphoid malignancies. Variant translocations have been reported in only a few cases of MCL, however. This report presents a case of MCL with a variant t(2;11)(p11.2;q13), rearrangement of the CCND1 gene, and overexpression of cyclin D1. To characterize this rearrangement, specific noncommercial probes were used. This set of probes comprises IGK and REL flanking probes and 12 bacterial artificial chromosome (BAC) probes covering the region to be investigated. The results indicated that this alteration has not affected the IGK locus, and the breakpoint was within a 260-kb region located approximately 1 Mb telomerically to the IGK gene. It is probable that the KV3J gene localized in this region could deregulate the expression of cyclin D1.
Collapse
Affiliation(s)
- Renata Woroniecka
- Cytogenetic Laboratory, Maria Sklodowska-Curie Memorial Cancer Center and Institute, K.W. Roentgen Street 5, 02-781 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cytogenetic analysis is now a routine part of the diagnosis and management of a significant number of lymphoid malignancies. Whilst conventional cytogenetics remains the most comprehensive method for assessing chromosome abnormalities, the technical difficulties associated with conventional cytogenetics in most lymphomas has resulted in increased use of fluorescence in situ hybridisation (FISH) to identify specific abnormalities that are useful in either the diagnosis or management of these disorders. The finding of one of the Burkitt's translocations is of major importance in the diagnosis of Burkitt's and Burkitt's-like lymphomas, whereas the t(14;18), although seen in most follicular lymphomas (FL), is not usually required to make a diagnosis. Thus, whilst cytogenetics may be of interest in FL, it is not an essential part of the diagnostic work-up. Conventional cytogenetics may be useful for identifying markers of resistance to Helicobacter pylori therapy in MALT lymphomas. In disorders such as Hodgkin lymphoma, hairy cell leukaemia and lymphoplasmacytoid lymphoma, although many cytogenetic abnormalities have been observed, no consistent or specific abnormalities have been identified and so, at this point in our knowledge of the genetics of these disorders, cytogenetics cannot be considered a useful test for either diagnosis or prognosis. In contrast, the diagnosis of mantle cell lymphoma is now dependent upon the identification of the 11;14 translocation that results in cyclin D1 up-regulation. It is widely acknowledged that FISH is the most consistently useful test to identify the juxtaposition of the CCND1 and IGH genes in mantle cell lymphoma and is regarded as the 'gold standard'. FISH also has a role in identifying genetic abnormalities of prognostic significance in chronic lymphocytic leukaemia. Given the wealth of genetic and cytogenetic abnormalities that are continuing to be found in chronic lymphoid malignancies, it will be some time before the optimal use of both conventional cytogenetics and FISH is established in the diagnosis and management of lymphomas.
Collapse
Affiliation(s)
- Lynda J Campbell
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
37
|
Abstract
This review will focus on the molecular biology of lymphoproliferative disorders with emphasis on lymphomas. The spectrum of known recurrent gene rearrangements found in lymphomas will be outlined and their relevance to diagnosis and subclassification of disease will be discussed. Finally, a survey of the current trends in gene expression profiling of lymphomas by microarray technology will be presented with reference to implications for diagnosis, classification, prognosis and treatment.
Collapse
Affiliation(s)
- Alberto Catalano
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | |
Collapse
|