1
|
Liang YY, Khalid K, Le HV, Teo HMV, Raitelaitis M, Gerault MA, Lee JJH, Lyu J, Chan A, Jeyasekharan AD, Tam WL, Nordlund P, Prabhu N. MS CETSA deep functional proteomics uncovers DNA repair programs leading to gemcitabine resistance. Nat Commun 2025; 16:4234. [PMID: 40335468 PMCID: PMC12059070 DOI: 10.1038/s41467-025-59505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Mechanisms for resistance to cytotoxic cancer drugs are dependent on dynamic changes in the biochemistry of cellular pathways, information which is hard to obtain at the systems level. Here we use a deep functional proteomics implementation of the Cellular Thermal Shift Assay to reveal a range of induced biochemical responses to gemcitabine in resistant and sensitive diffuse large B cell lymphoma cell lines. Initial responses in both, gemcitabine resistant and sensitive cells, reflect known targeted effects by gemcitabine on ribonucleotide reductase and DNA damage responses. However, later responses diverge dramatically where sensitive cells show induction of characteristic CETSA signals for early apoptosis, while resistant cells reveal biochemical modulations reflecting transition through a distinct DNA-damage signaling state, including opening of cell cycle checkpoints and induction of translesion DNA synthesis programs, allowing bypass of damaged DNA-adducts. The results also show the induction of a protein ensemble, labeled the Auxiliary DNA Damage Repair, likely supporting DNA replication at damaged sites that can be attenuated in resistant cells by an ATR inhibitor, thus re-establishing gemcitabine sensitivity and demonstrating ATR as a key signaling node of this response.
Collapse
Affiliation(s)
- Ying Yu Liang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Khalidah Khalid
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Hai Van Le
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Hui Min Vivian Teo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, 138672, Singapore
| | - Mindaugas Raitelaitis
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Marc-Antoine Gerault
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, 138672, Singapore
| | - Jiawen Lyu
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Allison Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Anand Devaprasath Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore
| | - Wai Leong Tam
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
| | - Pär Nordlund
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, 138672, Singapore.
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| |
Collapse
|
2
|
Yoshida-Sakai N, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Kimura S. Adult T-cell leukemia-lymphoma acquires resistance to DNA demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. Int J Cancer 2021; 150:1184-1197. [PMID: 34913485 PMCID: PMC9303000 DOI: 10.1002/ijc.33901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.
Collapse
Affiliation(s)
- Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Bjånes TK, Jordheim LP, Schjøtt J, Kamceva T, Cros-Perrial E, Langer A, Ruiz de Garibay G, Kotopoulis S, McCormack E, Riedel B. Intracellular Cytidine Deaminase Regulates Gemcitabine Metabolism in Pancreatic Cancer Cell Lines. Drug Metab Dispos 2020; 48:153-158. [PMID: 31871136 PMCID: PMC11022907 DOI: 10.1124/dmd.119.089334] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/11/2019] [Indexed: 04/19/2024] Open
Abstract
Cytidine deaminase (CDA) is a determinant of in vivo gemcitabine elimination kinetics and cellular toxicity. The impact of CDA activity in pancreatic ductal adenocarcinoma (PDAC) cell lines has not been elucidated. We hypothesized that CDA regulates gemcitabine flux through its inactivation and activation pathways in PDAC cell lines. Three PDAC cell lines (BxPC-3, MIA PaCa-2, and PANC-1) were incubated with 10 or 100 µM gemcitabine for 60 minutes or 24 hours, with or without tetrahydrouridine, a CDA inhibitor. Extracellular inactive gemcitabine metabolite (dFdU) and intracellular active metabolite (dFdCTP) were quantified with liquid chromatography tandem mass spectrometry. Cellular expression of CDA was assessed with real-time PCR and Western blot. Gemcitabine conversion to dFdU was extensive in BxPC-3 and low in MIA PaCa-2 and PANC-1, in accordance with their respective CDA expression levels. CDA inhibition was associated with low or undetectable dFdU in all three cell lines. After 24 hours gemcitabine incubation, dFdCTP was highest in MIA PaCa-2 and lowest in BxPC-3. CDA inhibition resulted in a profound dFdCTP increase in BxPC-3 but not in MIA PaCa-2 or PANC-1. dFdCTP concentrations were not higher after exposure to 100 versus 10 µM gemcitabine when CDA activities were low (MIA PaCa-2 and PANC-1) or inhibited (BxPC-3). The results suggest a regulatory role of CDA for gemcitabine activation in PDAC cells but within limits related to the capacity in the activation pathway in the cell lines. SIGNIFICANCE STATEMENT: The importance of cytidine deaminase (CDA) for cellular gemcitabine toxicity, linking a lower activity to higher toxicity, is well described. An underlying assumption is that CDA, by inactivating gemcitabine, limits the amount available for the intracellular activation pathway. Our study is the first to illustrate this regulatory role of CDA in pancreatic ductal adenocarcinoma cell lines by quantifying intracellular and extracellular gemcitabine metabolite concentrations.
Collapse
Affiliation(s)
- Tormod K Bjånes
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Lars Petter Jordheim
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Jan Schjøtt
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Tina Kamceva
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Emeline Cros-Perrial
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Anika Langer
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Gorka Ruiz de Garibay
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Spiros Kotopoulis
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Emmet McCormack
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| | - Bettina Riedel
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology (T.K.B., J.S., T.K., B.R.) and National Centre for Ultrasound in Gastroenterology (S.K.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, Faculty of Medicine (T.K.B., J.S., A.L., G.R.G., E.M., B.R.), Centre for Cancer Biomarkers, Department of Clinical Science (A.L., G.R.G., E.M.), and Department of Clinical Medicine (S.K.), University of Bergen, Bergen, Norway; Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France (L.P.J., E.C.-P.); and Phoenix Solutions AS, Oslo, Norway (S.K.)
| |
Collapse
|
4
|
Murakami Y, Kimura Y, Kawahara A, Mitsuyasu S, Miyake H, Tohyama K, Endo Y, Yoshida N, Imamura Y, Watari K, Ono M, Okamura T, Kuwano M. The augmented expression of the cytidine deaminase gene by 5-azacytidine predicts therapeutic efficacy in myelodysplastic syndromes. Oncotarget 2019; 10:2270-2281. [PMID: 31040918 PMCID: PMC6481348 DOI: 10.18632/oncotarget.26784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
5-Azacytidine (5AC), a hypomethylating agent, is clinically used for the treatment of patients with myelodysplastic syndromes (MDS). Cytidine deaminase (CDA) is a key enzyme in the detoxification of 5AC. We investigated whether the CDA expression could predict response to 5AC in MDS. Among leukemia-derived cell lines, MDS-L, an MDS-derived cell line with a relatively low CDA expression level, was found to be the most sensitive to 5AC. Combination with tetrahydrouridine, an inhibitor of CDA, synergistically potentiated the cytotoxic effect of 5AC. Treatment with 5AC markedly enhanced the expression level of CDA mRNA and showed demethylation at CpG sites in the 5′-flanking region of the CDA gene. We further compared the protein expression levels of CDA in matched clinical samples before and after treatment with 5AC in bone marrow cells from 8 MDS patients by an immunohistochemical analysis. The CDA expression level showed an approximately 2- to 3-fold increase after 5AC treatment in 3 of these cases, and these three patients with relatively higher CDA expression levels after 5AC treatment all showed better clinical responses to 5AC. In contrast, the 5 remaining patients, whose CDA expression showed no augmentation, observed no clinical benefit. Taken together, the optimized determination of the CDA expression levels before and after 5AC treatment, and the methylation status at CpG sites of 5′-flanking region of the CDA gene, may contribute to the development of precise 5AC therapy for MDS.
Collapse
Affiliation(s)
- Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan.,Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizo Kimura
- Department of Pathology, St. Mary's Hospital, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | | | | | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Nao Yoshida
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Yutaka Imamura
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okamura
- Hematology and Oncology Center, St. Mary's Hospital, Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| |
Collapse
|
5
|
Ou Y, Zhang Q, Tang Y, Lu Z, Lu X, Zhou X, Liu C. DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncol Rep 2018; 39:993-1002. [PMID: 29328411 PMCID: PMC5802040 DOI: 10.3892/or.2018.6210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/15/2017] [Indexed: 01/28/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common highly aggressive cancer worldwide. The purpose of this study was to investigate the effect of the DNA methyltransferase inhibitor RG108 on the radiosensitivity of EC cells. MTT and clonogenic assays were performed to assess the effect of RG108 on the proliferation and radiosensitivity of Eca-109 and TE-1 human EC cells. The cell cycle progression and alterations in apoptosis were analyzed by flow cytometry. For the in vivo analysis, the Eca-109 cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect changes to microvessels and tumor growth by immunohistochemistry (IHC). RNA-seq was used to identify differentially expressed genes. We found that RG108 increased the radiosensitivity of EC cells. Apoptosis and G2/M-phase arrest were induced by X-ray irradiation and were significantly enhanced by RG108. In addition, growth of tumor xenografts from the Eca-109 cells was significantly inhibited by irradiation in combination with RG108. The RNA-seq analysis revealed that, compared with radiation alone, X-ray irradiation in combination with RG108 altered the expression of 121 genes in multiple pathways, including the TGF-β signaling pathway and the Epstein-Barr virus infection pathway. In conclusion, RG108 induced radiosensitivity in EC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Yao Ou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Quan Zhang
- Department of Radiotherapy, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Zhonghua Lu
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Xujing Lu
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Xifa Zhou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Changmin Liu
- Department of Oncology, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
6
|
Hetzel M, Suzuki T, Hashtchin AR, Arumugam P, Carey B, Schwabbauer M, Kuhn A, Meyer J, Schambach A, Van Der Loo J, Moritz T, Trapnell BC, Lachmann N. Function and Safety of Lentivirus-Mediated Gene Transfer for CSF2RA-Deficiency. Hum Gene Ther Methods 2017; 28:318-329. [PMID: 28854814 PMCID: PMC5734162 DOI: 10.1089/hgtb.2017.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder of pulmonary surfactant accumulation and hypoxemic respiratory failure caused by mutations in CSF2RA (encoding the granulocyte/macrophage colony-stimulating factor [GM-CSF] receptor α-chain [CD116]), which results in reduced GM-CSF-dependent pulmonary surfactant clearance by alveolar macrophages. While no pharmacologic therapy currently exists for hPAP, it was recently demonstrated that endotracheal instillation of wild-type or gene-corrected mononuclear phagocytes (pulmonary macrophage transplantation [PMT]) results in a significant and durable therapeutic efficacy in a validated murine model of hPAP. To facilitate the translation of PMT therapy to human hPAP patients, a self-inactivating (SIN) lentiviral vector was generated expressing a codon-optimized human CSF2RA-cDNA driven from an EF1α short promoter (Lv.EFS.CSF2RAcoop), and a series of nonclinical efficacy and safety studies were performed in cultured macrophage cell lines and primary human cells. Studies in cytokine-dependent Ba/F3 cells demonstrated efficient transduction, vector-derived CD116 expression proportional to vector copy number, and GM-CSF-dependent cell survival and proliferation. Using a novel cell line constructed to express a normal GM-CSF receptor β subunit and a dysfunctional α subunit (due to a function-altering CSF2RAG196R mutation) that reflects the macrophage disease phenotype of hPAP patients, it was demonstrated that Lv.EFS.CSF2RAcoop transduction restored GM-CSF receptor function. Further, Lv.EFS.CSF2RAcoop transduction of healthy primary CD34+ cells did not adversely affect cell proliferation or affect the cell differentiation program. Results demonstrate Lv.EFS.CSF2RAcoop reconstituted GM-CSF receptor α expression, restoring GM-CSF signaling in hPAP macrophages, and had no adverse effects in the intended target cells, thus supporting testing of PMT therapy of hPAP in humans.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Anna Rafiei Hashtchin
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Paritha Arumugam
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Brenna Carey
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Marc Schwabbauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Alexandra Kuhn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Johannes Van Der Loo
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| |
Collapse
|
7
|
Ruan H, Qiu S, Beard BC, Black ME. Creation of zebularine-resistant human cytidine deaminase mutants to enhance the chemoprotection of hematopoietic stem cells. Protein Eng Des Sel 2016; 29:573-582. [PMID: 27160178 PMCID: PMC5181380 DOI: 10.1093/protein/gzw012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022] Open
Abstract
Human cytidine deaminase (hCDA) is a biomedically important enzyme able to inactivate cytidine nucleoside analogs such as the antileukemic agent cytosine arabinoside (AraC) and thereby limit antineoplastic efficacy. Potent inhibitors of hCDA have been developed, e.g. zebularine, that when administered in combination with AraC enhance antineoplastic activity. Tandem hematopoietic stem cell (HSC) transplantation and combination chemotherapy (zebularine and AraC) could exhibit robust antineoplastic potency, but AraC-based chemotherapy regimens lead to pronounced myelosuppression due to relatively low hCDA activity in HSCs, and this approach could exacerbate this effect. To circumvent the pronounced myelosuppression of zebularine and AraC combination therapy while maintaining antineoplastic potency, zebularine-resistant hCDA variants could be used to gene-modify HSCs prior to transplantation. To achieve this, our approach was to isolate hCDA variants through random mutagenesis in conjunction with selection for hCDA activity and resistance to zebularine in an Escherichia coli genetic complementation system. Here, we report the identification of nine novel variants from a pool of 1.6 × 106 transformants that conferred significant zebularine resistance relative to wild-type hCDA2. Several variants revealed significantly higher Ki values toward zebularine when compared with wild-type hCDA values and, as such, are candidates for further exploration for gene-modified HSC transplantation approaches.
Collapse
Affiliation(s)
- Hongmei Ruan
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| | - Songbo Qiu
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian C Beard
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret E Black
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| |
Collapse
|
8
|
Malani D, Murumägi A, Yadav B, Kontro M, Eldfors S, Kumar A, Karjalainen R, Majumder MM, Ojamies P, Pemovska T, Wennerberg K, Heckman C, Porkka K, Wolf M, Aittokallio T, Kallioniemi O. Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML. Leukemia 2016; 31:1187-1195. [PMID: 27833094 PMCID: PMC5420795 DOI: 10.1038/leu.2016.314] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
We sought to identify drugs that could counteract cytarabine resistance in acute myeloid leukemia (AML) by generating eight resistant variants from MOLM-13 and SHI-1 AML cell lines by long-term drug treatment. These cells were compared with 66 ex vivo chemorefractory samples from cytarabine-treated AML patients. The models and patient cells were subjected to genomic and transcriptomic profiling and high-throughput testing with 250 emerging and clinical oncology compounds. Genomic profiling uncovered deletion of the deoxycytidine kinase (DCK) gene in both MOLM-13- and SHI-1-derived cytarabine-resistant variants and in an AML patient sample. Cytarabine-resistant SHI-1 variants and a subset of chemorefractory AML patient samples showed increased sensitivity to glucocorticoids that are often used in treatment of lymphoid leukemia but not AML. Paired samples taken from AML patients before treatment and at relapse also showed acquisition of glucocorticoid sensitivity. Enhanced glucocorticoid sensitivity was only seen in AML patient samples that were negative for the FLT3 mutation (P=0.0006). Our study shows that development of cytarabine resistance is associated with increased sensitivity to glucocorticoids in a subset of AML, suggesting a new therapeutic strategy that should be explored in a clinical trial of chemorefractory AML patients carrying wild-type FLT3.
Collapse
Affiliation(s)
- D Malani
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - A Murumägi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - B Yadav
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - M Kontro
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - A Kumar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - R Karjalainen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - M M Majumder
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - P Ojamies
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - C Heckman
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - K Porkka
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - M Wolf
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
9
|
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural Polyphenols in Cancer Chemoresistance. Nutr Cancer 2016; 68:879-91. [DOI: 10.1080/01635581.2016.1192201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Abstract
A major barrier to achieving durable remission and a definitive cure in oncology patients is the emergence of tumor resistance, a common outcome of different disease types, and independent from the therapeutic approach undertaken. In recent years, subpopulations of slow-cycling cells endowed with enhanced tumorigenic potential and multidrug resistance have been isolated in different tumors, and mounting experimental evidence suggests these resistant cells are responsible for tumor relapse. An in-depth metabolic characterization of resistant tumor stem cells revealed that they rely more on mitochondrial respiration and less on glycolysis than other tumor cells, a finding that challenges the assumption that tumors have a primarily glycolytic metabolism and defective mitochondria. The demonstration of a metabolic program in resistant tumorigenic cells that may be present in the majority of tumors has important therapeutic implications and is a critical consideration as we address the challenge of identifying new vulnerabilities that might be exploited therapeutically.
Collapse
Affiliation(s)
- Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Brennig S, Lachmann N, Buchegger T, Hetzel M, Schambach A, Moritz T. Chemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:148. [PMID: 26651614 PMCID: PMC4676838 DOI: 10.1186/s13046-015-0260-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/16/2015] [Indexed: 01/23/2023]
Abstract
Background Hematologic toxicity represents a major side effect of cytotoxic chemotherapy frequently preventing adequately dosed chemotherapy application and impeding therapeutic success. Transgenic (over)expression of chemotherapy resistance (CTX-R) genes in hematopoietic stem- and progenitor cells represents a potential strategy to overcome this problem. To apply this concept in the context of acute myeloid leukemia and myelodysplasia, we have investigated the overexpression of the multidrug resistance 1 (MDR1) and the cytidine deaminase (CDD) gene conferring resistance to anthracyclines and cytarabine (Ara-C), the two most important drugs in the treatment of these diseases. Methods State-of-the-art, third generation, self-inactivating (SIN) lentiviral vectors were utilized to overexpress a human CDD-cDNA and a codon-optimized human MDR1-cDNA corrected for cryptic splice sites from a spleen focus forming virus derived internal promoter. Studies were performed in myeloid 32D cells as well as primary lineage marker negative (lin−) murine bone marrow cells and flow cytometric analysis of suspension cultures and clonogenic analysis of vector transduced cells following cytotoxic drug challenge were utilized as read outs. Results Efficient chemoprotection of CDD and MDR1 transduced hematopoietic 32D as well as primary lin− cells was proven in the context of Ara-C and anthracycline application. Both, CTX-R transduced 32D as well as primary hematopoietic cells displayed marked resistance at concentrations 5–20 times the LD50 of non-transduced control cells. Moreover, simultaneous CDD/MDR1 gene transfer resulted in similar protection levels even when combined Ara-C anthracycline treatment was applied. Furthermore, significant enrichment of transduced cells was observed upon cytotoxic drug administration. Conclusions Our data demonstrate efficient chemoprotection as well as enrichment of transduced cells in hematopoietic cell lines as well as primary murine hematopoietic progenitor cells following Ara-C and/or anthracycline application, arguing for the efficacy as well as feasibility of our approach and warranting further evaluation of this concept. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0260-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Theresa Buchegger
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Miriam Hetzel
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany. .,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
13
|
Klopfleisch R, Kohn B, Gruber AD. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. Vet J 2015; 207:63-72. [PMID: 26526523 DOI: 10.1016/j.tvjl.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
Several classes of chemotherapy drugs are used as first line or adjuvant treatment of the majority of tumour types in veterinary oncology. However, some types of tumour are intrinsically resistant to several anti-cancer drugs, and others, while initially sensitive, acquire resistance during treatment. Chemotherapy often significantly prolongs survival or disease free interval, but is not curative. The exact mechanisms behind intrinsic and acquired chemotherapy resistance are unknown for most animal tumours, but there is increasing knowledge on the mechanisms of drug resistance in humans and a few reports on molecular changes in resistant canine tumours have emerged. In addition, approaches to overcome or prevent chemotherapy resistance are becoming available in humans and, given the overlaps in molecular alterations between human and animal tumours, these may also be relevant in veterinary oncology. This review provides an overview of the current state of research on general chemotherapy resistance mechanisms, including drug efflux, DNA repair, apoptosis evasion and tumour stem cells. The known resistance mechanisms in animal tumours and the potential of these findings for improving treatment efficacy in veterinary oncology are also explored.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany.
| | - B Kohn
- Small Animal Clinic, Freie Universität Berlin, Oertzenweg 19 b, 14163 Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| |
Collapse
|
14
|
Lachmann N, Brennig S, Hillje R, Schermeier H, Phaltane R, Dahlmann J, Gruh I, Heinz N, Schiedlmeier B, Baum C, Moritz T. Tightly regulated 'all-in-one' lentiviral vectors for protection of human hematopoietic cells from anticancer chemotherapy. Gene Ther 2015; 22:883-92. [PMID: 26125609 DOI: 10.1038/gt.2015.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
Successful application of gene therapy strategies may require stringently regulated transgene expression. Along this line, we describe a doxycycline (Dox)-inducible 'all-in-one' lentiviral vector design using the pTET-T11 (TII) minimal-promoter and a reverse transactivator protein (rtTA2S-M2) driven by the phosphoglycerate kinase promoter allowing for tight regulation of transgene expression (Lv.TII vectors). Vector design was evaluated in human hematopoietic cells in the context of cytidine deaminase (hCDD)-based myeloprotective gene therapy. Upon Dox administration, a rapid (16-24 h) and dose-dependent (>0.04 μg ml(-1) Dox) onset of transgene expression was detected in Lv.TII.CDD gene-modified K562 cells as well as in primary human CD34(+) hematopoietic cells. Importantly, in both cell models low background transgene expression was observed in the absence of Dox. Functionality of Dox-inducible hCDD expression was demonstrated by >10-fold increase in cytosine arabinoside (1-β-d-arabinofuranosylcytosine, Ara-C) resistance of Lv.TII.CDD-transduced K562 cells. In addition, Lv.TII.CDD-transduced CD34(+)-derived myeloid cells were protected from up to 300 nm Ara-C (control affected from 50 nm onwards). These data clearly demonstrate the suitability of our self-inactivating lentiviral vector to induce robust, tightly regulated transgene expression in human hematopoietic cells with minimal background activity and highlight the potential of our construct in myeloprotective gene therapy strategies.
Collapse
Affiliation(s)
- N Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Hillje
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - H Schermeier
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Phaltane
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - J Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - I Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - N Heinz
- LOEWE-Research Group for (targeted) Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - B Schiedlmeier
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - C Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - T Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Lachmann N, Czarnecki K, Brennig S, Phaltane R, Heise M, Heinz N, Kempf H, Dilloo D, Kaever V, Schambach A, Heuser M, Moritz T. Deoxycytidine-kinase knockdown as a novel myeloprotective strategy in the context of fludarabine, cytarabine or cladribine therapy. Leukemia 2015; 29:2266-9. [PMID: 25921248 DOI: 10.1038/leu.2015.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - K Czarnecki
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Phaltane
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - M Heise
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - N Heinz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - H Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - D Dilloo
- Department of Pediatric Hematology and Oncology, Center for Child and Adolescent Medicine, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - V Kaever
- Institute of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - A Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - T Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Hamilton G, Rath B. A short update on cancer chemoresistance. Wien Med Wochenschr 2014; 164:456-60. [PMID: 25249024 DOI: 10.1007/s10354-014-0311-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
Chemotherapeutic interventions in cancer patients are limited by the appearance of chemoresistance. For instance, advanced lung and ovarian cancer patients relapse invariably after few cycles of platinum-based chemotherapy. Disseminated tumors are characterized by genetic instability/heterogeneity, thus containing or generating a repertoire of resistant subpopulations. At the cellular level, altered drug uptake, efflux, and metabolization, as well as modifications of drug targets, increased repair, and decreased cell death complement the limited perfusion and adverse hypoxic/acidic extracellular conditions at the tumor level in retaining cancer cell viability. Similarly, targeted therapy is rendered ineffective by mutations of the specific target protein within a few months or years of administration. Assessment of the expression profiles of resistant tumor cells revealed extensive changes in numerous pathways affecting hundreds of genes. Therefore, reversal of drug resistance will require individual profiles of drug resistance mediators and the combination of several specific drugs, targeting critical components to provide new therapeutic options.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Ludwig Boltzmann Cluster of Translational Oncology, c/o Balderichgasse 26/13, 11170, Vienna, Austria,
| | | |
Collapse
|
17
|
The ability of hyaluronan fragments to reverse the resistance of C6 rat glioma cell line to temozolomide and carmustine. Contemp Oncol (Pozn) 2014; 18:323-8. [PMID: 25477754 PMCID: PMC4248052 DOI: 10.5114/wo.2014.43493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/11/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Aim of the study Hyaluronan (HA) is an extracellular matrix (ECM) polymer that may contribute to the emergence of anti-cancer drug resistance. Attempts to reverse drug resistance using small hyaluronan oligomers (oHA) are being made. The initial reports suggest that the oHA fraction may effectively reverse anti-cancer drug resistance in glioma models. However, the reversal effects of oHA of defined molecular length on glioma cells have not been investigated yet. In this study, we examined HA fragments containing 2 disaccharide units (oHA-2), 5 disaccharide units (oHA-5), and 68 kDa hyaluronan polymer (HA-68k) as agents possibly reversing the resistance of a C6 rat glioma cell line to temozolomide (TMZ) and carmustine (BCNU). Material and methods A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay was used to assess the cytotoxicity of TMZ and BCNU in the presence or absence of the hyaluronan fragments. By comparing viability of the cells, the reversal effects of HA fragments on TMZ and BCNU resistance in C6 glioma cells were assessed. Results We found statistically significant decreases in the viability of cells in the presence of TMZ+oHA-5 as compared to TMZ alone (51.2 ±4.5 vs. 74.2 ±5.8, p = 0.0031), BCNU+o-HA5 as compared to BCNU alone (49.3 ±4.4 vs. 65.6 ±5.7, p = 0.0119), and BCNU+HA-68k as compared to BCNU alone (55.2 ±2.3 vs. 65.6 ±5.7, p = 0.0496). Conclusions Conclusions: Hyaluronan oligomers of 5 disaccharide units (oHA-5) significantly reversed the resistance of C6 cells to TMZ and BCNU. The results are only preliminary and a more thorough follow-up investigation is required to assess their actual role.
Collapse
|
18
|
Xia C, Ye F, Hu X, Li Z, Jiang B, Fu Y, Cheng X, Shao Z, Zhuang Z. Liver kinase B1 enhances chemoresistance to gemcitabine in breast cancer MDA-MB-231 cells. Oncol Lett 2014; 8:2086-2092. [PMID: 25295095 PMCID: PMC4186618 DOI: 10.3892/ol.2014.2446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
Liver kinase B1 (LKB1) is a well-known tumor suppressor gene in a variety of human cancers, including breast cancer. However, its role in gemcitabine resistance is unclear. Since gemcitabine in combination with other chemotherapeutic reagents is the first-line treatment in advanced breast cancer, the aim of the present study was to determine the effect of ectopic expression of LKB1 on chemosensitivity to gemcitabine in the breast cancer MDA-MB-231 cell line. Increasing the expression of LKB1 was found to directly correlate with gemcitabine chemoresistance. Although LKB1 suppressed the cell proliferation rate and clonogenicity in the absence of gemcitabine, it increased the median inhibitory concentration of gemcitabine and clonogenicity of cells in the presence of gemcitabine. Mechanistic analysis indicated that LKB1 was able to protect cells from DNA damage caused by gemcitabine. Furthermore, it was found that LKB1 induced a significant upregulation of cytidine deaminase expression, an important enzyme that accelerates gemcitabine catabolization. Overall, dual characteristics of LKB1 were identified: Suppressing cell growth in normal conditions and enhancing chemoresisitance to gemcitabine, possibly by accelerating degradation of gemcitabine, and protecting cells from DNA damage caused by gemcitabine.
Collapse
Affiliation(s)
- Chen Xia
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| | - Fugui Ye
- Department of General Surgery, Affiliated Union Hospital of Fujian Medical University, Union Clinical School, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xin Hu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhengdong Li
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| | - Beiqi Jiang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| | - Yun Fu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| | - Xiaolin Cheng
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| | - Zhiming Shao
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
19
|
Vande Voorde J, Sabuncuoğlu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J, Liekens S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014; 289:13054-65. [PMID: 24668817 DOI: 10.1074/jbc.m114.558924] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intracellular metabolism and cytostatic activity of the anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) was severely compromised in Mycoplasma hyorhinis-infected tumor cell cultures. Pronounced deamination of dFdC to its less cytostatic metabolite 2',2'-difluoro-2'-deoxyuridine was observed, both in cell extracts and spent culture medium (i.e. tumor cell-free but mycoplasma-containing) of mycoplasma-infected tumor cells. This indicates that the decreased antiproliferative activity of dFdC in such cells is attributed to a mycoplasma cytidine deaminase causing rapid drug catabolism. Indeed, the cytostatic activity of gemcitabine could be restored by the co-administration of tetrahydrouridine (a potent cytidine deaminase inhibitor). Additionally, mycoplasma-derived pyrimidine nucleoside phosphorylase (PyNP) activity indirectly potentiated deamination of dFdC: the natural pyrimidine nucleosides uridine, 2'-deoxyuridine and thymidine inhibited mycoplasma-associated dFdC deamination but were efficiently catabolized (removed) by mycoplasma PyNP. The markedly lower anabolism and related cytostatic activity of dFdC in mycoplasma-infected tumor cells was therefore also (partially) restored by a specific TP/PyNP inhibitor (TPI), or by exogenous thymidine. Consequently, no effect on the cytostatic activity of dFdC was observed in tumor cell cultures infected with a PyNP-deficient Mycoplasma pneumoniae strain. Because it has been reported that some commensal mycoplasma species (including M. hyorhinis) preferentially colonize tumor tissue in cancer patients, our findings suggest that the presence of mycoplasmas in the tumor microenvironment could be a limiting factor for the anticancer efficiency of dFdC-based chemotherapy. Accordingly, a significantly decreased antitumor effect of dFdC was observed in mice bearing M. hyorhinis-infected murine mammary FM3A tumors compared with uninfected tumors.
Collapse
Affiliation(s)
- Johan Vande Voorde
- From the Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, blok x-bus 1030, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pfaff N, Lachmann N, Ackermann M, Kohlscheen S, Brendel C, Maetzig T, Niemann H, Antoniou MN, Grez M, Schambach A, Cantz T, Moritz T. A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells 2014; 31:488-99. [PMID: 23307570 DOI: 10.1002/stem.1316] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/04/2012] [Indexed: 11/07/2022]
Abstract
Methylation-induced gene silencing represents a major obstacle to efficient transgene expression in pluripotent cells and thereof derived tissues. As ubiquitous chromatin opening elements (UCOE) have been shown to prevent transgene silencing in cell lines and primary hematopoietic cells, we hypothesized a similar activity in pluripotent cells. This concept was investigated in the context of cytidine deaminase (CDD) gene transfer, an approach to render hematopoietic cells resistant to the chemotherapeutic agent Ara-C. When murine induced pluripotent stem cells (iPSC)/embryonic stem cells (ESCs) were transduced with self-inactivating lentiviral vectors using housekeeping (truncated elongation factor 1α; EFS) or viral (spleen focus-forming virus; SFFV) promoters, incorporation of an heterogeneous nuclear ribonucleoproteins A2 B1/chromobox protein homolog 3 locus-derived UCOE (A2UCOE) significantly increased transgene expression and Ara-C resistance and effectively prevented silencing of the SFFV-promoter. The EFS promoter showed relatively stable transgene expression in naïve iPSCs, but rapid transgene silencing was observed upon hematopoietic differentiation. When combined with the A2UCOE, however, the EFS promoter yielded stable transgene expression in 73% ± 6% of CD41(+) hematopoietic progeny, markedly increased CDD expression levels, and significantly enhanced Ara-C resistance in clonogenic cells. Bisulfite sequencing revealed protection from differentiation-induced promoter CpG methylation to be associated with these effects. Similar transgene promoting activities of the A2UCOE were observed during murine neurogenic differentiation, in naïve human pluripotent cells, and during nondirected multilineage differentiation of these cells. Thus, our data provide strong evidence that UCOEs can efficiently prevent transgene silencing in iPS/ESCs and their differentiated progeny and thereby introduce a generalized concept to circumvent differentiation-induced transgene silencing during the generation of advanced iPSC/ESC-based gene and cell therapy products.
Collapse
Affiliation(s)
- Nils Pfaff
- REBIRTH Research Group Reprogramming, Hannover Medical School, Hannover
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
22
|
Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013; 4:28. [PMID: 23504227 PMCID: PMC3596793 DOI: 10.3389/fphar.2013.00028] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
Cancer drug resistance continues to be a major impediment in medical oncology. Clinically, resistance can arise prior to or as a result of cancer therapy. In this review, we discuss different mechanisms adapted by cancerous cells to resist treatment, including alteration in drug transport and metabolism, mutation and amplification of drug targets, as well as genetic rewiring which can lead to impaired apoptosis. Tumor heterogeneity may also contribute to resistance, where small subpopulations of cells may acquire or stochastically already possess some of the features enabling them to emerge under selective drug pressure. Making the problem even more challenging, some of these resistance pathways lead to multidrug resistance, generating an even more difficult clinical problem to overcome. We provide examples of these mechanisms and some insights into how understanding these processes can influence the next generation of cancer therapies.
Collapse
Affiliation(s)
- Hiba Zahreddine
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal Montreal, QC, Canada
| | | |
Collapse
|
23
|
Lachmann N, Brennig S, Pfaff N, Schermeier H, Dahlmann J, Phaltane R, Gruh I, Modlich U, Schambach A, Baum C, Moritz T. Efficient in vivo regulation of cytidine deaminase expression in the haematopoietic system using a doxycycline-inducible lentiviral vector system. Gene Ther 2012; 20:298-307. [PMID: 22592598 DOI: 10.1038/gt.2012.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regulated transgene expression may reduce transgene-specific and genotoxic risks associated with gene therapy. To prove this concept, we have investigated the suitability of doxycycline (Dox)-inducible human cytidine deaminase (hCDD) overexpression from lentiviral vectors to mediate effective myeloprotection while circumventing the lymphotoxicity observed with constitutive CDD activity. Rapid Dox-mediated transgene induction associated with a 6-17-fold increase in drug resistance was observed in 32D and primary murine bone marrow (BM) cells. Moreover, robust Dox-regulated transgene expression in the entire haematopoietic system was demonstrated for primary and secondary recipients of hCDD-transduced R26-M2rtTA transgenic BM cells. Furthermore, mice were significantly protected from myelosuppressive chemotherapy as evidenced by accelerated recovery of granulocytes (1.9±0.6 vs 1.3±0.3, P=0.034) and platelets (883±194 vs 584±160 10(3) per μl, P=0.011). Minimal transgene expression in the non-induced state and no overt cellular toxicities including lymphotoxicity were detected. Thus, using a relevant murine transplant model our data provide conclusive evidence that drug-resistance transgenes can be expressed in a regulated fashion in the lymphohaematopoietic system, and that Dox-inducible systems may be used to reduce myelotoxic side effect of anticancer chemotherapy or to avoid side effects of high constitutive transgene expression.
Collapse
Affiliation(s)
- N Lachmann
- REBIRTH Cluster-of-Excellence, Research Group Reprogramming, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Funamizu N, Lacy CR, Fujita K, Furukawa K, Misawa T, Yanaga K, Manome Y. Tetrahydrouridine inhibits cell proliferation through cell cycle regulation regardless of cytidine deaminase expression levels. PLoS One 2012; 7:e37424. [PMID: 22616006 PMCID: PMC3353937 DOI: 10.1371/journal.pone.0037424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/21/2012] [Indexed: 12/24/2022] Open
Abstract
Tetrahydrouridine (THU) is a well characterized and potent inhibitor of cytidine deaminase (CDA). Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299) exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells.
Collapse
Affiliation(s)
- Naotake Funamizu
- Department of Molecular Cell Biology, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Brennig S, Rattmann I, Lachmann N, Schambach A, Williams DA, Moritz T. In vivo enrichment of cytidine deaminase gene-modified hematopoietic cells by prolonged cytosine-arabinoside application. Cytotherapy 2012; 14:451-60. [DOI: 10.3109/14653249.2011.646043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Hodge L, Taub M, Tracy T. Effect of its deaminated metabolite, 2′,2′-difluorodeoxyuridine, on the transport and toxicity of gemcitabine in HeLa cells. Biochem Pharmacol 2011; 81:950-6. [DOI: 10.1016/j.bcp.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/28/2022]
|
27
|
Dasgupta A, McCarty D, Spencer HT. Engineered drug-resistant immunocompetent cells enhance tumor cell killing during a chemotherapy challenge. Biochem Biophys Res Commun 2009; 391:170-5. [PMID: 19903457 DOI: 10.1016/j.bbrc.2009.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/01/2009] [Indexed: 01/17/2023]
Abstract
Establishment of immunocompetent cell mediated anti-tumor immunity is often mitigated by the myelosuppressive effects during administration of chemotherapy. We hypothesized that protecting these immune cells from drug induced toxicities may allow for the combined administration of immunotherapy and chemotherapy. Using a SIV-based lentiviral gene transfer system we delivered the drug-resistant variant P140KMGMT into the immunocompetent cell lines NK-92 and TALL-104, and the myelogenous leukemia cell line, K562, which is a target for both NK-92 and TALL-104 cells. Genetically engineered immunocompetent cells developed significant resistance to temozolomide compared to non-modified cells, and genetic modification of these cells did not affect their ability to kill K562 cells. We then evaluated the effectiveness of drug-resistant immunocompetent cell mediated killing of tumor cells in the presence and absence of chemotherapy. During a chemotherapy challenge the cytotoxic activity of non-modified immunocompetent cells was dramatically impaired. However, when combined with chemotherapy, genetically-modified immune cells retained their cytotoxic activities and efficiently killed non-modified target cells. These results show that engineering immunocompetent cells to withstand chemotherapy challenges can enhance tumor cell killing when chemotherapy is applied in conjunction with cell-based immunotherapy.
Collapse
Affiliation(s)
- Anindya Dasgupta
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
28
|
Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 2009; 16:541-50. [PMID: 19343063 DOI: 10.1038/cgt.2009.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.
Collapse
|
29
|
Bhatla D, Gerbing RB, Alonzo TA, Conner H, Ross JA, Meshinchi S, Zhai X, Zamzow T, Mehta PA, Geiger H, Perentesis J, Davies SM. Cytidine deaminase genotype and toxicity of cytosine arabinoside therapy in children with acute myeloid leukemia. Br J Haematol 2008; 144:388-94. [PMID: 19036079 DOI: 10.1111/j.1365-2141.2008.07461.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosine arabinoside (ara-C) is irreversibly deaminated to a non-toxic metabolite by cytidine deaminase (CDA). A common polymorphism, A79C, in the gene encoding cytidine deaminase (CDA) changes a lysine residue to glutamine resulting in decreased enzyme activity. CDA A79C genotypes were determined in 457 children with acute myeloid leukaemia (AML) treated on the Children's Cancer Group (CCG) 2941 and 2961 protocols and analyzed the impact of CDA genotype on therapy outcomes. Postinduction treatment-related mortality (TRM) was significantly elevated in children with the CC genotype (5-year TRM 17 +/- 13% CC vs. 7 +/- 4% AA, 5 +/- 4% AC, P = 0.05). This was more notable in children who received idarubicin, fludarabine, ara-C, and granulocyte colony-stimulating factor (IDA-FLAG; ara-C = 7590 mg/m2) (5-year TRM 24 +/- 21% CC vs. 6 +/- 6% AA, 6 +/- 7% AC, P = 0.07) as consolidation therapy compared to idarubicin, dexamethasone, cytarabine, thioguanine, etoposide and daunomycin (IDA-DCTER; ara-C = 800 mg/m2) (5-year TRM 15 +/- 20% CC vs. 8 +/- 6% AA, 4 +/- 6% AC; P = 0.29). Relapse-free survival was non-significantly increased in children with the CC genotype treated with IDA-FLAG (76 +/- 20% CC vs. 59 +/- 12% AA and 55 +/- 14% AC; P = 0.40). These data indicate that children with a low activity CDA genotype are at increased risk of TRM with ara-C based therapy for AML.
Collapse
Affiliation(s)
- Deepika Bhatla
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rattmann I, Kleff V, Feldmann A, Ludwig C, Sorg UR, Opalka B, Moritz T, Flasshove M. Reliable Generation of Stable High Titer Producer Cell Lines for Gene Therapy. Intervirology 2007; 50:197-203. [PMID: 17283445 DOI: 10.1159/000099218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 10/06/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Retroviral vectors represent one of the most robust technologies for in vivo expression of heterologous gene sequences and are still the most commonly used vectors in clinical gene therapy trials. The production of high titer retroviral preparations, however, can be a problematic procedure for certain constructs. METHODS GALV- or RD114-pseudotyped retroviral particles carrying selectable fluorescence markers or drug resistance genes, such as the green fluorescent protein (GFP) or the O(6)-methylguanine-DNA-methyltransferase (MGMT) mutants, were used to stably transduce Phoenix-(FNX-)eco cells. Thereafter, a polyclonal population of producer cells was generated by enriching cells with high marker gene expression. In addition, single producer clones were selected by limiting dilution. RESULTS Retroviral titers were increased 1-2 logs by enriching for a polyclonal population of producer cells, and selection of single producer clones allowed another 1- to 2-log increase in titers. Using this method, reproducibly high titer viral preparations allowing efficient transduction of hematopoietic stem cells were generated. CONCLUSION A reliable and time-effective method to generate stable high titer producer cells based on the FNX-cell line for problematic retroviral vector constructs is described.
Collapse
Affiliation(s)
- Ina Rattmann
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rattmann I, Kleff V, Sorg UR, Bardenheuer W, Brueckner A, Hilger RA, Opalka B, Seeber S, Flasshove M, Moritz T. Gene transfer of cytidine deaminase protects myelopoiesis from cytidine analogs in an in vivo murine transplant model. Blood 2006; 108:2965-71. [PMID: 16835384 DOI: 10.1182/blood-2006-03-011734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic stem cell gene transfer of the drug-resistance gene cytidine deaminase (CDD) protecting cells from the cytotoxic cytidine analogs cytarabine and gemcitabine was investigated in a murine transplant model. Following transplantation of CDD-transduced cells and cytarabine application (500 mg/kg; days 1-4; intraperitoneally) significant myeloprotection was demonstrated with nadir counts of peripheral blood granulocytes and thrombocytes of 2.9 ± 0.6/nL versus 0.7 ± 0.1/nL (P < .001) and 509 ± 147/nL versus 80 ± 9/nL (P = .008), respectively (CDD versus control). Protection also was observed from otherwise lethal gemcitabine treatment (250 mg/kg; days 1-3). Stable levels of gene-marked cells in primary and secondary recipients were demonstrated for up to 9 months, and whereas CDD overexpression clearly reduced B- and T-lymphocyte numbers, no major toxicity was observed in the myeloid compartment. Despite the profound myeloprotective properties, however, CDD overexpression did not allow for pharmacologic enrichment of transduced hematopoiesis in our model. Thus, in summary, our data establish CDD as a drug-resistance gene highly suitable for myeloprotective purposes, which, given the lack of selection observed in our hands, might best be used in combination with selectable drugresistance genes such as MGMT (P140K) or MDR1.
Collapse
Affiliation(s)
- Ina Rattmann
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstr 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|