2
|
Jose SS, Tidu F, Burilova P, Kepak T, Bendickova K, Fric J. The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy. Front Genet 2018; 9:345. [PMID: 30210531 PMCID: PMC6123533 DOI: 10.3389/fgene.2018.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Federico Tidu
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Burilova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kepak
- Pediatric Oncology Translational Research, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Pediatric Hematology and Oncology, The University Hospital Brno, Brno, Czechia
| | - Kamila Bendickova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Fric
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
3
|
Suraweera N, Mouradov D, Li S, Jorissen RN, Hampson D, Ghosh A, Sengupta N, Thaha M, Ahmed S, Kirwan M, Aleva F, Propper D, Feakins RM, Vulliamy T, Elwood NJ, Tian P, Ward RL, Hawkins NJ, Xu ZZ, Molloy PL, Jones IT, Croxford M, Gibbs P, Silver A, Sieber OM. Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer. Oncotarget 2017; 7:36474-36488. [PMID: 27167335 PMCID: PMC5095014 DOI: 10.18632/oncotarget.9015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/10/2016] [Indexed: 01/02/2023] Open
Abstract
Telomeric dysfunction is linked to colorectal cancer (CRC) initiation. However, the relationship of normal tissue and tumor telomere lengths with CRC progression, molecular features and prognosis is unclear. Here, we measured relative telomere length (RTL) by real-time quantitative PCR in 90 adenomas (aRTL), 419 stage I-IV CRCs (cRTL) and adjacent normal mucosa (nRTL). Age-adjusted RTL was analyzed against germline variants in telomere biology genes, chromosome instability (CIN), microsatellite instability (MSI), CpG island methylator phenotype (CIMP), TP53, KRAS, BRAF mutations and clinical outcomes. In 509 adenoma or CRC patients, nRTL decreased with advancing age. Female gender, proximal location and the TERT rs2736100 G allele were independently associated with longer age-adjusted nRTL. Adenomas and carcinomas exhibited telomere shortening in 79% and 67% and lengthening in 7% and 15% of cases. Age-adjusted nRTL and cRTL were independently associated with tumor stage, decreasing from adenoma to stage III and leveling out or increasing from stage III to IV, respectively. Cancer MSI, CIMP, TP53, KRAS and BRAF status were not related to nRTL or cRTL. Near-tetraploid CRCs exhibited significantly longer cRTLs than CIN- and aneuploidy CRCs, while cRTL was significantly shorter in CRCs with larger numbers of chromosome breaks. Age-adjusted nRTL, cRTL or cRTL:nRTL ratios were not associated with disease-free or overall survival in stage II/III CRC. Taken together, our data show that both normal mucosa and tumor RTL are independently associated with CRC progression, and highlight divergent associations of CRC telomere length with tumor CIN profiles.
Collapse
Affiliation(s)
- Nirosha Suraweera
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shan Li
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia
| | - Robert N Jorissen
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Debbie Hampson
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Anil Ghosh
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Neel Sengupta
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Mohamed Thaha
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK.,Academic Surgical Unit, The Royal London Hospital, Whitechapel, London, UK
| | - Shafi Ahmed
- Academic Surgical Unit, The Royal London Hospital, Whitechapel, London, UK
| | - Michael Kirwan
- Centre for Paediatrics, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Floor Aleva
- Department of Medical Oncology, St Bartholomew's Hospital, Little Britain, London, UK
| | - David Propper
- Department of Medical Oncology, St Bartholomew's Hospital, Little Britain, London, UK
| | - Roger M Feakins
- Department of Pathology, The Royal London Hospital, Whitechapel, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Ngaire J Elwood
- Cord Blood Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Pei Tian
- Cord Blood Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Robyn L Ward
- The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas J Hawkins
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zheng-Zhou Xu
- CSIRO Preventative Health Flagship, North Ryde, NSW, Australia
| | - Peter L Molloy
- CSIRO Preventative Health Flagship, North Ryde, NSW, Australia
| | - Ian T Jones
- Department of Colorectal Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Croxford
- Department of Colorectal Surgery, Western Hospital, Footscray, Victoria, Australia
| | - Peter Gibbs
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew Silver
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Oliver M Sieber
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences, Monash University, Victoria, Australia
| |
Collapse
|
4
|
Zhang X, Li B, Yu J, Dahlström J, Tran AN, Björkholm M, Xu D. MYC-dependent downregulation of telomerase by FLT3 inhibitors is required for their therapeutic efficacy on acute myeloid leukemia. Ann Hematol 2017; 97:63-72. [PMID: 29080039 PMCID: PMC5748426 DOI: 10.1007/s00277-017-3158-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022]
Abstract
The somatic mutation of FLT3 occurs in 30% of acute myeloid leukemia (AML), with the majority of mutations exhibiting internal tandem duplication (ITD). On the other hand, the induction of telomerase reverse transcriptase (hTERT) and the activation of telomerase is a key step in AML development. Here, we sought to determine whether FLT3ITD regulates hTERT expression in AML cells and whether hTERT expression affects FLT3 inhibitors' therapeutic efficacy on AML. FLT3ITD-harboring AML cell lines and primary cells treated with the FLT3 inhibitor PKC412 displayed a rapid decline in the levels of hTERT mRNA and telomerase activity. Moreover, PKC412 inhibited hTERT gene transcription in a c-MYC-dependent manner. The ectopic expression of hTERT significantly attenuated the apoptotic effect of PKC412 on AML cells. Mechanistically, hTERT enhanced the activity of FLT3 downstream effectors or alternative RTK signaling, thereby enhancing AKT phosphorylation, in AML cells treated with PKC412. Collectively, PKC412 downregulates hTERT expression and telomerase activity in a MYC-dependent manner and this effect is required for its optimal anti-AML efficacy, while hTERT over-expression confers AML cells resistance to a targeted therapeutic agent PKC412. These findings suggest that the functional interplay between FLT3ITD and hTERT contributes to the AML pathogenesis and interferes with the efficacy of FLT3ITD-targeted therapy.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Bingnan Li
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jingya Yu
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jenny Dahlström
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Anh Nhi Tran
- Department of Clinical Genetics, Karolinska University Hospital and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Magnus Björkholm
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Dawei Xu
- Center for Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|