1
|
Buder K, Zirngibl M, Bapistella S, Meerpohl JJ, Strahm B, Bassler D, Weitz M. Extracorporeal photopheresis versus standard treatment for acute graft-versus-host disease after haematopoietic stem cell transplantation in children and adolescents. Cochrane Database Syst Rev 2022; 9:CD009759. [PMID: 36166494 PMCID: PMC9514720 DOI: 10.1002/14651858.cd009759.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation (HSCT), occurring in 8% to 85% of paediatric recipients. Currently, the therapeutic mainstay for aGvHD is treatment with corticosteroids. However, there is no established standard treatment for steroid-refractory aGvHD. Extracorporeal photopheresis (ECP) is a type of immunomodulatory method amongst different therapeutic options that involves ex vivo collection of peripheral mononuclear cells, exposure to the photoactive agent 8-methoxypsoralen and ultraviolet-A radiation, and reinfusion of these treated blood cells to the patient. The mechanisms of action of ECP are not completely understood. This is the second update of a Cochrane Review first published in 2014 and updated in 2015. OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of aGvHD in children and adolescents after HSCT. SEARCH METHODS We searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE (PubMed) and Embase (Ovid) databases from their inception to 25 January 2021. We searched the reference lists of potentially relevant studies without any language restrictions. We searched five conference proceedings and nine clinical trial registries on 9 November 2020 and 12 November 2020, respectively. SELECTION CRITERIA We sought to include randomised controlled trials (RCTs) comparing ECP with or without standard treatment versus standard treatment alone in children and adolescents with aGvHD after HSCT. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreement in the selection of trials by consultation with a third review author. MAIN RESULTS We identified no additional studies in the 2021 review update, so there are still no studies that meet the criteria for inclusion in this review. AUTHORS' CONCLUSIONS The efficacy of ECP in the treatment of aGvHD in children and adolescents after HSCT is unknown, and its use should be restricted to within the context of RCTs. Such studies should address a comparison of ECP alone or in combination with standard treatment versus standard treatment alone. The 2021 review update brought about no additions to these conclusions.
Collapse
Affiliation(s)
- Kathrin Buder
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Matthias Zirngibl
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Sascha Bapistella
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Joerg J Meerpohl
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Brigitte Strahm
- Pediatric Hematology and Oncology Centre for Pediatrics and Adolescent Medicine, University Medical School Freiburg, Freiburg, Germany
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zürich, Zürich, Switzerland
| | - Marcus Weitz
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
2
|
Patel AN, Bartlett CE, Ichim TE. Mesenchymal Stem Cells. STEM CELL AND GENE THERAPY FOR CARDIOVASCULAR DISEASE 2016:139-150. [DOI: 10.1016/b978-0-12-801888-0.00011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Weitz M, Strahm B, Meerpohl JJ, Schmidt M, Bassler D. Extracorporeal photopheresis versus standard treatment for acute graft-versus-host disease after haematopoietic stem cell transplantation in paediatric patients. Cochrane Database Syst Rev 2015; 2015:CD009759. [PMID: 26666580 PMCID: PMC7093896 DOI: 10.1002/14651858.cd009759.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation (HSCT) occurring in 8% to 59% of the recipients. Currently, the therapeutic mainstay for aGvHD is corticosteroids. However, there is no established standard treatment for steroid-refractory aGvHD. Extracorporeal photopheresis (ECP) is a type of immunomodulatory method amongst different therapeutic options that involves ex vivo collection of peripheral mononuclear cells, exposure to the photoactive agent 8-methoxypsoralen and ultraviolet-A radiation, and re-infusion of these treated blood cells to the patient. The mechanisms of action of ECP are not completely understood. This is an updated version of a Cochrane review first published in 2014. OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of aGvHD in children and adolescents after HSCT. SEARCH METHODS We searched the Cochrane Register of Controlled Trials (CENTRAL) (Issue 9, 2015), MEDLINE (PubMed) and EMBASE (Ovid) databases from their inception to 23 September 2015. We searched the reference lists of potentially relevant studies without any language restrictions. We searched eight trial registers and four conference proceedings on 29 September 2015. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing ECP with or without standard treatment versus standard treatment alone in paediatric patients with aGvHD after HSCT. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreement in the selection of trials by consultation with a third review author. MAIN RESULTS We identified no additional studies in the 2015 review update, in total leading to no studies meeting the criteria for inclusion in this review. AUTHORS' CONCLUSIONS The efficacy of ECP in the treatment of aGvHD in paediatric patients after HSCT is unknown and its use should be restricted within the context of RCTs. Such studies should address a comparison of ECP alone or in combination with standard treatment versus standard treatment alone. The 2015 review update brought about no additions to these conclusions.
Collapse
Affiliation(s)
- Marcus Weitz
- University Children's HospitalPediatric NephrologySteinwiesstrasse 75ZurichSwitzerland8032
| | - Brigitte Strahm
- University Medical School FreiburgPediatric Hematology and Oncology Centre for Pediatrics and Adolescent MedicineMathildenstrasse 1FreiburgGermany79106
| | - Joerg J Meerpohl
- Medical Center ‐ University of FreiburgCochrane GermanyBerliner Allee 29FreiburgGermany79110
| | - Maria Schmidt
- University Children's HospitalPediatric NephrologySteinwiesstrasse 75ZurichSwitzerland8032
| | - Dirk Bassler
- University Hospital ZurichDepartment of NeonatologyFrauenklinikstrasse 10ZurichSwitzerland
| | | |
Collapse
|
4
|
Auletta JJ, Eid SK, Wuttisarnwattana P, Silva I, Metheny L, Keller MD, Guardia-Wolff R, Liu C, Wang F, Bowen T, Lee Z, Solchaga LA, Ganguly S, Tyler M, Wilson DL, Cooke KR. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells 2015; 33:601-14. [PMID: 25336340 DOI: 10.1002/stem.1867] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction.
Collapse
Affiliation(s)
- Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12:260. [PMID: 25304688 PMCID: PMC4197270 DOI: 10.1186/s12967-014-0260-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.
Collapse
Affiliation(s)
- Marialaura Madrigal
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India. .,INDICASAT-AIP, City of Knowledge, Republic of Panama. .,MediStem Panama Inc., City of Knowledge, Republic of Panama.
| | | | - Neil H Riordan
- MediStem Panama Inc., City of Knowledge, Republic of Panama.
| |
Collapse
|
6
|
Weitz M, Strahm B, Meerpohl JJ, Bassler D. Extracorporeal photopheresis versus standard treatment for acute graft-versus-host disease after haematopoietic stem cell transplantation in paediatric patients. Cochrane Database Syst Rev 2014:CD009759. [PMID: 24569960 DOI: 10.1002/14651858.cd009759.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute graft-versus host disease (aGvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation (HSCT) occurring in 8% to 59% of the recipients. Currently, the therapeutic mainstay for aGvHD is corticosteroids. However, there is no established standard treatment for steroid-refractory aGvHD. Extracorporeal photopheresis (ECP) is a type of immunomodulatory method amongst different therapeutic options that involves ex vivo collection of peripheral mononuclear cells, exposure to the photoactive agent 8-methoxypsoralen and ultraviolet-A radiation, and re-infusion of these treated blood cells to the patient. The mechanisms of action of ECP are not completely understood OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of aGvHD in children and adolescents after HSCT. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (Issue 9, 2012), MEDLINE/PubMed and EMBASE (Ovid) databases from their inception to 12 September 2012. We searched the reference lists of potentially relevant studies without any language restriction. We searched eight trial registers and four conference proceedings. We also contacted an expert in the field to request information on unpublished study that involves ECP in aGvHD after HSCT. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing ECP with or without standard treatment versus standard treatment alone in paediatric patients with aGvHD after HSCT. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreement in the selection of trials by consultation with a third review author. MAIN RESULTS We found no studies meeting the criteria for inclusion in this review. AUTHORS' CONCLUSIONS The efficacy of ECP in the treatment of aGvHD in paediatric patients after HSCT is unknown and its use should be restricted within the context of RCTs. Such studies should address a comparison of ECP alone or in combination with standard treatment versus standard treatment alone.
Collapse
Affiliation(s)
- Marcus Weitz
- Pediatric Nephrology, University Children's Hospital, Steinwiesstrasse 75, Zurich, Switzerland, 8032
| | | | | | | |
Collapse
|
7
|
Calkoen FGJ, Jol-van der Zijde CM, Mearin ML, Schweizer JJ, Jansen-Hoogendijk AM, Roelofs H, van Halteren AGS, Egeler RM, van Tol MJD, Ball LM. Gastrointestinal acute graft-versus-host disease in children: histology for diagnosis, mesenchymal stromal cells for treatment, and biomarkers for prediction of response. Biol Blood Marrow Transplant 2013; 19:1590-9. [PMID: 23994245 DOI: 10.1016/j.bbmt.2013.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022]
Abstract
Steroid-nonresponsive acute graft-versus-host disease (aGVHD) after hematopoietic stem cell transplantation carries a poor prognosis. Various groups have reported beneficial effects of mesenchymal stromal cell (MSC) infusion as salvage treatment. Response to treatment is typically evaluated using the diagnostic clinical criteria for aGVHD. In this study, we evaluated the usefulness of additional gastrointestinal biopsy specimens paired with serum biomarkers. In a cohort of 22 pediatric patients, persistent or recurrent diarrhea was seen in 18 children treated with MSC infusion for steroid-refractory aGVHD. To exclude other causes of gastrointestinal pathology, patients were biopsied for histological analysis. Eight of 12 patients exhibited residual tissue damage and villous atrophy, but no active aGVHD. Serum biomarkers have been identified as an alternative tool for monitoring the response to aGVHD treatment. The value of biomarkers for inflammation, tissue, and endothelial cell damage was evaluated in our cohort. Although predictive of response to treatment and survival, these markers lack the necessary specificity and sensitivity to predict response to MSC therapy. Objective endpoints for clinical trials on the treatment of steroid-refractory aGVHD remain to be defined. Thus, we recommend including biopsies and biomarkers to discriminate between ongoing aGVHD and postinflammatory malabsorption.
Collapse
Affiliation(s)
- Friso G J Calkoen
- Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation Section, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim YM, Yi T, Choi JS, Lee S, Jang YH, Kim CH, Song SU, Lim JY. Bone marrow-derived clonal mesenchymal stem cells as a source of cell therapy for promoting vocal fold wound healing. Ann Otol Rhinol Laryngol 2013; 122:121-30. [PMID: 23534127 DOI: 10.1177/000348941312200208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES We investigated whether mouse bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) could promote vocal fold (VF) wound healing by using a xenograft animal model. METHODS Homogeneous BM-cMSCs isolated by a subfractionation culturing method from the bone marrow aspirates of green fluorescent protein transgenic mice were injected into the VFs of rabbits immediately after direct mechanical injury. Macroscopic, biomechanical (rheometric), histologic, immunohistochemical, and transcriptional evaluations were performed on the scarred VFs 1 to 3 months after injury. Engraftment of the implanted BM-cMSCs was determined by detection of green fluorescent protein cells in the recipient VF by confocal microscopy. RESULTS The BM-cMSC-treated VFs showed improved morphological properties and viscoelasticity as compared to control VFs injected with phosphate-buffered saline solution. Histologic and immunohistochemical evaluations showed less excessive collagen deposition and increased density of glycosaminoglycans in the BM-cMSC-treated VFs as compared to the control VFs at 3 months after injury (p = 0.003 and p = 0.037, respectively). BM-cMSC transplantation led to a significant attenuation of fibronectin (p = 0.036) and transforming growth factor beta1 (p = 0.042) messenger RNA expression at 1 month after injury. Green fluorescent protein-expressing BM-cMSCs engrafted in recipient VFs were found at 1 month after implantation. CONCLUSIONS BM-cMSCs appeared to survive in the injured xenogeneic VFs after transplantation for up to 1 month and favorably enhanced the wound healing of VFs after injury. We conclude that BM-cMSCs are a possible source of cell therapy for vocal fold regeneration.
Collapse
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, the Clinical Research Center,Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lim JY, Yi T, Choi JS, Jang YH, Lee S, Kim HJ, Song SU, Kim YM. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol 2012; 49:136-43. [PMID: 22981389 DOI: 10.1016/j.oraloncology.2012.08.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVES External irradiation in head and neck cancers may induce irreversible hyposalivation and consequent xerostomia, stemming from radiation damage to salivary glands (SGs). As cell-based therapy has been reported to be able to repair or restore damaged SG tissues, we attempted to determine whether bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) can ameliorate irradiation-induced salivary gland damage via a murine model. METHODS External irradiation at a dose of 15Gy was delivered to the neck fields of C57BL/6 mice. We directly administered either homologous mouse BM-cMSCs labeled with PKH26 (treatment group) or PBS (control group) into SGs 24h after irradiation. Salivary flow rate (SFR) and lag time of salivation were measured at 12weeks after transplantation. At 4 and 12weeks post-transplantation, we performed morphological, histological, and immunofluorescent examinations. Transdifferentiation of administered BM-cMSCs into salivary epithelial cells was observed by confocal microscopy. RESULTS SFR was significantly increased in BM-cMSCs-transplanted mice compared with PBS-injected mice at 12weeks after transplantation. Administration of BM-cMSCs preserved the microscopic morphologies of SGs, with more functional acini in BM-cMSC-transplanted SGs than in PBS-injected SGs. Immunofluorescent staining revealed less apoptotic cells and increased microvessel density in BM-cMSC-transplanted SGs compared with PBS-injected SGs. PKH-26 labeled BM-cMSCs were detected in transplanted SGs at 4weeks after transplantation and in vivo transdifferentiation of BM-cMSCs into acinar cells was also observed. CONCLUSION This study suggests that BM-cMSCs can ameliorate salivary damage following irradiation and can be used as a source of cell-based therapy for restoration of irradiation-induced salivary hypofunction.
Collapse
Affiliation(s)
- Jae-Yol Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr 2012; 6:220-30. [PMID: 22863739 DOI: 10.4161/cam.20875] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.
Collapse
Affiliation(s)
- Benjamin G Cuiffo
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Eiró N, Vizoso FJ. Inflammation and cancer. World J Gastrointest Surg 2012; 4:62-72. [PMID: 22530080 PMCID: PMC3332223 DOI: 10.4240/wjgs.v4.i3.62] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/17/2011] [Accepted: 11/25/2011] [Indexed: 02/06/2023] Open
Abstract
There is evidence supporting the hypothesis that inflammation participates in providing conditions that lead to cancer. An unresolved inflammation due to any failure in the precise control of the immune response can continue to perturb the cellular microenvironment, thereby leading to alterations in cancer-related genes and posttranslational modification in crucial cellular proteins involved in the cell cycle, DNA repair and apoptosis. In addition, there are data indicating that inflammatory cells and immunomodulatory mediators present in the tumor microenvironment influence tumor progression and metastasis. Historically, tumor-infiltrating leukocytes have been considered to be manifestations of an intrinsic defence mechanism against developing tumors. However, increasing evidence indicates that leukocyte infiltration can promote tumor phenotypes, such as angiogenesis, growth and invasion. This may be due to inflammatory cells that probably can influence cancer promotion by secreting cytokines, growth factors, chemokines and proteases, which stimulate proliferation and invasiveness of cancer cells. Consequently, events and molecules implicated in this cross talk between the tumor microenvironment and inflammatory process may emerge as attractive targets in anticancer therapeutic interventions with significant clinical impact.
Collapse
Affiliation(s)
- Noemí Eiró
- Noemí Eiró, Francisco J Vizoso, Research Unit, Fundación Hospital de Jove, 33290 Gijón, Asturias, Spain
| | | |
Collapse
|
12
|
Horwitz EM, Maziarz RT, Kebriaei P. MSCs in hematopoietic cell transplantation. Biol Blood Marrow Transplant 2011; 17:S21-9. [PMID: 21195306 DOI: 10.1016/j.bbmt.2010.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Edwin M Horwitz
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia, and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
13
|
Kebriaei P, Robinson S. Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy 2011; 13:262-8. [DOI: 10.3109/14653249.2010.549688] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Mesenchymal stromal cells for steroid-refractory acute graft-versus-host disease: a report of two cases. Int J Hematol 2010; 92:204-7. [PMID: 20514533 DOI: 10.1007/s12185-010-0606-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Severe graft-versus-host disease (GVHD) is a lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). However, there have been only a few limited therapeutic options for the treatment of GVHD. Here we have reported two cases of the patients with acute steroid-refractory GVHD who underwent allogeneic HSCT. These patients received infusions of third-party clonal mesenchymal stem cells (cMSCs), which were isolated by a subfractionation culturing method (SCM) developed recently by our group, and showed marked improvement of the disease. MSCs represent a new potential therapeutic option in the treatment of steroid-refractory acute GVHD. They showed safety and improved clinical findings of the acute GVHD patients. However, further investigations are needed to understand the accurate mechanisms of MSCs and larger well-designed human clinical trials are necessary to prove further the safety and efficacy of the cMSCs for the treatment of acute GVHD patients.
Collapse
|
15
|
Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, Minev B, Ramos F, Woods EJ, Murphy MP, Alexandrescu DT, Patel AN, Riordan NH. Combination stem cell therapy for heart failure. Int Arch Med 2010; 3:5. [PMID: 20398245 PMCID: PMC3003238 DOI: 10.1186/1755-7682-3-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/14/2010] [Indexed: 02/07/2023] Open
Abstract
Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells.
Collapse
|
16
|
Kuçi S, Kuçi Z, Kreyenberg H, Deak E, Pütsch K, Huenecke S, Amara C, Koller S, Rettinger E, Grez M, Koehl U, Latifi-Pupovci H, Henschler R, Tonn T, von Laer D, Klingebiel T, Bader P. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 2010; 95:651-9. [PMID: 20179086 DOI: 10.3324/haematol.2009.015065] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Background In vitro proliferative and differentiation potential of mesenchymal stromal cells generated from CD271(+) bone marrow mononuclear cells (CD271-mesenchymal stromal cells) has been demonstrated in several earlier and recent reports. In the present study we focused, in addition to proliferative and differentiation potential, on in vitro and in vivo immunosuppressive and lymphohematopoietic engraftment-promoting potential of these mesenchymal stromal cells compared to bone marrow-derived mesenchymal stromal cells generated by plastic adherence (plastic adherence-mesenchymal stromal cells). DESIGN AND METHODS We set up a series of experimental protocols in order to determine the phenotype of CD271-mesenchymal stromal cells, and their clonogenic, proliferative, differentiation and immunosuppressive potential. The potential of CD271-mesenchymal stromal cells to improve the engraftment of CD133(+) hematopoietic stem cells at co-transplantation was evaluated in immunodeficient NOD/SCID-IL2Rgamma(null) mice. RESULTS In vitro studies demonstrated that CD271-mesenchymal stromal cells differentiate along adipogenic, osteogenic and chondrogenic lineages (trilineage potential), produce significantly higher levels of cytokines than plastic adherence-mesenchymal stromal cells, and significantly inhibit the proliferation of allogeneic T-lymphocytes in mixed lymphocyte reaction assays. Elevated levels of prostaglandin E(2), but not nitric monoxide, mediated the majority of this immunosuppressive effect. In vivo studies showed that CD271-mesenchymal stromal cells promoted significantly greater lymphoid engraftment than did plastic adherence-mesenchymal stromal cells when co-transplanted with CD133(+) hematopoietic stem cells at a ratio of 8:1 in immunodeficient NOD/SCID-IL2Rgamma(null) mice. They induced a 10.4-fold increase in the number of T cells, a 2.5-fold increase in the number of NK cells, and a 3.6-fold increase in the number of B cells, indicating a major qualitative difference between these two mesenchymal stromal cell populations. Conclusions Our results indicate that CD271 antigen provides a versatile marker for prospective isolation and expansion of multipotent mesenchymal stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. The co-transplantation of such cells together with hematopoietic stem cells in patients with hematologic malignancies may prove valuable in the prevention of impaired/delayed T-cell recovery and graft-versus-host disease.
Collapse
Affiliation(s)
- Selim Kuçi
- Department of Hematology/Oncology, University Children's Hospital III, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
18
|
Ichim TE, Harman RJ, Min WP, Minev B, Solano F, Rodriguez JP, Alexandrescu DT, De Necochea-Campion R, Hu X, Marleau AM, Riordan NH. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol 2010; 264:7-17. [DOI: 10.1016/j.cellimm.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 12/29/2022]
|
19
|
Auletta JJ, Cooke KR, Solchaga LA, Deans RJ, van't Hof W. Regenerative stromal cell therapy in allogeneic hematopoietic stem cell transplantation: current impact and future directions. Biol Blood Marrow Transplant 2009; 16:891-906. [PMID: 20018250 DOI: 10.1016/j.bbmt.2009.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/03/2009] [Indexed: 02/07/2023]
Abstract
Regenerative stromal cell therapy (RSCT) has the potential to become a novel therapy for preventing and treating acute graft-versus-host disease (GVHD) in the allogeneic hematopoietic stem cell transplant (HSCT) recipient. However, enthusiasm for using RSCT in allogeneic HSCT has been tempered by limited clinical data and poorly defined in vivo mechanisms of action. As a result, the full clinical potential of RSCT in supporting hematopoietic reconstitution and as treatment for GVHD remains to be determined. This manuscript reviews the immunomodulatory activity of regenerative stromal cells in preclinical models of allogeneic HSCT, and emphasizes an emerging literature suggesting that microenvironment influences RSC activation and function. Understanding this key finding may ultimately define the proper niche for RSCT in allogeneic HSCT. In particular, mechanistic studies are needed to delineate the in vivo effects of RSCT in response to inflammation and injury associated with allogeneic HSCT, and to define the relevant sites of RSC interaction with immune cells in the transplant recipient. Furthermore, development of in vivo imaging technology to correlate biodistribution patterns, desired RSC effect, and clinical outcome will be crucial to establishing dose-response effects and minimal biologic dose thresholds needed to advance translational treatment strategies for complications like GVHD.
Collapse
|
20
|
Lazzarotto-Silva C, Binato R, Rocher BD, Costa JACE, Pizzatti L, Bouzas LF, Abdelhay E. Similar proteomic profiles of human mesenchymal stromal cells from different donors. Cytotherapy 2009; 11:268-77. [PMID: 19333800 DOI: 10.1080/14653240902783268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AIMS Bone marrow (BM) stromal cells, also referred to as mesenchymal stromal cells (MSC), can be expanded ex vivo and are able to differentiate along multiple lineages, including chondrocytes, osteoblasts and adipocytes. MSC are known to secrete a number of cytokines and regulatory molecules implicated in different aspects of hematopoiesis, and seem to modulate the immune system. MSC appear to be promising candidates for cellular therapy associated with BM transplantation (BMT). METHODS We compared protein expression profiles of MSC cultures derived from different BM donors using two-dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) tandem mass spectrometry (MS/MS), and compared mixed lymphocyte reaction (MLR) assays in the absence and presence of third-party human (h) MSC derived from different donors during the same culture passage. RESULTS In a window of observation (pH 4-7, molecular weight 10-220 kDa), about 172 protein spots were obtained in each 2-D gel, corresponding to 84 distinct proteins. A comparative analysis demonstrated a very similar proteomic profile of cells of the first passage derived from different donors, suggesting that these cells have the same expression pattern. Additionally, cells derived from different donors were equally able to inhibit lymphocyte proliferation. CONCLUSIONS These results encourage the use of third-party MSC in cellular therapies, as cells derived from different individuals seem to have the same proteomic pattern and exhibit functionally similar properties.
Collapse
|
21
|
Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, Woods EJ, Reid M, Mansilla E, Marin GH, Drago H, Murphy MP, Minev B. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 2009; 7:15. [PMID: 19232091 PMCID: PMC2649897 DOI: 10.1186/1479-5876-7-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/20/2009] [Indexed: 01/08/2023] Open
Abstract
Endometrial Regenerative Cells (ERC) are a population of mesenchymal-like stem cells having pluripotent differentiation activity and ability to induce neoangiogenesis. In vitro and animal studies suggest ERC are immune privileged and in certain situations actively suppress ongoing immune responses. In this paper we describe the production of clinical grade ERC and initial safety experiences in 4 patients with multiple sclerosis treated intravenously and intrathecally. The case with the longest follow up, of more than one year, revealed no immunological reactions or treatment associated adverse effects. These preliminary data suggest feasibility of clinical ERC administration and support further studies with this novel stem cell type.
Collapse
|
22
|
Bone marrow transplantation: new approaches to immunosuppression and management of acute graft-versus-host disease. Curr Opin Pediatr 2009; 21:30-8. [PMID: 19242239 DOI: 10.1097/mop.0b013e3283207b2f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Acute graft-versus-host disease (GVHD) significantly limits the application and the success of allogeneic hematopoietic stem cell transplantation (HSCT). Novel therapies that target the aberrant immune response underlying GVHD are reviewed with particular emphasis on immunomodulatory agents currently incorporated into clinical trials. In addition, regenerative stromal cellular therapy (RSCT) is discussed as an emerging form of novel GVHD therapy. RECENT FINDINGS Knowledge for transplant immunology, particularly as it relates to underlying pathophysiology of GVHD, has dramatically increased over the last decade. As a result, new immunomodulatory therapies have been used to treat steroid-refractory GVHD. However, their success has been limited by their lack of clinical experience during HSCT as well as by their associated toxicity profiles. RSCT uniquely offers the potential to enhance donor-derived hematopoiesis and immunity and to ameliorate adverse sequelae associated with GVHD. SUMMARY An exciting era incorporating the use of cellular therapeutics during HSCT has arrived. As the experience and understanding for cellular therapies, in general, and RSCT, in particular, increases, so too will their success in benefiting the HSCT recipient beyond limitations of current pharmaceutical agents.
Collapse
|