1
|
Prasad R, Jung H, Tan A, Song Y, Moon S, Shaker MR, Sun W, Lee J, Ryu H, Lim HK, Jho EH. Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer's disease. Sci Rep 2021; 11:20075. [PMID: 34625606 PMCID: PMC8501037 DOI: 10.1038/s41598-021-99562-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aβ) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.
Collapse
Affiliation(s)
- Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hwajin Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yonghee Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sungho Moon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Sancho RM, Law BMH, Harvey K. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum Mol Genet 2009; 18:3955-68. [PMID: 19625296 PMCID: PMC2748899 DOI: 10.1093/hmg/ddp337] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.
Collapse
Affiliation(s)
- Rosa M Sancho
- Department of Pharmacology, The School of Pharmacy, Brunswick Square, London, UK
| | | | | |
Collapse
|
3
|
De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, Myers A, Sáez K, Henríquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, Morris CM, Hardy J, Moon RT. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad Sci U S A 2007; 104:9434-9. [PMID: 17517621 PMCID: PMC1890512 DOI: 10.1073/pnas.0603523104] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Indexed: 12/13/2022] Open
Abstract
Genome-wide linkage studies have defined a broad susceptibility region for late-onset Alzheimer's disease on chromosome 12, which contains the Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) gene, a coreceptor for Wnt signaling. Here, we report the association between common LRP6 variants and late-onset Alzheimer's disease in a multicenter case-control series as well as in a large family-based series ascertained by the National Institute of Mental Health-National Institute on Aging Genetics Initiative. As shown in the genome-wide linkage studies, our association depends mainly on apolipoprotein E-epsilon4 (APOE-epsilon4) carrier status. Haplotype tagging single-nucleotide polymorphisms (SNPs) with a set of seven allelic variants of LRP6 identified a putative risk haplotype, which includes a highly conserved coding sequence SNP: Ile-1062 --> Val. Functional analyses revealed that the associated allele Val-1062, an allele previously linked to low bone mass, has decreased beta-catenin signaling in HEK293T cells. Our study unveils a genetic relationship between LRP6 and APOE and supports the hypothesis that altered Wnt/beta-catenin signaling may be involved in this neurodegenerative disease.
Collapse
Affiliation(s)
- Giancarlo V. De Ferrari
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
- Departamentos de Bioquímica y Biología Molecular
| | - Andreas Papassotiropoulos
- Division of Molecular Psychology and Life Sciences Training Facility, Biozentrum, University of Basel, 4055 Basel, Switzerland
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Travis Biechele
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Fabienne Wavrant De-Vrieze
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Michael B. Major
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Amanda Myers
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Juan P. Henríquez
- Biología Celular, Universidad de Concepción, P.O. Box 160-C Concepción 4089100, Chile
| | - Alice Zhao
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | - M. Axel Wollmer
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Roger M. Nitsch
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Christoph Hock
- Division of Psychiatry Research, University of Zurich, Lenggstrasse 31, 8029 Zurich, Switzerland
| | - Chris M. Morris
- Institute for Aging and Health, MRC Building, Newcastle General Hospital, Newcastle-upon-Tyne NE4 6BE, United Kingdom
| | - John Hardy
- **Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892; and
| | - Randall T. Moon
- *Howard Hughes Medical Institute and
- Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|