1
|
Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2018; 177:267-273. [PMID: 28544755 DOI: 10.1002/ajmg.b.32547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made to characterize RGS4 as a potential candidate gene for schizophrenia. Investigations span across numerous modalities and include explorations of genetic risk associations, mRNA and protein levels in the brain, and functionally relevant interactions with other candidate genes as well as links to schizophrenia relevant neural phenotypes. While these lines of investigations have yielded partially inconsistent findings, they provide a perspective on RGS4 as an important part of a larger biological system contributing to schizophrenia risk. This gene-based review aims to provide a comprehensive overview of published data from different experimental modalities and discusses the current knowledge of RGS4's systems-biological impact on the schizophrenia pathology.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Medical Faculty Mannheim, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Buchheim A, Erk S, George C, Kächele H, Martius P, Pokorny D, Spitzer M, Walter H. Neural Response during the Activation of the Attachment System in Patients with Borderline Personality Disorder: An fMRI Study. Front Hum Neurosci 2016; 10:389. [PMID: 27531977 PMCID: PMC4969290 DOI: 10.3389/fnhum.2016.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Individuals with borderline personality disorder (BPD) are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging (fMRI). Eleven female patients with BPD without posttraumatic stress disorder (PTSD) and 17 healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System (AAP), an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for 2 min. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex (DLPFC) and the rostral cingulate zone (RCZ). We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.
Collapse
Affiliation(s)
- Anna Buchheim
- Institute of Psychology, University of Innsbruck Innsbruck, Austria
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, University Hospital Charité Berlin, Germany
| | - Carol George
- Department of Psychology, Mills College Oakland, CA, USA
| | - Horst Kächele
- International Psychoanalytic University Berlin Berlin, Germany
| | | | - Dan Pokorny
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm Ulm, Germany
| | - Manfred Spitzer
- Department of Psychiatry III, University of Ulm Ulm, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, University Hospital Charité Berlin, Germany
| |
Collapse
|
3
|
Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach. Dev Psychopathol 2016; 27:587-613. [PMID: 25997774 DOI: 10.1017/s0954579415000188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.
Collapse
|
4
|
Williams SM. Epistasis in the risk of human neuropsychiatric disease. Methods Mol Biol 2015; 1253:71-93. [PMID: 25403528 DOI: 10.1007/978-1-4939-2155-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuropsychiatric disease represents the ideal class of disease to assess the role of epistasis, as more genes are expressed in the brain than in any other tissue. In this chapter, two well-studied neuropsychiatric diseases are examined, Alzheimer's disease (AD) and schizophrenia, which have been shown to have multiple and, often, replicated interactions that associate with clinical endpoints or related phenotypes. In each case, a single gene is represented in a plurality of epistatic interactions, apolipoprotein E (APOE) for AD and catechol-O-methyltransferase for schizophrenia. Interestingly, of the two, only APOE has clear-cut and consistent evidence for a marginal association. Unraveling the underlying reasons is important in understanding both genetic etiology and architecture as well as how to use genetics to provide better personalized treatments.
Collapse
Affiliation(s)
- Scott M Williams
- Department of Genetics, Institute of Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, 78 College ST, HB 6044, Hanover, NH, 03755, USA,
| |
Collapse
|
5
|
Birnbaum R, Weinberger DR. Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24174900 PMCID: PMC3811100 DOI: 10.31887/dcns.2013.15.3/rbirnbaum] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review critical trends in imaging genetics as applied to schizophrenia research, and then discuss some future directions of the field. A plethora of imaging genetics studies have investigated the impact of genetic variation on brain function, since the paradigm of a neuroimaging intermediate phenotype for schizophrenia first emerged. It was initially posited that the effects of schizophrenia susceptibility genes would be more penetrant at the level of biologically based neuroimaging intermediate phenotypes than at the level of a complex and phenotypically heterogeneous psychiatric syndrome. The results of many studies support this assumption, most of which show single genetic variants to be associated with changes in activity of localized brain regions, as determined by select cognitive controlled tasks. From these basic studies, functional neuroimaging analysis of intermediate phenotypes has progressed to more complex and realistic models of brain dysfunction, incorporating models of functional and effective connectivity, including the modalities of psycho-physiological interaction, dynamic causal modeling, and graph theory metrics. The genetic association approaches applied to imaging genetics have also progressed to more sophisticated multivariate effects, including incorporation of two-way and three-way epistatic interactions, and most recently polygenic risk models. Imaging genetics is a unique and powerful strategy for understanding the neural mechanisms of genetic risk for complex CNS disorders at the human brain level.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus (Rebecca Birnbaum, Daniel R. Weinberger); Johns Hopkins School of Medicine, Department of Psychiatry, Baltimore, Maryland, USA
| | | |
Collapse
|
6
|
Schmahl C, Herpertz SC, Bertsch K, Ende G, Flor H, Kirsch P, Lis S, Meyer-Lindenberg A, Rietschel M, Schneider M, Spanagel R, Treede RD, Bohus M. Mechanisms of disturbed emotion processing and social interaction in borderline personality disorder: state of knowledge and research agenda of the German Clinical Research Unit. Borderline Personal Disord Emot Dysregul 2014; 1:12. [PMID: 26401296 PMCID: PMC4579501 DOI: 10.1186/2051-6673-1-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/22/2014] [Indexed: 12/15/2022] Open
Abstract
The last two decades have seen a strong rise in empirical research in the mechanisms of emotion dysregulation in borderline personality disorder. Major findings comprise structural as well as functional alterations of brain regions involved in emotion processing, such as amygdala, insula, and prefrontal regions. In addition, more specific mechanisms of disturbed emotion regulation, e.g. related to pain and dissociation, have been identified. Most recently, social interaction problems and their underlying neurobiological mechanisms, e.g. disturbed trust or hypersensitivity to social rejection, have become a major focus of BPD research. This article covers the current state of knowledge and related relevant research goals. The first part presents a review of the literature. The second part delineates important open questions to be addressed in future studies. The third part describes the research agenda for a large German center grant focusing on mechanisms of emotion dysregulation in BPD.
Collapse
Affiliation(s)
- Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center of Psychosocial Medicine, Medical Faculty Heidelberg / Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center of Psychosocial Medicine, Medical Faculty Heidelberg / Heidelberg University, Heidelberg, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Institute of Neuropsychology and Clinical Psychology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, J 5, 68159 Mannheim, Germany
| |
Collapse
|
7
|
Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A, Ho BC, Sponheim SR, Calhoun VD, Ehrlich S. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 2013; 39:703-11. [PMID: 22267534 PMCID: PMC3627773 DOI: 10.1093/schbul/sbr190] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 12/27/2022]
Abstract
The lack of consistency of genetic associations in highly heritable mental illnesses, such as schizophrenia, remains a challenge in molecular psychiatry. Because clinical phenotypes for psychiatric disorders are often ill defined, considerable effort has been made to relate genetic polymorphisms to underlying physiological aspects of schizophrenia (so called intermediate phenotypes), that may be more reliable. Given the polygenic etiology of schizophrenia, the aim of this work was to form a measure of cumulative genetic risk and study its effect on neural activity during working memory (WM) using functional magnetic resonance imaging. Neural activity during the Sternberg Item Recognition Paradigm was measured in 79 schizophrenia patients and 99 healthy controls. Participants were genotyped, and a genetic risk score (GRS), which combined the additive effects of 41 single-nucleotide polymorphisms (SNPs) from 34 risk genes for schizophrenia, was calculated. These risk SNPs were chosen according to the continuously updated meta-analysis of genetic studies on schizophrenia available at www.schizophreniaresearchforum.org. We found a positive relationship between GRS and left dorsolateral prefrontal cortex inefficiency during WM processing. GRS was not correlated with age, performance, intelligence, or medication effects and did not differ between acquisition sites, gender, or diagnostic groups. Our study suggests that cumulative genetic risk, combining the impact of many genes with small effects, is associated with a known brain-based intermediate phenotype for schizophrenia. The GRS approach could provide an advantage over studying single genes in studies focusing on the genetic basis of polygenic conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- Esther Walton
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Dara S. Manoach
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Anastasia Yendiki
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Scott R. Sponheim
- Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Stefan Ehrlich
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
8
|
Bogdan R, Hyde LW, Hariri AR. A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol Psychiatry 2013; 18:288-99. [PMID: 22614291 DOI: 10.1038/mp.2012.35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurogenetics research has begun to advance our understanding of how genetic variation gives rise to individual differences in brain function, which, in turn, shapes behavior and risk for psychopathology. Despite these advancements, neurogenetics research is currently confronted by three major challenges: (1) conducting research on individual variables with small effects, (2) absence of detailed mechanisms, and (3) a need to translate findings toward greater clinical relevance. In this review, we showcase techniques and developments that address these challenges and highlight the benefits of a neurogenetics approach to understanding brain, behavior and psychopathology. To address the challenge of small effects, we explore approaches including incorporating the environment, modeling epistatic relationships and using multilocus profiles. To address the challenge of mechanism, we explore how non-human animal research, epigenetics research and genome-wide association studies can inform our mechanistic understanding of behaviorally relevant brain function. Finally, to address the challenge of clinical relevance, we examine how neurogenetics research can identify novel therapeutic targets and for whom treatments work best. By addressing these challenges, neurogenetics research is poised to exponentially increase our understanding of how genetic variation interacts with the environment to shape the brain, behavior and risk for psychopathology.
Collapse
Affiliation(s)
- R Bogdan
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27705, USA.
| | | | | |
Collapse
|
9
|
Arts B, Simons CJP, Drukker M, van Os J. Antipsychotic medications and cognitive functioning in bipolar disorder: moderating effects of COMT Val108/158 Met genotype. BMC Psychiatry 2013; 13:63. [PMID: 23421957 PMCID: PMC3583705 DOI: 10.1186/1471-244x-13-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 02/08/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is a negative association between the use of antipsychotics and cognitive functioning in bipolar patients, which may be mediated by altered dopamine signaling in selected brain areas, and moderation thereof by genetic sequence variation such as COMT Val108/158Met. The interaction between antipsychotic drug use and the COMT Val108/158Met genotype on two-year cognitive functioning in bipolar patients was examined. METHODS Interaction between the COMT Val108/158Met and antipsychotics on a composite cognitive measure was examined in 51 bipolar patients who were assessed 12 times at two-monthly intervals over a period of two years (379 observations). RESULTS There was a significant negative effect of the interaction between antipsychotic medications and Val allele load on the composite cognitive measure in bipolar patients (p < 0.001). CONCLUSIONS The negative effects of antipsychotics on cognitive functioning in bipolar disorder may be moderated by the COMT Val 108/158 Met genotype, with a negative effect of Val allele load. If replicated, the results may be indicative of pharmacogenetic interactions in bipolar disorder.
Collapse
Affiliation(s)
- Baer Arts
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Centre, P,O, Box 616 (DRT 12), Maastricht, MD, 6200, The Netherlands.
| | - Claudia JP Simons
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Centre, P.O. Box 616 (DRT 12), Maastricht, MD, 6200, The Netherlands,GGZE, Institute for Mental Health Care Eindhoven en de Kempen, P.O. Box 909, Eindhoven, AX, 5600, The Netherlands
| | - Marjan Drukker
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Centre, P.O. Box 616 (DRT 12), Maastricht, MD, 6200, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Centre, P.O. Box 616 (DRT 12), Maastricht, MD, 6200, The Netherlands,King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
10
|
Bogdan R, Nikolova YS, Pizzagalli DA. Neurogenetics of depression: a focus on reward processing and stress sensitivity. Neurobiol Dis 2012; 52:12-23. [PMID: 22659304 DOI: 10.1016/j.nbd.2012.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022] Open
Abstract
Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
11
|
Domschke K, Baune BT, Havlik L, Stuhrmann A, Suslow T, Kugel H, Zwanzger P, Grotegerd D, Sehlmeyer C, Arolt V, Dannlowski U. Catechol-O-methyltransferase gene variation: Impact on amygdala response to aversive stimuli. Neuroimage 2012; 60:2222-9. [DOI: 10.1016/j.neuroimage.2012.02.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/05/2012] [Accepted: 02/15/2012] [Indexed: 12/19/2022] Open
|
12
|
Hyde LW, Bogdan R, Hariri AR. Understanding risk for psychopathology through imaging gene-environment interactions. Trends Cogn Sci 2011; 15:417-27. [PMID: 21839667 PMCID: PMC3163727 DOI: 10.1016/j.tics.2011.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 02/01/2023]
Abstract
Examining the interplay of genes, experience and the brain is crucial to understanding psychopathology. We review the recent gene-environment interaction (G×E) and imaging genetics literature with the goal of developing models to bridge these approaches within single imaging gene-environment interaction (IG×E) studies. We explore challenges inherent in both G×E and imaging genetics and highlight studies that address these limitations. In specifying IG×E models, we examine statistical methods for combining these approaches, and explore plausible biological mechanisms (e.g. epigenetics) through which these conditional mechanisms can be understood. Finally, we discuss the potential contribution that IG×E studies can make to understanding psychopathology and developing more personalized and effective prevention and treatment.
Collapse
Affiliation(s)
- Luke W Hyde
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, 210 South Bouquet St, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
13
|
Nikolova YS, Ferrell RE, Manuck SB, Hariri AR. Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 2011; 36:1940-7. [PMID: 21593733 PMCID: PMC3154113 DOI: 10.1038/npp.2011.82] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/25/2011] [Accepted: 04/15/2011] [Indexed: 12/15/2022]
Abstract
Research integrating neuroimaging and molecular genetics has yielded important insights into how variability in brain chemistry predicts individual differences in brain function, behavior and related risk for psychopathology. However, existing studies have been limited by their focus on the independent effects of single polymorphisms with modest impact on brain chemistry. Here, we explored the effects of five functional polymorphisms affecting dopamine (DA) signaling on reward-related ventral striatum (VS) reactivity, measured with BOLD fMRI, in a sample of 69 Caucasians. We also compiled individual multilocus genetic profile scores reflecting the additive effects of alleles conferring relatively increased DA signaling across the five polymorphic loci: DAT1 9-repeat, DRD4 7-repeat, DRD2 -141C Del, DRD2 Taq1A C (A2), and COMT (158)Met. These multilocus DA profile scores accounted for 10.9% of the inter-individual variability in reward-related VS reactivity. In contrast, none of the individual polymorphisms accounted for significant variability. Our results show that biologically informed multilocus genetic profiles have unique promise as indices of variability in brain chemistry that may yield advances in mapping individual differences in behaviorally relevant brain function. In turn, such genetic profiles may fuel gene-environment interactions research establishing trajectories of risk for psychopathology.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Abstract
Recent years have seen an explosive growth of interest in the application of imaging genetics to understand neurogenetic mechanisms of schizophrenia. Imaging genetics applies structural and functional neuroimaging to study subjects carrying genetic risk variants that relate to a psychiatric disorder. We review selected aspects of this literature, starting with a widely studied candidate gene--the catechol-O-methyltransferase gene (COMT)--discussing other candidate genes in the dopaminergic system, and then discussing variants with genome-wide support. In future perspectives, approaches to characterize epistatic effects, the identification of new risk genes through forward-genetic approaches using imaging phenotypes, and the study of rare structural variants are considered.
Collapse
|
15
|
Li Z, Mulligan MK, Wang X, Miles MF, Lu L, Williams RW. A transposon in Comt generates mRNA variants and causes widespread expression and behavioral differences among mice. PLoS One 2010; 5:e12181. [PMID: 20808911 PMCID: PMC2923157 DOI: 10.1371/journal.pone.0012181] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT) is a key enzyme responsible for the degradation of dopamine and norepinephrine. COMT activity influences cognitive and emotional states in humans and aggression and drug responses in mice. This study identifies the key sequence variant that leads to differences in Comt mRNA and protein levels among mice, and that modulates synaptic function and pharmacological and behavioral traits. METHODOLOGY/PRINCIPAL FINDINGS We examined Comt expression in multiple tissues in over 100 diverse strains and several genetic crosses. Differences in expression map back to Comt and are generated by a 230 nt insertion of a B2 short interspersed element (B2 SINE) in the proximal 3' UTR of Comt in C57BL/6J. This transposon introduces a premature polyadenylation signal and creates a short 3' UTR isoform. The B2 SINE is shared by a subset of strains, including C57BL/6J, A/J, BALB/cByJ, and AKR/J, but is absent in others, including DBA/2J, FVB/NJ, SJL/J, and wild subspecies. The short isoform is associated with increased protein expression in prefrontal cortex and hippocampus relative to the longer ancestral isoform. The Comt variant causes downstream differences in the expression of genes involved in synaptic function, and also modulates phenotypes such as dopamine D1 and D2 receptor binding and pharmacological responses to haloperidol. CONCLUSIONS/SIGNIFICANCE We have precisely defined the B2 SINE as the source of variation in Comt and demonstrated that a transposon in a 3' UTR can alter mRNA isoform use and modulate behavior. The recent fixation of the variant in a subset of strains may have contributed to the rapid divergence of inbred strains.
Collapse
Affiliation(s)
- Zhengsheng Li
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Megan K. Mulligan
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michael F. Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
16
|
Strohmaier J, Frank J, Wendland JR, Schumacher J, Jamra RA, Treutlein J, Nieratschker V, Breuer R, Mattheisen M, Herms S, Mühleisen TW, Maier W, Nöthen MM, Cichon S, Rietschel M, Schulze TG. A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case-control and family-based sample of German ancestry. Schizophr Res 2010; 118:98-105. [PMID: 20083391 PMCID: PMC2856768 DOI: 10.1016/j.schres.2009.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/08/2009] [Accepted: 12/20/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Dysbindin (DTNBP1) is a widely studied candidate gene for schizophrenia (SCZ); however, inconsistent results across studies triggered skepticism towards the validity of the findings. In this HapMap-based study, we reappraised the association between Dysbindin and SCZ in a large sample of German ethnicity. METHOD Six hundred thirty-four cases with DSM-IV SCZ, 776 controls, and 180 parent-offspring trios were genotyped for 38 Dysbindin SNPs. We also studied two phenotypically-defined subsamples: 147 patients with a positive family history of SCZ (FH-SCZ+) and SCZ patients characterized for cognitive performance with Trail-Making Tests A and B (TMT-A: n=219; TMT-B: n=247). Given previous evidence of gene-gene interactions in SCZ involving the COMT gene, we also assessed epistatic interactions between Dysbindin markers and 14 SNPs in COMT. RESULTS No association was detected between Dysbindin markers and SCZ, or in the FH-SCZ+ subgroup. Only one marker (rs1047631, previously reported to be part of a risk haplotype), showed a nominally significant association with performance on TMT-A and TMT-B; these findings did not remain significant after correction for multiple comparisons. Similarly, no pair-wise epistatic interactions between Dysbindin and COMT markers remained significant after correction for 504 pair-wise comparisons. CONCLUSIONS Our results, based on one of the largest samples of European Caucasians and using narrowly-defined criteria for SCZ, do not support the etiological involvement of Dysbindin markers in SCZ. Larger samples may be needed in order to unravel Dysbindin's possible role in the genetic basis of proposed intermediate phenotypes of SCZ or to detect epistatic interactions.
Collapse
Affiliation(s)
- Jana Strohmaier
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Josef Frank
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Jens R. Wendland
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| | - Johannes Schumacher
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Vanessa Nieratschker
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - René Breuer
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas W. Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas G. Schulze
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
Abstract
After decades of research aimed at elucidating the pathophysiology and etiology of schizophrenia, it has become increasingly apparent that it is an illness knowing few boundaries. Psychopathological manifestations extend across several domains, impacting multiple facets of real-world functioning for the affected individual. Even within one such domain, arguably the most enduring, difficult to treat, and devastating to long-term functioning-executive impairment-there are not only a host of disrupted component processes, but also a complex underlying dysfunctional neural architecture. Further, just as implicated brain structures (eg, dorsolateral prefrontal cortex) through postmortem and neuroimaging techniques continue to show alterations in multiple, interacting signaling pathways, so too does evolving understanding of genetic risk factors suggest multiple molecular entry points to illness liability. With this expansive network of interactions in mind, the present chapter takes a systems-level approach to executive dysfunction in schizophrenia, by identifying key regions both within and outside of the frontal lobes that show changes in schizophrenia and are important in cognitive control neural circuitry, summarizing current knowledge of their relevant functional interactions, and reviewing emerging links between schizophrenia risk genetics and characteristic executive circuit aberrancies observed with neuroimaging methods.
Collapse
|
18
|
Puls I, Mohr J, Wrase J, Vollstädt-Klein S, Leménager T, Vollmert C, Rapp M, Obermayer K, Heinz A, Smolka MN. A model comparison of COMT effects on central processing of affective stimuli. Neuroimage 2009; 46:683-91. [DOI: 10.1016/j.neuroimage.2009.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/31/2009] [Accepted: 02/17/2009] [Indexed: 01/15/2023] Open
|
19
|
van Os J, Rutten BPF, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 2008; 34:1066-82. [PMID: 18791076 PMCID: PMC2632485 DOI: 10.1093/schbul/sbn117] [Citation(s) in RCA: 424] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170-9). Although findings of epidemiological gene-environment interaction (G x E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables "thrown in": G x E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G x E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as "sensitization" of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional elucidation of underlying mechanisms using a combination of functional enviromics and functional genomics.
Collapse
Affiliation(s)
- Jim van Os
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Centre, EURON, SEARCH, Maastricht, The Netherlands.
| | - Bart PF Rutten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Centre, EURON, SEARCH, PO Box 616 (location DOT 10), Maastricht, 6200 MD, The Netherlands
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, PO Box 913, Dunedin, New Zealand
| |
Collapse
|
20
|
Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev Psychopathol 2008; 20:1297-327. [DOI: 10.1017/s095457940800062x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractSchizophrenia has been thought of as a disorder of reduced functional and structural connectivity. Recent advances in neuroimaging techniques such as functional magnetic resonance imaging, structural magnetic resonance imaging, diffusion tensor imaging, and small animal imaging have advanced our ability to investigate this hypothesis. Moreover, the power of longitudinal designs possible with these noninvasive techniques enable the study of not just how connectivity is disrupted in schizophrenia, but when this disruption emerges during development. This article reviews genetic and neurodevelopmental influences on structural and functional connectivity in human populations with or at risk for schizophrenia and in animal models of the disorder. We conclude that the weight of evidence across these diverse lines of inquiry points to a developmental disruption of neural connectivity in schizophrenia and that this disrupted connectivity likely involves susceptibility genes that affect processes involved in establishing intra- and interregional connectivity.
Collapse
|
21
|
Aleman A, Swart M, van Rijn S. Brain imaging, genetics and emotion. Biol Psychol 2008; 79:58-69. [DOI: 10.1016/j.biopsycho.2008.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/21/2008] [Accepted: 01/21/2008] [Indexed: 12/16/2022]
|
22
|
Abstract
Complex genetic disorders such as depression likely exhibit epistasis, but neural mechanisms of such gene-gene interactions are incompletely understood. 5-HTTLPR and BDNF VAL66MET, functional polymorphisms of the serotonin (5-HT) transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene, impact on two distinct, but interacting signaling systems, which have been related to depression and to the modulation of neurogenesis and plasticity of circuitries of emotion processing. Recent clinical studies suggest that the BDNF MET allele, which shows abnormal intracellular trafficking and regulated secretion, has a protective effect regarding the development of depression and in mice of social defeat stress. Here we show, using anatomical neuroimaging techniques in a sample of healthy subjects (n=111), that the BDNF MET allele, which is predicted to have reduced responsivity to 5-HT signaling, protects against 5-HTTLPR S allele-induced effects on a brain circuitry encompassing the amygdala and the subgenual portion of the anterior cingulate (rAC). Our analyses revealed no effect of the 5-HTTLPR S allele on rAC volume in the presence of BDNF MET alleles, whereas a significant volume reduction (P<0.001) was seen on BDNF VAL/VAL background. Interacting genotype effects were also found in structural connectivity between amygdala and rAC (P=0.002). These data provide in vivo evidence of biologic epistasis between SLC6A4 and BDNF in the human brain by identifying a neural mechanism linking serotonergic and neurotrophic signaling on the neural systems level, and have implications for personalized treatment planning in depression.
Collapse
|
23
|
Amygdala responses to emotional faces in twins discordant or concordant for the risk for anxiety and depression. Neuroimage 2008; 41:544-52. [DOI: 10.1016/j.neuroimage.2008.01.053] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/20/2022] Open
|
24
|
Tan HY, Callicott JH, Weinberger DR. Intermediate phenotypes in schizophrenia genetics redux: is it a no brainer? Mol Psychiatry 2008; 13:233-8. [PMID: 18285755 DOI: 10.1038/sj.mp.4002145] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|