1
|
Allen J, Wang J, Zolotarskaya OY, Sule A, Mohammad S, Arslan S, Wynne KJ, Yang H, Valerie K. PEAMOtecan, a novel chronotherapeutic polymeric drug for brain cancer. J Control Release 2020; 321:36-48. [PMID: 32027939 DOI: 10.1016/j.jconrel.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and difficult to treat form of brain cancer. In this work, we report on a novel chronotherapeutic polymeric drug, PEAMOtecan, for GBM therapy. PEAMOtecan was synthesized by conjugating camptothecin, a topoisomerase I inhibitor, to our proprietary, 'clickable' and modular polyoxetane polymer platform consisting of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (EAMO) repeat units (Patent No.: US 9,421,276) via the linker 3,3'-dithiodipropionic acid (DDPA) with a disulfide bond (SS) extended by short-chain polyethylene glycol (PEG). We show that PEAMOtecan is a highly modular polymer nanoformulation that protects covalently bound CPT until slowly being released over extended periods of time dependent on the cleavage of the disulfide and ester linkages. PEAMOtecan kills glioma cells by mitotic catastrophe with p53 mutant/knockdown cells being more sensitive than matched wild type cells potentially providing cancer-specific targeting. To establish proof-of-principle therapeutic effects, we tested PEAMOtecan as monotherapy for efficacy in a mouse orthotopic glioma model. PEAMOtecan was administered by one-time, convection-enhanced delivery (CED) intra-tumorally to achieve superior distribution and extended drug release over time. In addition, the near-infrared (NIR) dye Cy5.5 was coupled to the polymer providing live-animal imaging capability to track tissue distribution and clearance of the injected polymer over time. We show that PEAMOtecan significantly improves the survival of mice harboring intra-cranial tumors (p = .0074 compared to untreated group). Altogether, these results support further development and testing of our nanoconjugate platform.
Collapse
Affiliation(s)
- Jasmine Allen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Juan Wang
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Olga Yu Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Sajjad Mohammad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Shukaib Arslan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| |
Collapse
|
2
|
Barthel FP, Johnson KC, Wesseling P, Verhaak RGW. Evolving Insights into the Molecular Neuropathology of Diffuse Gliomas in Adults. Neurol Clin 2019; 36:421-437. [PMID: 30072063 DOI: 10.1016/j.ncl.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent advances in molecular analysis and genome sequencing have prompted a paradigm shift in neuropathology. This article discusses the discovery and clinical relevance of molecular biomarkers in diffuse gliomas in adults and how these biomarkers led to revision of the World Health Organization classification of these tumors. We relate progress in clinical classification to an overview of studies using molecular profiling to study gene expression and DNA methylation to categorize diffuse gliomas in adults and issues dealing with intratumoral heterogeneity. These efforts will refine the taxonomy of diffuse gliomas, facilitate selection of appropriate treatment regimens, and ultimately improve patient's lives.
Collapse
Affiliation(s)
- Floris P Barthel
- Department of Pathology, VU University Medical Center, Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Brain Tumor Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA.
| |
Collapse
|
3
|
Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol 2018; 135:649-670. [PMID: 29616301 PMCID: PMC5904231 DOI: 10.1007/s00401-018-1842-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
4
|
p16 deficiency promotes nonalcoholic steatohepatitis via regulation of hepatic oxidative stress. Biochem Biophys Res Commun 2017; 486:264-269. [DOI: 10.1016/j.bbrc.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 01/22/2023]
|
5
|
Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors. Clin Exp Med 2015; 16:147-59. [PMID: 25794494 DOI: 10.1007/s10238-015-0344-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
Abstract
The human thymus supports the production of self-tolerant T cells with competent and regulatory functions. Various cellular components of the thymic microenvironment such as thymic epithelial cells (TEC) and dendritic cells play essential roles in thymic T cell differentiation. The multiple cellular events occurring during thymic T cell and TEC differentiation involve proteins regulating cell cycle and apoptosis. Dysregulation of the cell cycle and apoptosis networks is involved in the pathogenesis of thymic epithelial tumors (TET) which are divided into two broad categories, thymomas and thymic carcinomas. The present review focuses on the usefulness of the analysis of the expression patterns of major cell cycle and apoptosis regulators in order to gain insight in the histophysiology of thymus and the histopathology, the clinical behavior and the biology of TET.
Collapse
|
6
|
Marthandan S, Priebe S, Hemmerich P, Klement K, Diekmann S. Long-term quiescent fibroblast cells transit into senescence. PLoS One 2014; 9:e115597. [PMID: 25531649 PMCID: PMC4274099 DOI: 10.1371/journal.pone.0115597] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development.
Collapse
Affiliation(s)
- Shiva Marthandan
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Steffen Priebe
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Karolin Klement
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
| | - Stephan Diekmann
- Leibniz-Institute for Age Research- Fritz Lipmann Institute, JenAge (Jena Centre for Systems Biology of Aging), Beutenbergstrasse 11, Jena, Germany
- * E-mail:
| |
Collapse
|
7
|
Jang DH, Bhawal UK, Min HK, Kang HK, Abiko Y, Min BM. A Transcriptional Roadmap to the Senescence and Differentiation of Human Oral Keratinocytes. ACTA ACUST UNITED AC 2014; 70:20-32. [DOI: 10.1093/gerona/glt212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NCK, Tokarz M, Adams BR, Wagner AF, Khalil A, Gilfor D, Golding SE, Deb S, Temesi DG, Lau A, O'Connor MJ, Choe KS, Parada LF, Lim SK, Mukhopadhyay ND, Valerie K. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res 2013; 19:3189-200. [PMID: 23620409 DOI: 10.1158/1078-0432.ccr-12-3408] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance. Ataxia-telangiectasia mutated (ATM) is an excellent target for radiosensitizing GBM because of its critical role in regulating the DNA damage response and p53, among other cellular processes. As a first step toward this goal, we recently showed that the novel ATM kinase inhibitor KU-60019 reduced migration, invasion, and growth, and potently radiosensitized human glioma cells in vitro. EXPERIMENTAL DESIGN Using orthotopic xenograft models of GBM, we now show that KU-60019 is also an effective radiosensitizer in vivo. Human glioma cells expressing reporter genes for monitoring tumor growth and dispersal were grown intracranially, and KU-60019 was administered intratumorally by convection-enhanced delivery or osmotic pump. RESULTS Our results show that the combined effect of KU-60019 and radiation significantly increased survival of mice 2- to 3-fold over controls. Importantly, we show that glioma with mutant p53 is much more sensitive to KU-60019 radiosensitization than genetically matched wild-type glioma. CONCLUSIONS Taken together, our results suggest that an ATM kinase inhibitor may be an effective radiosensitizer and adjuvant therapy for patients with mutant p53 brain cancers.
Collapse
Affiliation(s)
- Laura Biddlestone-Thorpe
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lu Y, Zhang X, Zhang J. Inhibition of Breast Tumor Cell Growth by Ectopic Expression of p16/INK4A Via Combined Effects of Cell Cycle Arrest, Senescence and Apoptotic Induction, and Angiogenesis Inhibition. J Cancer 2012; 3:333-44. [PMID: 22866168 PMCID: PMC3408698 DOI: 10.7150/jca.4046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022] Open
Abstract
p16-mediated inhibition of cancer cell proliferation and tumor suppression have been studied before,; the common consensus is that p16's cell-cycle arrest function plays a primary role in these actions, with some additional apoptotic induction by p16. However, other effects of p16 that may potentially contribute to p16-mediated anti-tumor ability have not been well studied. The emerging data including ours indicated that p16 contributes its anti-cancer ability by inducing tumor cells to senescence. Moreover, we showed that p16 inhibits breast cancer cell growth by inhibiting the VEGF signaling pathway and angiogenesis. In this study, we used adenoviral-mediated p16 expression (AdRSVp16) and breast cancer cell line MDA-MB-231 as the model to simultaneously analyze all these p16's anti-tumor functions. We demonstrated that adenoviral-mediated p16 expression exhibited multiple anti-tumor functions by simultaneously suppressing in vitro growth and in vivo angiogenesis of breast cancer cells, blocking cell division, as well as inducing senescence and apoptosis. The in vivo study implies that p16's effect on anti-angiogenesis may play a more significant role than its anti-cell proliferation in the overall suppression of tumor growth. These results suggest, for the first time, that AdRSVp16-mediated tumor suppression results from a combination of p16's multiple anti-tumor functions including p16's well-known anti-proliferation/cell division function, apoptotic and senescence induction function, and its lesser-known/under-investigated anti-angiogenesis function. These combined results strongly indicate that p16 gene therapy has a multi-module platform with different anti-tumor functions; therefore, this study justifies and promotes the viral-mediated p16 gene therapy as a promising and powerful treatment approach for cancer patients due to p16's multiple anti-tumor functions.
Collapse
Affiliation(s)
- Yi Lu
- 1. Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | |
Collapse
|
10
|
Noguchi A, Ito N, Sawa H, Nagane M, Hara M, Saito I. Phenotypic changes associated with exogenous expression of p16INK4a in human glioma cells. Brain Tumor Pathol 2012; 18:73-81. [PMID: 11908877 DOI: 10.1007/bf02479419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The tumor suppressor p16/CDKN2A/INK4a gene is frequently mutated, mostly by homozygous deletions in high-grade gliomas. Although the p16 protein suppresses cell proliferation primarily through inhibition of cell-cycle progression at the G1 phase, other phenotypic changes in glioma cells associated with p16INK4a alterations have not been fully described. To determine the roles of p16 alterations in glioma formation, we have established ecdysone-driven inducible p16 expression in the human glioblastoma cell line CL-4, which were derived from p16-null U87MG cells. Here we show that exogenous p16 expression in CL-4 cells results in morphological changes, with large and flattened cytoplasm, which are associated with increased formation of cytoplasmic actin-stress fibers and vinculin accumulation in the focal adhesion contacts. Adhesion of CL-4 cells to extracellular matrix proteins, such as laminin, fibronectin, and type IV collagen, significantly increased upon exogenous p16 expression, which correlated with increased expression of integrin alpha5 and alphav. Expression of a small GTP-binding protein, Rac, also decreased. Following epidermal growth factor stimulation, phosphorylation of MAP kinases ERK1 and 2 and induction of an early immediate gene product, c-Fos, were significantly reduced in CL-4 cells with p16 expression. These results suggest that the tumor suppressor p16 may exert its antitumor effects through modulation of multiple aspects of glioblastoma phenotypes, including proliferation, invasiveness, and responsiveness to extracellular growth stimuli.
Collapse
Affiliation(s)
- A Noguchi
- Department of Neurosurgery, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Yun UJ, Park SE, Shin DY. p41-Arc, a regulatory subunit of Arp2/3 complex, can induce premature senescence in the absence of p53 and Rb. Exp Mol Med 2011; 43:389-92. [PMID: 21628992 DOI: 10.3858/emm.2011.43.7.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-β-galactosidase (SA-β-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes.
Collapse
Affiliation(s)
- Un Jung Yun
- Department of Microbiology Dankook University College of Medicine Cheonan, Korea.
| | | | | |
Collapse
|
12
|
Huang M, Whang P, Lewicki P, Mitchell BS. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53. Mol Pharmacol 2011; 80:40-8. [PMID: 21464199 PMCID: PMC3127532 DOI: 10.1124/mol.110.070284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/04/2011] [Indexed: 01/19/2023] Open
Abstract
The induction of senescence has emerged as a potentially important contributor to the effects of chemotherapeutic agents against tumors. We have demonstrated that depletion of CTP induced by cyclopentenyl cytosine (CPEC; NSC 375575), a specific inhibitor of the enzyme CTP synthetase, induces irreversible growth arrest and senescence characterized by altered morphology and expression of senescence-associated β-galactosidase activity in MCF-7 breast cancer cells expressing wild-type p53. In contrast, differentiation in the absence of senescence resulted from CPEC treatment in MDA-MB-231 breast cancer cells that express a mutated p53. Both senescence of MCF-7 cells and differentiation of MDA-MB-231 cells were prevented by repletion of CTP through the cytidine salvage pathway. Senescence in MCF-7 cells was associated with a G(2)- and S-phase arrest, whereas differentiation in MDA-MB-231 cells was associated with arrest in G(1) phase at 5 days. Mechanistic studies revealed that CTP depletion induced a rapid translocation of nucleolar proteins, including nucleostemin and nucleolin into the nucleoplasm. This nucleolar stress response resulted in a sustained elevation of p53 and the p53 target genes, p21 and Mdm2, in cells with wild-type p53. Furthermore, short interfering RNA-induced knockdown of p53 in MCF-7 cells treated with CPEC prevented cellular senescence and increased apoptotic cell death. We conclude that CTP depletion and the resulting nucleolar stress response results in a senescence-like growth arrest through activation of p53, whereas cells with mutated p53 undergo differentiation or apoptotic cell death.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Divisions of Oncology and Hematology, and the Stanford Cancer Center, Stanford University School of Medicine, Stanford, California 94305-5458, USA
| | | | | | | |
Collapse
|
13
|
Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 2011; 34:3-11. [PMID: 21649759 DOI: 10.1111/j.1460-9568.2011.07738.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular stress increases progressively with aging in mammalian tissues. Chronic stress triggers several signaling cascades that can induce a condition called cellular senescence. Recent studies have demonstrated that senescent cells express a senescence-associated secretory phenotype (SASP). Emerging evidence indicates that the number of cells expressing biomarkers of cellular senescence increases in tissues with aging, which implies that cellular senescence is an important player in organismal aging. In the brain, the aging process is associated with degenerative changes, e.g. synaptic loss and white matter atrophy, which lead to progressive cognitive impairment. There is substantial evidence for the presence of oxidative, proteotoxic and metabolic stresses in aging brain. A low-level, chronic inflammatory process is also present in brain during aging. Astrocytes demonstrate age-related changes that resemble those of the SASP: (i) increased level of intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, isolated astrocytes from aged brain display the proinflammatory phenotype. All of these observations indicate that astrocytes are capable of triggering the SASP and the astrocytes in aging brain display typical characteristics of cellular senescence. Bearing in mind the many functions of astrocytes, it is evident that the age-related senescence of astrocytes enhances the decline in functional capacity of the brain. We will review the astroglial changes occurring during aging and emphasize that senescent astrocytes can have an important role in age-related neuroinflammation and neuronal degeneration.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
14
|
Horbinski C, Dillon D, Pittman T. Low-grade recurrence of a congenital high-grade supratentorial tumor with astrocytic features in the absence of adjuvant therapy. Neuropathology 2010; 31:286-91. [PMID: 20880322 DOI: 10.1111/j.1440-1789.2010.01156.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biological behavior of pediatric gliomas and embryonal tumors can be highly variable. A few case reports have described differentiation of primitive neuroectodermal tumors (PNETs) and medulloblastomas, presumably induced by adjuvant chemotherapy and/or radiation. Herein we describe a case of a congenital supratentorial high-grade tumor with astrocytic features that, after near-total surgical resection, was not treated with adjuvant therapies. Thirteen years later the patient presented with recurrent tumor at the original surgical site. The recurrent tumor had completely different morphology compared to the original, with evidence of ganglion cell differentiation and changes more reminiscent of a low-grade pleomorphic xanthoastrocytoma. To the authors' knowledge, this is the first documented case of an untreated high-grade pediatric tumor that spontaneously differentiated into a low grade tumor. The clinical and biological implications of this are briefly discussed.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
15
|
Marín-García J. Basic Mechanisms Mediating Cardiomyopathy and Heart Failure in Aging. HEART FAILURE 2010. [PMCID: PMC7121883 DOI: 10.1007/978-1-60761-147-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biological aging represents the major risk factor for the development of heart failure (HF), malignancies, and neurodegenerative diseases. While risk factors such as lifestyle patterns, genetic traits, blood lipid levels, and diabetes can contribute to its development, advancing age remains the most determinant predictor of cardiac disease. Several parameters of left ventricular function may be affected with aging, including increased duration of systole, decreased sympathetic stimulation, and increased left ventricle ejection time, while compliance decreases. In addition, changes in cardiac phenotype with diastolic dysfunction, reduced contractility, left ventricular hypertrophy, and HF, all increase in incidence with age. Given the limited capacity that the heart has for regeneration, reversing or slowing the progression of these abnormalities poses a major challenge. In this chapter, we present a discussion on the molecular and cellular mechanisms involved in the pathogenesis of cardiomyopathies and HF in aging and the potential involvement of specific genes identified as primary mediators of these diseases.
Collapse
|
16
|
Lee SLO, Hong SW, Shin JS, Kim JS, Ko SG, Hong NJ, Kim DJ, Lee WJ, Jin DH, Lee MS. p34SEI-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol Cancer Res 2009; 7:1845-53. [PMID: 19903772 DOI: 10.1158/1541-7786.mcr-09-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we describe a novel function of the p34(SEI-1) protein, which is both an oncogenic protein and a positive regulator of the cell cycle. The p34(SEI-1) protein was found to inhibit doxorubicin-induced senescence. We investigated the molecular mechanisms of the inhibitory effect of p34(SEI-1) on senescence. First, we found that the activation of protein kinase C-delta (PKC-delta), which is cleaved into a 38 kDa active form from a 78 kDa pro-form, induced after doxorubicin treatment, was inhibited by p34(SEI-1). Furthermore, p34(SEI-1) induced the ubiquitination of PKC-delta. Yet, there is no interaction between p34(SEI-1) and PKC-delta. We also found that the phosphorylation of c-Jun-NH(2)-kinase 1 (JNK1) induced after doxorubicin treatment was suppressed by p34(SEI-1), but not in JNK2. Consistently, pharmacologic or genetic inactivation of either PKC-delta or JNK1 was found to inhibit doxorubicin-induced senescence. In addition, the genetic inactivation of PKC-delta by PKC-delta small interfering RNA resulted in an inhibition of JNK1 activation, but PKC-delta expression was not inactivated by JNK1 small interfering RNA, implying that the activation of JNK1 could be dependently induced by PKC-delta. Therefore, p34(SEI-1) inhibits senescence by inducing PKC-delta ubiquitination and preventing PKC-delta-dependent phosphorylation of JNK1.
Collapse
Affiliation(s)
- Sae Lo Oom Lee
- Research Center for Women's Diseases, Division of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, Laterra J, Schiff D, Abounader R. PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res 2008; 68:1723-31. [PMID: 18339852 DOI: 10.1158/0008-5472.can-07-1963] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show, for the first time, that the tumor suppressor PTEN can have tumor-promoting properties. We show that PTEN acquires these unexpected properties by enhancing gain-of-function mutant p53 (mut-p53) protein levels. We find that PTEN restoration to cells harboring mut-p53 leads to induction of G(1)-S cell cycle progression and cell proliferation and to inhibition of cell death. Conversely, PTEN inhibition in cells expressing wild-type PTEN and mut-p53 leads to inhibition of cell proliferation and inhibition of in vivo tumor growth. We show the dependency of the tumor-promoting effects of PTEN on mut-p53 by showing that knockdown of mut-p53 expression inhibits or reverses the tumor-promoting effects of PTEN. Mechanistically, we show that PTEN expression enhances mut-p53 protein levels via inhibition of mut-p53 degradation by Mdm2 and possibly also via direct protein binding. These findings describe a novel function of PTEN and have important implications for experimental and therapeutic strategies that aim at manipulating PTEN or p53 in human tumors. They suggest that the mutational status of PTEN and p53 should be considered to achieve favorable therapeutic outcomes. The findings also provide an explanation for the low frequency of simultaneous mutations of PTEN and p53 in human cancer.
Collapse
Affiliation(s)
- Yunqing Li
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki M, Boothman DA. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy. JOURNAL OF RADIATION RESEARCH 2008; 49:105-112. [PMID: 18219184 DOI: 10.1269/jrr.07081] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
19
|
Funayama R, Ishikawa F. Cellular senescence and chromatin structure. Chromosoma 2007; 116:431-40. [PMID: 17579878 DOI: 10.1007/s00412-007-0115-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/27/2007] [Accepted: 05/27/2007] [Indexed: 12/26/2022]
Abstract
Cellular senescence is characterized by stable cell cycle arrest that is triggered by various forms of stress stimuli. Senescent cells show a series of morphological and physiological alterations including a flat and enlarged morphology, an increase in acidic beta-galactosidase activity, chromatin condensation, and changes in gene expression pattern. These features are not observed in proliferating cells or quiescent cells in vitro. Using these senescence markers, cellular senescence has been shown to occur in benign or premalignant lesions but not in malignant lesions and to act as a tumor-suppressing mechanism in vivo. The onset and maintenance of the senescent state are regulated by two tumor suppressor proteins, p53 and Rb, which mediate senescence signals through p38 mitogen-activated protein kinase and cyclin-dependent kinase inhibitors. Alterations of chromatin structure are believed to contribute to the irreversible nature of the senescent state. Senescent cells form characteristic heterochromatin structure called senescence-associated heterochromatic foci (SAHFs), which may repress the expression of proliferation-promoting genes, such as E2F target genes. Recent studies have provided molecular insights into the structure and the mechanism of SAHF formation. In this paper, we review the role of cellular senescence in tumor suppression in vivo and the molecular mechanism of stable growth arrest in senescent cells, focusing on the special form of heterochromatin, SAHFs.
Collapse
Affiliation(s)
- Ryo Funayama
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, 606-8501, Japan
| | | |
Collapse
|
20
|
Widodo N, Deocaris CC, Kaur K, Hasan K, Yaguchi T, Yamasaki K, Sugihara T, Ishii T, Wadhwa R, Kaul SC. Stress chaperones, mortalin, and pex19p mediate 5-aza-2' deoxycytidine-induced senescence of cancer cells by DNA methylation-independent pathway. J Gerontol A Biol Sci Med Sci 2007; 62:246-55. [PMID: 17389721 DOI: 10.1093/gerona/62.3.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA demethylating agents are used to reverse epigenetic silencing of tumor suppressors in cancer therapeutics. Understanding of the molecular and cellular factors involved in DNA demethylation-induced gene desilencing and senescence is still limited. We have tested the involvement of two stress chaperones, Pex19p and mortalin, in 5-Aza-2' deoxycytidine (5AZA-dC; DNA demethylating agent)-induced senescence. We found that the cells overexpressing these chaperones were highly sensitive to 5AZA-dC, and their partial silencing eliminated 5AZA-dC-induced senescence in human osteosarcoma cells. We demonstrate that these chaperones modulate the demethylation and chromatin remodeling-dependent (as accessed by p16(INK4A) expression) and remodeling-independent (such as activation of tumor suppressor p53 pathway) senescence response of cells. Furthermore, we found the direct interactions of 5AZA-dC with these chaperones that may alter their functions. We conclude that both mortalin and Pex19p are important mediators, prognostic indicators, and tailoring tools for 5AZA-dC-induced senescence in cancer cells.
Collapse
Affiliation(s)
- Nashi Widodo
- National Institute of Advanced Industrial Science & Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kang KA, Zhang R, Piao MJ, Park MJ, Kwon AR, Kim BJ, You HJ, Chung MH, Hyun JW. 8-Hydroxydeoxyguanosine induces senescence-like changes in KG-1, human acute myelocytic leukemia cell line. BIOTECHNOL BIOPROC E 2007; 12:114-120. [DOI: 10.1007/bf03028635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Uht RM, Amos S, Martin PM, Riggan AE, Hussaini IM. The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 2006; 26:2885-93. [PMID: 17146445 DOI: 10.1038/sj.onc.1210090] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the highest grade of astrocytoma. GBM pathogenesis has been linked to receptor tyrosine kinases and kinases further down signal-transduction pathways - in particular, members of the protein kinase C (PKC) family. The expression and activity of various PKC isoforms are increased in malignant astrocytomas, but not in non-neoplastic astrocytes. This suggests that PKC activity contributes to tumor progression. The level of PKC-eta expressed correlates with the degree of phorbol-12-myristate-13-acetate (PMA)-induced proliferation of two glioblastoma cell lines, U-1242 MG and U-251 MG. Normally, U-1242 cells do not express PKC-eta, and PMA inhibits their proliferation. Conversely, PMA increases proliferation of U-1242 cells that are stably transfected with PKC-eta (U-1242-PKC-eta). PMA treatment also stimulates proliferation of U-251 cells, which express PKC-eta. Here, we determined that extracellular signal-regulated kinase (ERK) and Elk-1 are downstream targets of PKC-eta. Elk-1-mediated transcriptional activity correlates with the PKC-eta-mediated mitogenic response. Pretreatment of U-1242-PKC-eta cells with inhibitors of PKC or MAPK/ERK kinase (MEK) (bisindolyl maleimide (BIM) or U0126, respectively) blocked both PMA-induced Elk-1 transcriptional activity and PMA-stimulated proliferation. An overexpressed dominant-negative PKC-eta reduced the mitogenic response in U-251 cells, as did reduction of Elk-1 by small interfering RNA. Taken together, these results strongly suggest that PKC-eta-mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase phosphorylation, activation of ERK and subsequently of Elk-1. Elk-1 target genes involved in GBM proliferative responses have yet to be identified.
Collapse
Affiliation(s)
- R M Uht
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
23
|
Quick QA, Gewirtz DA. An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells. J Neurosurg 2006; 105:111-8. [PMID: 16871885 DOI: 10.3171/jns.2006.105.1.111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Radiotherapy is one of the few treatment options available for glioblastoma multiforme (GBM); however, the basis for its overall ineffectiveness in GBM is not fully understood. The present study was designed to explore the nature of the response to ionizing radiation in GBM cells to gain insight into the basis for the general failure of radiotherapy in the treatment of this disease. METHODS The response to fractionated radiotherapy was examined in GBM cell lines with differing p53 status. A viable cell number was determined during an 8-day period; accelerated senescence was based on beta-galactosidase staining and cell morphology; apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and fluorescence-activated cell-sorter analysis, whereas the expression of cell-cycle regulatory proteins was monitored by Western blot analysis. Based on clonogenic survival, the wild-type p53 U87 cells and mutant p53 T98 cells demonstrated essentially identical sensitivity to fractionated radiotherapy; however, neither cell line underwent apoptosis, and the primary response to irradiation was growth arrest. The wild-type p53 GBM cells showed clear evidence of accelerated senescence in response to irradiation. In contrast, senescence was not evident in mutant p53 GBM cells or GBM cells in which p53 function was abrogated by the viral E6 protein. The T98 (mutant p53) cells demonstrated a relatively robust proliferative recovery whereas both the rate and extent of recovery were attenuated in the wild-type p53 U87 cells. CONCLUSIONS Both accelerated senescence and conventional growth arrest are likely to represent alternative responses to apoptosis in irradiated GBM cells.
Collapse
Affiliation(s)
- Quincy A Quick
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
24
|
Moussavi-Harami F, Mollano A, Martin JA, Ayoob A, Domann FE, Gitelis S, Buckwalter JA. Intrinsic radiation resistance in human chondrosarcoma cells. Biochem Biophys Res Commun 2006; 346:379-85. [PMID: 16765318 DOI: 10.1016/j.bbrc.2006.05.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16(ink4a), one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16(ink4a) contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16(ink4a) expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16(ink4a) expression on chondrosarcoma cell resistance to low-dose gamma-irradiation (1-5 Gy). p16(ink4a) expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16(ink4a) transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16(ink4a) plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.
Collapse
Affiliation(s)
- Farid Moussavi-Harami
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang CH, Chang HC, Hung WC. p16 inhibits matrix metalloproteinase-2 expression via suppression of Sp1-mediated gene transcription. J Cell Physiol 2006; 208:246-52. [PMID: 16575904 DOI: 10.1002/jcp.20660] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies demonstrate that p16, a cyclin-dependent kinase inhibitor and a tumor suppressor, may inhibit matrix metalloproteinase-2 (MMP-2) expression in human cancer cells to suppress tumor invasion and metastasis. However, the detailed mechanism is still unclear. Our results show that p16 inhibits MMP-2 expression via transcriptional repression. Promoter deletion and mutation analysis indicates that p16 acts through the Sp1 transcription factor-binding site located between -72 and -64 bp region from the transcriptional start site of the human MMP-2 promoter to repress gene expression. DNA affinity precipitation assay (DAPA) and chromatin immuno-precipitation (CHIP) assay demonstrate that Sp1 proteins constitutively bind to this consensus sequence in vitro and in vivo. p16 attenuates Sp1 binding to the MMP-2 promoter to suppress gene transcription and overexpression of Sp1 may counteract p16-induced downregulation of MMP-2. CyclinA/CDK complex may directly phosphorylate Sp1 and enhance its DNA-binding activity. Thus, we investigated the effect of p16 on the interaction between cyclin A and Sp1. Our results indicate that p16 induces downregulation of cyclin A and CDK2, reduces the interaction between cyclin A and Sp1, and attenuates phosphorylation of Sp1. Ectoexpression of cyclin A counteracts p16-mediated inhibition of DNA binding of Sp1 and activates MMP-2 promoter activity and mRNA expression. Collectively, our results suggest that p16 suppresses MMP-2 by blocking Sp1-mediated gene transcription.
Collapse
MESH Headings
- Cyclin A/analysis
- Cyclin A/genetics
- Cyclin A/physiology
- Cyclin-Dependent Kinase Inhibitor p16/pharmacology
- Down-Regulation/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Immunoblotting
- Immunoprecipitation
- Lung Neoplasms/chemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Matrix Metalloproteinase 2/analysis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/physiology
- Neoplasm Invasiveness/physiopathology
- Neoplasm Metastasis/physiopathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- Protein Binding/drug effects
- Protein Binding/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/analysis
- Sp1 Transcription Factor/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Chie-Hong Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
26
|
Tang L, Roberts PC, Kraniak JM, Li Q, Tainsky MA. Stat1 expression is not sufficient to regulate the interferon signaling pathway in cellular immortalization. J Interferon Cytokine Res 2006; 26:14-26. [PMID: 16426144 DOI: 10.1089/jir.2006.26.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA hypermethylation in gene promoters is an epigenetic mechanism regulating gene expression in cellular immortalization, an important step in carcinogenesis. Previously, we studied the genes dysregulated during immortalization using spontaneously immortalized fibroblasts from patients with Li-Fraumeni syndrome (LFS), who carry a germline mutation in the tumor suppressor gene p53. We found that multiple interferon (IFN) signaling pathway genes were regulated by epigenetic silencing. In this study we focused on a key regulator of that pathway, the signal transducer and transcription activator 1 (Stat1) gene. Although Stat1 is downregulated after cellular immortalization and upregulated in immortal MDAH041 cells after 5-aza-2'-deoxycytidine (5-aza-dC) treatment, we detected no methylation of the Stat1 promoter region in these cells before or after immortalization. To analyze the function of Stat1 in immortalization, we expressed Stat1 in immortal MDAH041 cells by stable infection, expecting to induce IFN-regulated genes or cellular senescence or both. However, the overexpression of Stat1 alone was not sufficient to repress the proliferation rate of immortal MDAH041 cells or induce senescence in immortal MDAH041 cells. We concluded that factor(s) additional to Stat1 (whether IFN dependent or not) are required for the immortalization of LFS fibroblasts.
Collapse
Affiliation(s)
- Lin Tang
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
27
|
Darbro BW, Schneider GB, Klingelhutz AJ. Co-regulation of p16INK4A and migratory genes in culture conditions that lead to premature senescence in human keratinocytes. J Invest Dermatol 2005; 125:499-509. [PMID: 16117791 PMCID: PMC2020850 DOI: 10.1111/j.0022-202x.2005.23844.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular stasis, also known as telomere-independent senescence, prevents many epithelial cells from becoming immortalized by telomerase alone. As human keratinocytes age in culture, protein levels of the tumor suppressor p16INK4a continue to increase, resulting in growth arrest independent of telomere length. Differences in culture conditions have been shown to modulate both p16INK4a expression and replicative capacity of human keratinocytes; however, the mechanism of p16INK4a induction under these conditions is unknown. Using multiple primary keratinocyte cell strains, we verified a delay in p16INK4a induction and an extended lifespan of human keratinocytes when grown in co-culture with post-mitotic fibroblast feeder cells as compared with keratinocytes grown on tissue culture plastic alone. Evaluation of gene expression levels in the two culture conditions by microarray analysis, and subsequent validation, demonstrated that keratinocytes cultured on plastic alone had significantly increased expression of many genes involved in keratinocyte migration and reduced expression levels of genes involved in keratinocyte differentiation. Higher levels of p16INK4a expression were present in cells that also displayed increased amounts of autophosphorylated focal adhesion kinase and urokinase plaminogen activator receptor (uPAR), both markers of keratinocyte migration. Furthermore, when tyrosine phosphorylation or urokinase-type plasminogen activator (uPA)/uPAR function was inhibited, both keratinocyte migration and p16INK4a expression were reduced. Our results indicate that keratinocytes cultured in the absence of feeder cells exhibit a migratory phenotype and suggest that p16INK4a is selectively induced under these conditions by a mechanism involving tyrosine kinase activity and the urokinase plasminogen activation system.
Collapse
Affiliation(s)
- Benjamin W. Darbro
- Interdisciplinary Program in Molecular Biology and Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Galen B. Schneider
- Department of Prosthodontics and Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Holden Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW. Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 2005; 64:695-705. [PMID: 16106218 DOI: 10.1097/01.jnen.0000175329.59092.2c] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sphingosine-1-phosphate is a bioactive lipid that is mitogenic for human glioma cell lines by signaling through its G protein-coupled receptors. We investigated the role of sphingosine-1-phosphate receptors and the enzymes that form sphingosine-1-phosphate, sphingosine kinase (SphK)-1, and -2 in human astrocytomas. Astrocytomas of various histologic grades expressed three types of sphingosine-1-phosphate receptors, S1P1, S1P2, and S1P3; however, no significant correlation with histologic grade or patient survival was detected. Expression of SphK1, but not SphK2, in human astrocytoma grade 4 (glioblastoma multiforme) tissue correlated with short patient survival. Patients whose tumors had low SphK1 expression survived a median 357 days, whereas those with high levels of SphK1 survived a median 102 days. Decreasing SphK1 expression using RNA interference or pharmacologic inhibition of SphK significantly decreased the rate of proliferation of U-1242 MG and U-87 MG glioblastoma cell lines. Surprisingly, RNA interference to knockdown SphK2 expression inhibited glioblastoma cell proliferation more potently than did SphK1 knockdown. SphK knockdown also prevented cells from exiting G1 phase of the cell cycle and marginally increased apoptosis. Thus, SphK isoforms may be major contributors to growth of glioblastoma cells in vitro and to aggressive behavior of glioblastoma multiforme.
Collapse
Affiliation(s)
- James R Van Brocklyn
- Division of Neuropathology, Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Xu WS, Perez G, Ngo L, Gui CY, Marks PA. Induction of Polyploidy by Histone Deacetylase Inhibitor: A Pathway for Antitumor Effects. Cancer Res 2005; 65:7832-9. [PMID: 16140952 DOI: 10.1158/0008-5472.can-04-4608] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of transformed cells are not completely understood. In this study, we report that SAHA induced polyploidy in human colon cancer cell line HCT116 and human breast cancer cell lines, MCF-7, MDA-MB-231, and MBA-MD-468, but not in normal human embryonic fibroblast SW-38 and normal mouse embryonic fibroblasts. The polyploid cells lost the capacity for proliferation and committed to senescence. The induction of polyploidy was more marked in HCT116 p21WAF1-/- or HCT116 p53-/- cells than in wild-type HCT116. The development of senescence of SAHA-induced polyploidy cells was similar in all colon cell lines. The present findings indicate that the HDAC inhibitor could exert antitumor effects by inducing polyploidy, and this effect is more marked in transformed cells with nonfunctioning p21WAF1 or p53 genes.
Collapse
Affiliation(s)
- Wei-Sheng Xu
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
30
|
Amos S, Martin PM, Polar GA, Parsons SJ, Hussaini IM. Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase Cdelta/c-Src pathways in glioblastoma cells. J Biol Chem 2005; 280:7729-38. [PMID: 15618223 PMCID: PMC1351089 DOI: 10.1074/jbc.m409056200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Both the epidermal growth factor receptor (EGFR) and protein kinase C (PKC) play important roles in glioblastoma invasive growth; however, the interaction between the EGFR and PKC is not well characterized in glioblastomas. Treatment with EGF stimulated global phosphorylation of the EGFR at Tyr(845), Tyr(992), Tyr(1068), and Tyr(1045) in glioblastoma cell lines (U-1242 MG and U-87 MG). Interestingly, phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of the EGFR only at Tyr(1068) in the two glioblastoma cell lines. Phosphorylation of the EGFR at Tyr(1068) was not detected in normal human astrocytes treated with the phorbol ester. PMA-induced phosphorylation of the EGFR at Tyr(1068) was blocked by bisindolylmaleimide (BIM), a PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor. In contrast, Go 6976, an inhibitor of classical PKC isozymes, had no effect on PMA-induced EGFR phosphorylation. Furthermore, gene silencing with PKCdelta small interfering RNA (siRNA), siRNA against c-Src, and mutant c-Src(S12C/S48A) and treatment with a c-Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) abrogated PMA-induced EGFR phosphorylation at Tyr(1068). PMA induced serine/threonine phosphorylation of Src, which was blocked by both BIM and rottlerin. Inhibition of the EGFR with AG 1478 did not significantly alter PMA-induced EGFR Tyr(1068) phosphorylation, but completely blocked EGF-induced phosphorylation of the EGFR. The effects of PMA on MAPK phosphorylation and glioblastoma cell proliferation were reduced by BIM, rottlerin, the MEK inhibitor U0126, and PKCdelta and c-Src siRNAs. Taken together, our data demonstrate that PMA transactivates the EGFR and increases cell proliferation by activating the PKCdelta/c-Src pathway in glioblastomas.
Collapse
Key Words
- pma, phorbol myristate acetate
- pkc, protein kinase c
- egf, epidermal growth factor
- egfr, epidermal growth factor receptor
- bim, bisindolylmaleimide
- erk, extracellular signal-regulated kinase
- mek, mitogen-activated kinase effector kinase
- α-mem, minimal essential medium- α
- sirna, small interfering ribonucleic acid
- page, polyacrylamide gel electrophoresis
- gbm, glioblastoma multiforme
Collapse
Affiliation(s)
- Samson Amos
- Department of Pathology, University of Virginia Health System, Charlottesville 22908, USA.
| | | | | | | | | |
Collapse
|
31
|
Nishio K, Inoue A. Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochem Cell Biol 2005; 123:263-73. [PMID: 15742196 DOI: 10.1007/s00418-005-0766-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
The cytoskeleton of senescent cells was systematically studied using senescent and young fibroblasts. In the cell senescence, skin fibroblasts extraordinarily produced vimentin in contrast to actin and tubulin, which were down-regulated. Among the focal adhesion proteins, paxillin and c-Src decreased also. Senescent cells developed a long and dense vimentin network, long and thin actin fibers, and numerous small focal contact sites, which contrasted with young cells with short and thick actin stress fibers and prominently large focal adhesions. Noticeably, senescent fibroblasts markedly produced p53 molecules and anchored them to vimentin-cytoskeleton in the cytoplasm. The vimentin-anchored p53 was detected with antibody PAb240 that specifically recognizes a conformation variant of p53. A GFP-tagged wild type p53 cDNA was expressed by transfection and shown also to be retained in the cytoplasm in senescent cells, suggesting that p53 is structurally modified to be recognized by PAb240 and anchored to vimentin filaments. We discuss the correlation of the marked alteration of cytoskeleton and senescent cells' diminished proliferation and migration, as well as the significance of cytoskeletal anchorage of tumor suppressor p53.
Collapse
Affiliation(s)
- Koji Nishio
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Aich 466-8550, Japan.
| | | |
Collapse
|
32
|
Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev 2004; 125:827-48. [PMID: 15541776 DOI: 10.1016/j.mad.2004.07.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cells in culture have a limited proliferative capacity. After a period of vigorous proliferation, the rate of cell division declines and a number of changes occur in the cells including increases in size, in secondary lysosomes and residual bodies, nuclear changes and a number of changes in gene expression which provide biomarkers for senescence. Although human cells in culture have been used for over 40 years as models for understanding the cellular basis of aging, the relationship of replicative senescence to aging of the organism is still not clear. In this review, we discuss replicative senescence in the light of current information on signal transduction and mitogenesis, cell stress, apoptosis, telomere changes and finally we discuss replicative senescence as a model of aging in vivo.
Collapse
Affiliation(s)
- Vincent J Cristofalo
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| | | | | | | | | |
Collapse
|
33
|
Kwong FM, Tang JCO, Srivastava G, Lung ML. Inactivation mechanisms and growth suppressive effects of p16INK4a in Asian esophageal squamous carcinoma cell lines. Cancer Lett 2004; 208:207-13. [PMID: 15142680 DOI: 10.1016/j.canlet.2003.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 11/16/2003] [Accepted: 11/19/2003] [Indexed: 11/30/2022]
Abstract
The inactivation mechanisms and functional role of p16INK4a in three Asian esophageal squamous cell carcinoma (ESCC) cell lines were investigated by polymerase chain reaction (PCR) amplification, DNA sequencing, methylation-specific PCR analysis, reverse transcription-PCR, Western blotting, and colony formation assays. The p16INK4a was inactivated by promoter hypermethylation in all three cell lines, a homozygous deletion of exons 2 and 3, and a frameshift deletion on exon 1, leading to transcriptional silencing or the production of mutant p16INK4a protein. Two ESCC cell lines transfected with wild type p16INK4a show significantly reduced cell growth properties. The results of the present studies support the suppressive role of p16INK4a in ESCC development.
Collapse
Affiliation(s)
- Fung Mei Kwong
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), People's Republic of China
| | | | | | | |
Collapse
|
34
|
Jung MS, Jin DH, Chae HD, Kang S, Kim SC, Bang YJ, Choi TS, Choi KS, Shin DY. Bcl-xL and E1B-19K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing reactive oxygen species-dependent p38 activation. J Biol Chem 2004; 279:17765-17771. [PMID: 14764594 DOI: 10.1074/jbc.m305015200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we describe novel functions of the anti-apoptotic Bcl-2 family proteins. Bcl-x(L) and E1B-19K were found to inhibit p53-induced irreversible growth arrest and senescence, but not to inhibit transient growth arrest, implying that Bcl-x(L) and E1B-19K are specifically involved in senescence without participating in growth arrest. We provide several lines of evidences showing that the functions of Bcl-x(L) and E1B-19K to prevent generation of reactive oxygen species (ROS) are important to inhibit senescence induction. First, we found that that ROS are increased during p53-induced senescence. Moreover, Bcl-x(L) and E1B-19K inhibit this p53-induced ROS generation. Second, antioxidants prevent the induction of senescence and ROS by p53, but not the persistence of the senescence phenotype. Third, the anti-senescence functions of Bcl-x(L) and E1B-19K were suppressed by adding exogenous ROS. These results suggest that Bcl-x(L) and E1B-19K inhibit senescence induction by preventing ROS generation. Furthermore, p38 kinase was found to be activated during p53-induced senescence, but not in cells expressing Bcl-x(L) or E1B-19K, or in cells treated with anti-oxidants. Consistently, a chemical inhibitor of p38 kinase, SB203580, was found to inhibit p53-induced senescence, but only when treated before the cellular commitment to senescence, implying that p38 kinase is necessary for senescence induction. Therefore, Bcl-x(L) and E1B-19K inhibit p53-induced senescence by preventing ROS generation, which in turn leads to the activation of p38 kinase. These results also suggest that the oncogenic potential of Bcl-2 is due to its ability to inhibit senescence as well as apoptosis.
Collapse
Affiliation(s)
- Mun-Su Jung
- National Research Laboratory for Cell Cycle Control, Department of Microbiology, Dankook University College of Medicine, Cheonan, 330-714, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kang HT, Lee CJ, Seo EJ, Bahn YJ, Kim HJ, Hwang ES. Transition to an irreversible state of senescence in HeLa cells arrested by repression of HPV E6 and E7 genes. Mech Ageing Dev 2004; 125:31-40. [PMID: 14706235 DOI: 10.1016/j.mad.2003.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibition of human papillomavirus (HPV) E6 and E7 transcription by means of the E2 protein of bovine papillomavirus 1 (BPV1) has been shown to induce acute growth arrest in HPV-positive cervical carcinoma cells. This state of arrest is marked by the expression of senescence phenotypes including SA beta-Gal activity and lipofuscin accumulation. In this study, we examined the reversibility of these phenotypes by exogenously expressing the E6 and E7 genes into HeLa cells growth-arrested by the depletion of E6/E7. Re-expression of E7 (but not E6) in 2 days following E2 transduction induced the cells to resume growth. The proliferating cells manifested the phenotype of untreated HeLa cells, suggesting that E7 is the major factor responsible for the continued proliferation and the suppression of the senescence phenotype in cervical carcinoma cells. However, E7 in 5 days following E2 transduction did not prevent HeLa cells from entering the senescent state, indicating that the arrested state becomes irreversible. Our results suggest that, upon depletion of the viral oncoproteins, a senescent state is irreversibly induced in HeLa cells after a period of commitment. The status and cellular location of certain factors involved in signal transduction and cell cycle control was altered as well along with this irreversibility transition.
Collapse
Affiliation(s)
- Hyun Tae Kang
- Department of Life Science, University of Seoul, Dongdaemungu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Cristofalo VJ, Beck J, Allen RG. Commentary: Cell Senescence: An Evaluation of Replicative Senescence in Culture as a Model for Cell Aging In Situ. J Gerontol A Biol Sci Med Sci 2003; 58:B776-9; discussion 779-81. [PMID: 14528030 DOI: 10.1093/gerona/58.9.b776] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincent J Cristofalo
- The Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA.
| | | | | |
Collapse
|
37
|
Marcotte R, Qian JF, Chen J, Wang E. hMad4, c-Myc endogenous inhibitor, induces a replicative senescence-like state when overexpressed in human fibroblasts. J Cell Biochem 2003; 89:576-88. [PMID: 12761891 DOI: 10.1002/jcb.10517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mad family proteins have an antagonistic action on Myc-dependent cell proliferation and transformation. We isolated a human cDNA clone, human Mad4 (hMad4), encoding a polypeptide of 209 amino acid residues, exhibiting 90% identity with mouse Mad4. Northern blot analysis shows that hMad4 probe hybridizes to a 3.8 kb message; its expression is highest in quiescent human WI38 fibroblasts. Among tissues, hMad4 mRNA is most abundant in brain, lung, and muscle. Consistent with other members of the Mad family, hMad4 can repress the transactivation activity of Myc/Max heterodimers on an E-box chloramphenicol acteyl transferase (CAT) reporter plasmid; inhibition of both proliferation and clonogenic formation of hMad4-infected cells correlates with the in vitro reporter repression. Moreover, infection of young human fibroblasts induces a replicative senescence-like state. This phenotype was accompanied by s-beta-galactosidase and PAI-1 expression. These results suggest that hMad4 might be an important regulator of replicative senescence in human cells.
Collapse
Affiliation(s)
- Richard Marcotte
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, The Sir Mortimer B Davis-Jewish General Hospital and Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Studies on the replicative senescence and premature senescence induced by various stresses in normal somatic cells have provided important clues on the role of telomere shortening and mechanisms involved in aging processes and carcinogenesis. Recent work revealed that cancer cells also are induced to undergo replicative senescence state via telomere shortening as well as to enter a senescence-like state by the activation of cell cycle inhibitory pathways. Although less relevant in terms of aging physiology, studies on these phenomena in cancer cells have yielded important information on telomerase regulation and the roles of tumor suppressors in senescence and immortalization, and are expected to generate valuable anti-cancer strategies. Several features of the phenotypes specific for the senescent and senescence-like states induced in cancer cells are discussed.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Jeonnongdong 90, Dongdaemungu, Seoul 130-743, South Korea.
| |
Collapse
|
39
|
Abstract
Tetracycline-regulated gene expression systems are widely used to allow temporal and quantitative control of transgene expression in cultured cells and transgenic animals. While working with the Tet-Off system, where tetracycline or the analogue doxycycline suppresses expression, we noted a considerable variability in induced transgene expression after removal of doxycycline. Variable expression of the transgene could not be explained by clonal variation since it was noted when working with clonal cell lines. Instead we found that doxycycline bound nonspecifically to cells and extracellular matrix and was slowly released after it had been removed from tissue culture media. The released doxycycline reached sufficiently high levels to completely suppress transgene expression. The effect was not dependent on cell type or the nature of the transgene. However, robust and rapid transgene expression could be induced if released doxycycline were removed by washing cells 3h after the initial removal of doxycycline. The use of different vector systems, harboring the tetracycline-regulatable components, yielded similar results. These results not only help explain why tetracycline-regulatable transgene expression systems sometimes are variable but also provide simple ways to substantially improve the efficiency, utility, and reliability of these widely used expression systems.
Collapse
Affiliation(s)
- Emma Rennel
- The Rudbeck Laboratory, Vascular Biology Unit, Department of Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden
| | | |
Collapse
|
40
|
Simon M, Simon C, Köster G, Hans VHJ, Schramm J. Conditional expression of the tumor suppressor p16 in a heterotopic glioblastoma model results in loss of pRB expression. J Neurooncol 2002; 60:1-12. [PMID: 12416540 DOI: 10.1023/a:1020226130478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have expressed the tumor suppressor p16 under the control of a tetracycline-sensitive promoter in two human glioblastoma cell lines which do not contain endogenous p16. Ectopic p16 expression led to a stable but reversible G1 phase cell cycle arrest, reduced the growth of both cell lines in cell culture, and almost abolished their in vitro tumorigenicity. U-87MG-tTA-p16 glioblastoma cells consistently formed tumors after subcutaneous injection into the flanks of nude mice. p16 expression in these tumors was strictly dependent on the presence or absence of tetracycline in the drinking water. Ectopic p16 reduced the tumor take rate (in vivo tumorigenicity) of U-87MG-tTA-p16 cells from 18/20 (90%) to 5 tumors/12 (42%) tumor cell injections. p16 positive and negative tumors differed with respect to their Ki67 labeling indices (34 +/- 4% vs. 52 +/- 6% , P < 0.001, student's t-test). These data are consistent with an in vitro and in vivo glioma suppressor role for p16. Interestingly, we observed a secondary reduction of pRB expression in tumors (and cell cultures) exposed to p16 for > or = 10 (6) days. pRB is p16's major downstream target. Hence, this finding might explain, why p16 expression neither significantly affected the morphology nor led to a reduction of size or growth rate of the tumors. Loss of pRB following p16 expression might severely limit the potential benefit of p16 gene therapy for glioblastoma.
Collapse
|
41
|
Bertram CG, Gaut RM, Barrett JH, Pinney E, Whitaker L, Turner F, Bataille V, Dos Santos Silva I, J Swerdlow A, Bishop DT, Newton Bishop JA. An assessment of the CDKN2A variant Ala148Thr as a nevus/melanoma susceptibility allele. J Invest Dermatol 2002; 119:961-5. [PMID: 12406345 DOI: 10.1046/j.1523-1747.2002.01825.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanocytic nevi are the most potent risk factors for melanoma yet identified. Variation in the nevus phenotype within a population is predominantly genetically determined. Genes that determine nevus expression may therefore act as low penetrance melanoma susceptibility genes. Rare germline mutations in CDKN2A predispose to melanoma and appear to be nevogenic, although the correlation between nevus phenotype and mutation status is poor. It is plausible that more common CDKN2A variants may influence both melanoma susceptibility and nevus susceptibility. Ala148Thr is a G to A missense polymorphism of CDKN2A, which is found in 4%-6% of the general population. We have investigated the role of Ala148Thr as a low penetrance melanoma or nevus susceptibility allele in two separate groups of individuals. The first was a sample of 488 adults recruited from 179 families of patients with the atypical nevus phenotype and/or a family history of melanoma, and the second was a population-based sample of 599 women. Similar prevalences of Ala148Thr (4.9% and 5.2%) were found in both samples but significant variation in the prevalence of the polymorphism was seen across geographic areas within England. There was no association between Ala148Thr status and nevus number or history of melanoma, and therefore the results did not support the hypothesis that the Ala148Thr variant is a low penetrance melanoma or nevus susceptibility allele. A significant protective role of Ala148Thr on the number of atypical nevi was observed in the family sample (mean of 1 atypical nevus in those with the allele and 3.5 nevi in those without, p = 0.02). After allowing for potential confounders this was not evident in the population-based sample.
Collapse
Affiliation(s)
- Chandra G Bertram
- Division of Genetic Epidemiology, Cancer Research UK Clinical Center in Leeds, St. James's University Hospital, Leeds, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Forty years after its discovery, replicative senescence remains a rich source of information about cell-cycle regulation and the progression from a normal to a transformed phenotype. Effectors of this growth-arrested state are being discovered at a great pace. This review discusses the latest findings on the players responsible for establishing replicative senescence, as well as the associated telomere shortening.
Collapse
Affiliation(s)
- Richard Marcotte
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Medicine, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
43
|
Roninson IB. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002; 179:1-14. [PMID: 11880176 DOI: 10.1016/s0304-3835(01)00847-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
p21(Waf1/Cip1/Sdi1) is best known as a broad-specificity inhibitor of cyclin/cyclin-dependent kinase complexes, but p21 also interacts with many other regulators of transcription or signal transduction. p21 induction, which is mediated by p53 and by p53-independent mechanisms, is essential for the onset of cell cycle arrest in damage response and cell senescence. The effects of p21 knockout in mice and its expression patterns in human cancer are consistent with a role for p21 as both a tumour suppressor and an oncogene. Several functions of p21 are likely to promote carcinogenesis and tumour progression. These include endoreduplication and abnormal mitosis that develop in tumour cells after release from p21-induced growth arrest, the ability of p21 to inhibit apoptosis through several different mechanisms, and its ability to stimulate transcription of secreted factors with mitogenic and anti-apoptotic activities. The latter effects of p21 show close resemblance to paracrine activities of senescent cells and to tumour-promoting functions of stromal fibroblasts. Therapeutic strategies targeting the oncogenic consequences of p21 expression may provide a new approach to chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- Igor B Roninson
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170, USA.
| |
Collapse
|
44
|
Chkhotua A, Shohat M, Tobar A, Magal N, Kaganovski E, Shapira Z, Yussim A. Replicative senescence in organ transplantation-mechanisms and significance. Transpl Immunol 2002; 9:165-71. [PMID: 12180826 DOI: 10.1016/s0966-3274(02)00003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past two decades, transplantation has become a preferred modality of treatment of end-stage failure of vital organs. Currently, with the significant improvement in short-term graft survival rates, the main effort is concentrated on prolonging the functional life span of transplanted organs. One of the theories which were put forward to explain the progressive deterioration of transplant function was that of replicative senescence. Senescence of an organ or tissue results from age and/or environmental stress-dependant modification of cellular function. With time, the accumulation of cellular alterations may lead to deleterious effects in various organs and tissues and adversely affect transplants. In this article we are reviewing the candidate mechanisms of senescence such as telomere shortening, genetic regulation and environmental-'toxic' factors and are examining the implications of the theory of replicative senescence for organ allograft. We are also presenting our experiments with renal ischemia/reperfusion in rat serving as a model of kidney transplantation, where baseline kidney telomere length and novel marker of cellular senescence--senescence associated beta-Galactosidase (SA-Gal) expression in tissue served as markers. For the first time in vivo, we were able to show that with aging of the animals the amount of senescent cells in kidney tissue was increasing, while the average renal tissue telomere length was decreasing. The degree of tissue senescence, as determined by amount of SA-Gal positively stained cells, was inversely correlated with the recovery of the kidney function after ischemia/reperfusion injury. These results confirm the theory of replicative senescence in organ ischemia for the first time in vivo, and quantitatively validate the direct correlation between the amount of senescent cells in the organ and its susceptibility to ischemic injury. We conclude that recent advances in study of the cellular basis of senescence, in vitro and especially in vivo, may hold clues to the understanding of events which could be implicated in the damage or protection of organ allografts.
Collapse
Affiliation(s)
- A Chkhotua
- Institute of Urology, University of Tbilisi, Georgia
| | | | | | | | | | | | | |
Collapse
|
45
|
Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002; 21:2180-8. [PMID: 11980715 PMCID: PMC125979 DOI: 10.1093/emboj/21.9.2180] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-L-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16(Ink4a), a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.
Collapse
Affiliation(s)
| | | | - Li Fang
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| | | | | | - Sam W. Lee
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| | - Stuart A. Aaronson
- Derald H.Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029 and
Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Present address: Cor Therapeutics, 256 East Grand Avenue, South San Francisco, CA 94403, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Strauss BE, Fontes RBV, Lotfi CFP, Skorupa AL, Bartol I, Cipolla-Neto J, Costanzi-Strauss E. Retroviral transfer of the p16INK4a cDNA inhibits C6 glioma formation in Wistar rats. Cancer Cell Int 2002; 2:2. [PMID: 11983028 PMCID: PMC116432 DOI: 10.1186/1475-2867-2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Accepted: 04/04/2002] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND: The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated beta-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. RESULTS: The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated beta-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. CONCLUSION: Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.
Collapse
Affiliation(s)
- Bryan E Strauss
- Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- BES: Present address: Heart Institute, InCor, School of Medicine, University of São Paulo, Brazil
| | - Ricardo BV Fontes
- Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- School of Medicine, University of São Paulo, Brazil
- BES: Present address: Heart Institute, InCor, School of Medicine, University of São Paulo, Brazil
| | - Claudimara FP Lotfi
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ana Lucia Skorupa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ione Bartol
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
47
|
Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1:269-77. [PMID: 12086863 DOI: 10.1016/s1535-6108(02)00046-6] [Citation(s) in RCA: 482] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ink4a/Arf inactivation and epidermal growth factor receptor (EGFR) activation are signature lesions in high-grade gliomas. How these mutations mediate the biological features of these tumors is poorly understood. Here, we demonstrate that combined loss of p16(INK4a) and p19(ARF), but not of p53, p16(INK4a), or p19(ARF), enables astrocyte dedifferentiation in response to EGFR activation. Moreover, transduction of Ink4a/Arf(-/-) neural stem cells (NSCs) or astrocytes with constitutively active EGFR induces a common high-grade glioma phenotype. These findings identify NSCs and astrocytes as equally permissive compartments for gliomagenesis and provide evidence that p16(INK4a) and p19(ARF) synergize to maintain terminal astrocyte differentiation. These data support the view that dysregulation of specific genetic pathways, rather than cell-of-origin, dictates the emergence and phenotype of high-grade gliomas.
Collapse
|
48
|
Sarraj S, Farb R, Martell RE. Reconstitution of dna synthetic capacity in senescent normal human fibroblasts by expressing cellular factors E2F and Mdm2. Exp Cell Res 2001; 270:268-76. [PMID: 11640890 DOI: 10.1006/excr.2001.5352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unraveling the mechanisms underlying cellular senescence will contribute to the understanding of processes involved in aging and cancer. We sought to determine whether expression of cellular factors in senescent WI-38 human fibroblasts was sufficient to induce nuclear DNA synthesis. Expression by recombinant adenovirus of E2F1, E2F2, E2F3, cyclin E/cdk2, and Mdm2 individually resulted in DNA synthesis in 10-30% of cells. However, combination of Mdm2 with E2F or cyclin E/cdk2 resulted in 50 to 75% of cells synthesizing DNA. DNA synthesis occurred approximately 30 h following infection. We conclude that expression of normal cellular factors is sufficient to induce DNA synthesis in senescent normal human fibroblasts.
Collapse
Affiliation(s)
- S Sarraj
- Geriatric Research and Education Clinical Center, VA Medical Center, Durham, North Carolina 27705, USA
| | | | | |
Collapse
|
49
|
Terao Y, Nishida J, Horiuchi S, Rong F, Ueoka Y, Matsuda T, Kato H, Furugen Y, Yoshida K, Kato K, Wake N. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int J Cancer 2001; 94:257-67. [PMID: 11668507 DOI: 10.1002/ijc.1448] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrated here the growth-suppressing effects of sodium butyrate (NaB) on human endometrial and ovarian cancer cells. The arrest of cells at the G1 checkpoint accounted for this effect. NaB-mediated p21 might arrest endometrial and ovarian cancer cells at the G0/G1 phase by eliciting pRb unphosphorylation. To demonstrate the role of pRb regulation by p21, we measured the sensitivity to NaB of cervical cancer cells in which pRb had been inactivated by HPV E7. The cervical cancer cells displayed a sensitivity in NaB-mediated G2/M arrest in addition to their sensitivity in G0/G1 arrest. Arrest at G0/G1 and G2/M accompanied induction of senescence-like phenotypes (SLPs). Most importantly, the effect of NaB on senescence induction was not coupled with the predominance of hypophosphorylated pRb forms in the cervical cancer cells. This suggested that NaB had the potential to elicit SLPs through p21-mediated withdrawal from cell cycle progression. The consequences of p21 induction were manifold. The effects of NaB on gynecologic cancer cell growth indicated its potential use in cancer treatment. NaB was effective even in the cancer cells with mutant p53 and/or Rb genes by eliciting cell senescence.
Collapse
Affiliation(s)
- Y Terao
- Department of Reproductive Physiology and Endocrinology, Medical Institute of Bioregulation, Kyushu University, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 2001; 4:303-13. [PMID: 11991684 DOI: 10.1054/drup.2001.0213] [Citation(s) in RCA: 536] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition of the program of apoptosis has been reported to have little or no effect on clonogenic survival after treatment with drugs or radiation in several tumor cell lines. A decrease in apoptosis is compensated in such cell lines by an increase in the fractions of cells that undergo permanent growth arrest with phenotypic features of cell senescence, or die through the process of mitotic catastrophe. Most of the tested tumor cell lines have retained the capacity of normal cells to undergo accelerated senescence after treatment with DNA-interactive drugs, ionizing radiation, or cytostatic agents. p53 and p21(Waf1/Cip1/Sdi1) act as positive regulators of treatment-induced senescence, but they are not required for this response in tumor cells. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may produce secreted proteins with potential tumor-promoting activities. The expression of such proteins is mediated at least in part by the induction of p21(Waf1/Cip1/Sdi1). The other anti-proliferative response of tumor cells is mitotic catastrophe, a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Mitotic catastrophe is induced by different classes of cytotoxic agents, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. Mitotic catastrophe can also develop as a consequence of aberrant reentry of tumor cells into cell cycle after prolonged growth arrest. Elucidation of the factors that regulate different aspects of treatment-induced senescence and mitotic catastrophe should assist in improving the efficacy and decreasing side effects of cancer therapy.
Collapse
Affiliation(s)
- I B Roninson
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago 60607-7170, USA.
| | | | | |
Collapse
|