1
|
Cheng J, Li M, Tzeng CM, Gou X, Chen S. Suppression of Tumorigenicity 5 Ameliorates Tumor Characteristics of Invasive Breast Cancer Cells via ERK/JNK Pathway. Front Oncol 2021; 11:621500. [PMID: 34395234 PMCID: PMC8356645 DOI: 10.3389/fonc.2021.621500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Suppression of tumorigenicity 5 (ST5) has been considered as a tumor suppressor gene in HeLa tumor cells. However, its role in the progression of breast cancer remains vague. METHODS Online database analysis was determined by Oncomine and Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4). Tumor biology behaviors were measured by MTT assay, wound healing model, Transwell and Flow cytometry assays. Methylation-specific PCR (MSP) was employed to detect promoter methylation. RESULTS Low level of ST5 was observed in breast cancer specimens, particularly in recurrent, invasive breast cancer cases compared to para-carcinoma tissue or non-invasive breast cancer. The downregulation of ST5 was also proved in MDA-MB-231 and SKBR3 cell lines with a high invasive capability as compared to MCF-7 cell with a low invasive capability. ST5 was negatively associated with pathological stages of breast cancer. ST5-downregulation promoted, while ST5-upregulation inhibited the progression of cell proliferation, cell cycle and migration of MDA-MB-231 cells. Additionally, ST5 knockdown inhibited, whereas ST5 overexpression promoted apoptosis of MDA-MB-231 cells. However, ST5 modification, either upregulation or downregulation, had no significant impact on tumor behaviors of MCF-7 cells. Mechanistically, ST5 protein ablation activated, while ST5-upregulation repressed the activities of phosphorylated ERK1/2 and JNK, and subsequently the expression of c-Myc. PD98059-mediated ERK1/2 inhibition abolished the stimulatory effects of ST5-depletion on ERK1/2/JNK/c-Myc signaling axis, and ST5 depletion-mediated cell over-proliferation and migration. Of note, ST5 reduction in invasive breast cancer cells should implicate in the hypermethylation of ST5 promoter region. CONCLUSION Our findings suggest that ST5 potentially acts as a tumor suppressor gene in invasive breast cancer through regulating ERK/JNK signaling pathway and provide a novel insight for breast cancer treatment.
Collapse
Affiliation(s)
- Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Mingli Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Academician Workstation of Chen Zhi-nan, Xi’an Medical University, Xi’an, China
| | - Shuai Chen
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Academician Workstation of Chen Zhi-nan, Xi’an Medical University, Xi’an, China
| |
Collapse
|
2
|
Ioannou MS, McPherson PS. Regulation of Cancer Cell Behavior by the Small GTPase Rab13. J Biol Chem 2016; 291:9929-37. [PMID: 27044746 DOI: 10.1074/jbc.r116.715193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
3
|
Ioannou MS, Bell ES, Girard M, Chaineau M, Hamlin JNR, Daubaras M, Monast A, Park M, Hodgson L, McPherson PS. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. ACTA ACUST UNITED AC 2015; 208:629-48. [PMID: 25713415 PMCID: PMC4347646 DOI: 10.1083/jcb.201407068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DENND2B, in a complex with the Rab13 effector MICAL-L2, activates Rab13 at the cell periphery, promoting the dynamic remodeling of the cell’s leading edge during tumor cell migration both in vitro and in vivo. The small guanosine triphosphatase Rab13 functions in exocytic vesicle trafficking in epithelial cells. Alterations in Rab13 activity have been observed in human cancers, yet the mechanism of Rab13 activation and its role in cancer progression remain unclear. In this paper, we identify the DENN domain protein DENND2B as the guanine nucleotide exchange factor for Rab13 and develop a novel Förster resonance energy transfer–based Rab biosensor to reveal activation of Rab13 by DENND2B at the leading edge of migrating cells. DENND2B interacts with the Rab13 effector MICAL-L2 at the cell periphery, and this interaction is required for the dynamic remodeling of the cell’s leading edge. Disruption of Rab13-mediated trafficking dramatically limits the invasive behavior of epithelial cells in vitro and the growth and migration of highly invasive cancer cells in vivo. Thus, blocking Rab13 activation by DENND2B may provide a novel target to limit the spread of epithelial cancers.
Collapse
Affiliation(s)
- Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Emily S Bell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jason N R Hamlin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mark Daubaras
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Anie Monast
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Morag Park
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
4
|
Biswas NK, Chandra V, Sarkar-Roy N, Das T, Bhattacharya RN, Tripathy LN, Basu SK, Kumar S, Das S, Chatterjee A, Mukherjee A, Basu P, Maitra A, Chattopadhyay A, Basu A, Dhara S. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM. Sci Rep 2015; 5:7915. [PMID: 25604826 PMCID: PMC4300501 DOI: 10.1038/srep07915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023] Open
Abstract
Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.
Collapse
Affiliation(s)
- Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Vikas Chandra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Neeta Sarkar-Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Tapojyoti Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Laxmi N Tripathy
- Medica Superspeciality Hospital, 127 Mukundapur, Kolkata 700099, India
| | - Sunandan K Basu
- Medica Superspeciality Hospital, 127 Mukundapur, Kolkata 700099, India
| | - Shantanu Kumar
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankur Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Pryiadarshi Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Surajit Dhara
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
5
|
Abstract
The DENN domain is a common, evolutionarily ancient, and conserved protein module, yet it has gone largely unstudied; until recently, little was known regarding its functional roles. New studies reveal that various DENN domains interact directly with members of the Rab family of small GTPases and that DENN domains function enzymatically as Rab-specific guanine nucleotide exchange factors. Thus, DENN domain proteins appear to be generalized regulators of Rab function. Study of these proteins will provide new insights into Rab-mediated membrane trafficking pathways.
Collapse
Affiliation(s)
- Andrea L. Marat
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Hatem Dokainish
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S. McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Roth CL, Mastronardi C, Lomniczi A, Wright H, Cabrera R, Mungenast AE, Heger S, Jung H, Dubay C, Ojeda SR. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty. Endocrinology 2007; 148:5147-61. [PMID: 17615149 DOI: 10.1210/en.2007-0634] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Much has been learned in recent years about the central mechanisms controlling the initiation of mammalian puberty. It is now clear that this process requires the interactive participation of several genes. Using a combination of high throughput, molecular, and bioinformatics strategies, in combination with a system biology approach, we singled out from the hypothalamus of nonhuman primates and rats a group of related genes whose expression increases at the time of female puberty. Although these genes [henceforth termed tumor-related genes (TRGs)] have diverse cellular functions, they share the common feature of having been earlier identified as involved in tumor suppression/tumor formation. A prominent member of this group is KiSS1, a gene recently shown to be essential for the occurrence of puberty. Cis-regulatory analysis revealed the presence of a hierarchically arranged gene set containing five major hubs (CDP/CUTL1, MAF, p53, YY1, and USF2) controlling the network at the transcriptional level. In turn, these hubs are heavily connected to non-TRGs involved in the transcriptional regulation of the pubertal process. TRGs may be expressed in the mammalian hypothalamus as components of a regulatory gene network that facilitates and integrates cellular and cell-cell communication programs required for the acquisition of female reproductive competence.
Collapse
Affiliation(s)
- Christian L Roth
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Harsay E, Schekman R. Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 2007; 18:1203-19. [PMID: 17229886 PMCID: PMC1838974 DOI: 10.1091/mbc.e06-11-1035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.
Collapse
Affiliation(s)
- Edina Harsay
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
8
|
Quarto N, Fong KD, Longaker MT. Gene profiling of cells expressing different FGF-2 forms. Gene 2005; 356:49-68. [PMID: 16023796 DOI: 10.1016/j.gene.2005.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/18/2005] [Accepted: 05/04/2005] [Indexed: 11/19/2022]
Abstract
Fibroblast Growth Factor-2 (FGF-2) induces cell proliferation, cell migration, embryonic development, cell differentiation, angiogenesis and malignant transformation. The four forms of FGF-2 (Low Molecular Weight) and (High Molecular Weights) are alternative translation products, and have a different subcellular localization: the high molecular weight (HMWFGF-2) forms are nuclear while the low molecular weight form, (LMWFGF-2) is mainly cytoplasmic. Our previous work demonstrated NIH 3T3 cells expressing different FGF-2 forms, displayed a different phenotype, suggesting that nuclear and cytoplasmic forms of FGF-2 may have different functions. Here we report a cDNA microarray-based study in NIH 3T3 fibroblasts expressing different FGF-2 forms. Several candidate genes that affect cell-cycle, tumor suppression, adhesion and transcription were identified as possible mediators of the HMWFGF-2 phenotype and signaling pattern. These results demonstrated that HMWFGF-2 and LMWFGF-2 target the expression of different genes. Particularly, our data suggest that HMWFGF-2 forms may function as inducers of growth inhibition and tumor suppression activities.
Collapse
Affiliation(s)
- Natalina Quarto
- Department of Surgery, School of Medicine Stanford University, 257 Campus Drive, Stanford, CA 94305-5148, USA.
| | | | | |
Collapse
|
9
|
Majidi M, Gutkind JS, Lichy JH. Deletion of the COOH terminus converts the ST5 p70 protein from an inhibitor of RAS signaling to an activator with transforming activity in NIH-3T3 cells. J Biol Chem 2000; 275:6560-5. [PMID: 10692462 DOI: 10.1074/jbc.275.9.6560] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the human protein ST5-p70 correlates with reduced tumorigenic phenotype in mammalian cells, reverts their transformed phenotype, and restores their contact-dependent growth. Furthermore, expression of p70 in COS-7 cells suppresses activation of mitogen activated protein kinase MAPK/ERK2 by the largest ST5 product, p126, in response to epidermal growth factor stimulation. Here we show that deletions of the COOH-terminal region of p70 transform NIH3T3 cells and induce their anchorage-independent growth. Analysis of signaling leading to MAPK/ERK2 stimulation revealed that in COS-7 cells, expression of either p70-DeltaC1 or p70-DeltaC2 markedly enhanced ERK2 activity in a growth factor-independent manner. Whereas wild-type p70 slightly inhibited ERK2 activation by RAS and MEK2, co-expression or p70-DeltaC1 or p70-DeltaC2 with either protein stimulated ERK2 cooperatively. This activity was completely blocked by the dominant negative mutants RAS17N or MEKAA, suggesting that p70 functions upstream of RAS. Unlike wild-type p70, expression of p70-DeltaC1 or p70-DeltaC2 mutant did not interfere with the ability of ST5-p126 to stimulate ERK2. Taken together, the data suggest that the COOH-terminal tail, residues 489-609, contains some of the critical determinants for the function of p70. Loss of this region converts the protein from an inhibitor to a constitutive activator of the RAS-ERK2 pathway.
Collapse
Affiliation(s)
- M Majidi
- Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington, D. C. 20306-6000, USA.
| | | | | |
Collapse
|