1
|
Schmitz L, Kronstad JW, Heimel K. Conditional gene expression reveals stage-specific functions of the unfolded protein response in the Ustilago maydis-maize pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:258-271. [PMID: 31802604 PMCID: PMC6988420 DOI: 10.1111/mpp.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilago maydis is a model organism for the study of biotrophic plant-pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| | - James W. Kronstad
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
- Michael Smith LaboratoriesDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Kai Heimel
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| |
Collapse
|
2
|
Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS One 2017; 12:e0189193. [PMID: 29232376 PMCID: PMC5726650 DOI: 10.1371/journal.pone.0189193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
General Control Non-derepressible 5 (GCN5) and Alteration/Deficiency in Activation 2 and 3 proteins (ADA2 and ADA3, respectively) are subunits of the Histone AcetylTransferase (HAT) module of SAGA- and ATAC-type co-activators. We previously reported four new interacting partners of human ADA3 identified by screening a human fetal brain cDNA library using yeast two hybrid technology. One of these partners was Apoptosis-Antagonizing Transcription Factor (AATF), also known as Che-1, an RNA polymerase II-binding protein with a number of roles in different cellular processes including regulation of transcription, cell proliferation, cell cycle control, DNA damage responses and apoptosis. Che-1/AATF is a potential therapeutic target for cancer treatments. In this study, we aimed to identify whether besides ADA3, other components of the HAT modules of SAGA and ATAC complexes, human ADA2 and GCN5 also interact with Che-1/AATF. Co-immunoprecipitation and co-localization experiments were used to demonstrate association of AATF both with two ADA2 isoforms, ADA2A and ADA2B and with GCN5 proteins in human cells and yeast two-hybrid assays to delineate domains in the ADA2 and GCN5 proteins required for these interactions. These findings provide new insights into the pathways regulated by ADA-containing protein complexes.
Collapse
|
3
|
Ganai SA, Ramadoss M, Mahadevan V. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 2016; 14:55-71. [PMID: 26487502 PMCID: PMC4787286 DOI: 10.2174/1570159x13666151021111609] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their
expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.
Collapse
Affiliation(s)
| | | | - Vijayalakshmi Mahadevan
- School of Chemical & Biotechnology SASTRA University Tirumalaisamudram, Thanjavur - 613 401 India.
| |
Collapse
|
4
|
Willmer T, Peres J, Mowla S, Abrahams A, Prince S. The T-Box factor TBX3 is important in S-phase and is regulated by c-Myc and cyclin A-CDK2. Cell Cycle 2016; 14:3173-83. [PMID: 26266831 DOI: 10.1080/15384101.2015.1080398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor, TBX3, is critical for the formation of, among other structures, the heart, limbs and mammary glands and haploinsufficiency of the human TBX3 gene result in ulnar-mammary syndrome which is characterized by hypoplasia of these structures. On the other hand, the overexpression of TBX3 is a feature of a wide range of cancers and it has been implicated in several aspects of the oncogenic process. This includes its ability to function as an immortalizing gene and to promote proliferation through actively repressing negative cell cycle regulators. Together this suggests that TBX3 levels may need to be tightly regulated during the cell cycle. Here we demonstrate that this is indeed the case and that TBX3 mRNA and protein levels peak at S-phase and that the TBX3 protein is predominantly localized to the nucleus of S-phase cells. The increased levels of TBX3 in S-phase are shown to occur transcriptionally through activation by c-Myc at E-box motifs located at -1210 and -701 bps and post-translationally by cyclin A-CDK2 phosphorylation. Importantly, when TBX3 is depleted by shRNA the cells accumulate in S-phase. These results suggest that TBX3 is required for cells to transit through S-phase and that this function may be linked to its role as a pro-proliferative factor.
Collapse
Affiliation(s)
- Tarryn Willmer
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Jade Peres
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Shaheen Mowla
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Amaal Abrahams
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| | - Sharon Prince
- a Department of Human Biology ; Faculty of Health Sciences; University of Cape Town ; Cape Town , South Africa
| |
Collapse
|
5
|
Fritz A, Sinha S, Marella N, Berezney R. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells. J Cell Biochem 2013; 114:1074-83. [PMID: 23161755 DOI: 10.1002/jcb.24447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/13/2023]
Abstract
The replication timing of nine genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1, and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN, and cMYC) show significant differences (P < 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51, and cMYC) showed significant changes in gene expression (≥2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer-related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells.
Collapse
Affiliation(s)
- Andrew Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
6
|
Eckel-Mahan K, Sassone-Corsi P. Epigenetic Regulation of the Molecular Clockwork. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:29-50. [DOI: 10.1016/b978-0-12-396971-2.00002-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Wu W, Cheng Y, Keller CA, Ernst J, Kumar SA, Mishra T, Morrissey C, Dorman CM, Chen KB, Drautz D, Giardine B, Shibata Y, Song L, Pimkin M, Crawford GE, Furey TS, Kellis M, Miller W, Taylor J, Schuster SC, Zhang Y, Chiaromonte F, Blobel GA, Weiss MJ, Hardison RC. Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Res 2011; 21:1659-71. [PMID: 21795386 DOI: 10.1101/gr.125088.111] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interplays among lineage-specific nuclear proteins, chromatin modifying enzymes, and the basal transcription machinery govern cellular differentiation, but their dynamics of action and coordination with transcriptional control are not fully understood. Alterations in chromatin structure appear to establish a permissive state for gene activation at some loci, but they play an integral role in activation at other loci. To determine the predominant roles of chromatin states and factor occupancy in directing gene regulation during differentiation, we mapped chromatin accessibility, histone modifications, and nuclear factor occupancy genome-wide during mouse erythroid differentiation dependent on the master regulatory transcription factor GATA1. Notably, despite extensive changes in gene expression, the chromatin state profiles (proportions of a gene in a chromatin state dominated by activating or repressive histone modifications) and accessibility remain largely unchanged during GATA1-induced erythroid differentiation. In contrast, gene induction and repression are strongly associated with changes in patterns of transcription factor occupancy. Our results indicate that during erythroid differentiation, the broad features of chromatin states are established at the stage of lineage commitment, largely independently of GATA1. These determine permissiveness for expression, with subsequent induction or repression mediated by distinctive combinations of transcription factors.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cohen SM, Chastain PD, Rosson GB, Groh BS, Weissman BE, Kaufman DG, Bultman SJ. BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res 2010; 38:6906-19. [PMID: 20571081 PMCID: PMC2978342 DOI: 10.1093/nar/gkq559] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.
Collapse
Affiliation(s)
- Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
10
|
Chen L, Peng Z, Bateman E. In vivo interactions of the Acanthamoeba TBP gene promoter. Nucleic Acids Res 2004; 32:1251-60. [PMID: 14976219 PMCID: PMC390285 DOI: 10.1093/nar/gkh297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription of the TATA box binding protein (TBP) gene in Acanthamoeba castellanii is regulated by TATA box binding protein promoter binding factor (TPBF), which binds to an upstream TBP promoter element to stimulate transcription, and to a TATA proximal element, where it represses transcription. In order to extend these observations to the in vivo chromatin context, the TBP gene was examined by in situ footprinting and chromatin immunoprecipitation (ChIP). Acanthamoeba DNA is nucleosomal with a repeat of approximately 160 bp, and an intranucleosomal DNA periodicity of 10.5 bp. The TBP gene comprises a 220 bp micrococcal nuclease hypersensitive site corresponding to the promoter regulatory elements previously identified, flanked by protected regions of a size consistent with the presence of nucleosomes. ChIP data indicated that TPBF is associated with the TBP, TPBF and MIL gene promoters, but not to the CSP21, MIIHC, 5SrRNA or 39SrRNA promoters, or to the MIL gene C-terminal region. Binding by TPBF to the TPBF and MIL gene promoters was confirmed by in vitro assays. These results validate the in vitro model for TBP gene regulation and further suggest that TPBF may be autoregulated and may participate in the regulation of the MIL gene.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
11
|
Abstract
Over the last decade significant advances have been made in our understanding of the molecular mechanisms that control early aspects of mammalian liver development. Studies using tissue explant cultures and molecular biology techniques as well as the analysis of transgenic and knockout mice have identified signaling molecules and transcription factors that are necessary for the onset of hepatogenesis. This review presents an overview of these studies and discusses the role of individual factors during hepatic development.
Collapse
Affiliation(s)
- Stephen A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Banavali NK, Roux B. Atomic Radii for Continuum Electrostatics Calculations on Nucleic Acids. J Phys Chem B 2002. [DOI: 10.1021/jp025852v] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nilesh K. Banavali
- Department of Biochemistry and Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
| | - Benoıt Roux
- Department of Biochemistry and Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
| |
Collapse
|
13
|
Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res 2002; 278:1-11. [PMID: 12126952 DOI: 10.1006/excr.2002.5555] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure plays a critical role in eukaryotic gene transcriptional regulation. The beta-globin locus provides an ideal system within which to study the interplay between chromatin structure and transcriptional regulation. The process of beta-globin locus activation is remarkably intricate and involves at least two distinct events: chromatin opening and gene activation. Great progress has been made in recent years in understanding how locus control regions confer high-level expression to linked genes. Current interest focuses on some special events, including formation of locus control region hypersensitivity sites, ATP-dependent chromatin remodeling, localized H3 hyperacetylation, and intergenic transcription, which link chromatin and beta-globin locus regulation. These events, and their possible molecular bases, are summarized together with speculations concerning their connections.
Collapse
Affiliation(s)
- Xiang Hui Fu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, P.R. China
| | | | | |
Collapse
|