1
|
Liao PH, Wang YY, Wang WC, Chen CH, Kao YH, Hsu JW, Chen CY, Chen PH, Yuan SS, Chen YK. Overexpression of sprouty2 in human oral squamous cell carcinogenesis. Arch Oral Biol 2017; 87:131-142. [PMID: 29291435 DOI: 10.1016/j.archoralbio.2017.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study investigated SPRY2 expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). METHODS 75 OSCCs, 23 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and eight normal oral mucosa (NOM) tissues were used for immunohistochemical staining; three OSCC tissues with normal tissue counterparts were used for western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a NOM primary culture (NOMPC) were used for western blotting; OCCLs and NOMPC were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, invasion and BRAF V600E point mutation assays. RESULTS Significantly increased SPRY2 protein expression was observed in OSCCs as compared with NOM, and SPRY2 expression also differed between OSCC patients with and without lymph-node metastasis. SPRY2 protein and mRNA expressions were significantly enhanced as compared with NOMPC. Increased phospho-ERK expression was observed in OCCLs as compared with NOMPC. Significant decreases in the proliferation rate, degrees of migration and invasion were noted in OCCLs with SPRY2 siRNA transfection as compared with those without SPRY2 siRNA transfection. No BRAF V600E point mutation was observed for OCCLs as compared with NOMPC. A significantly increased SPRY2 protein level was noted in OPMDs with MT as compared to those without MT, and was also found in OPMDs with MT in comparison with NOM, as well as in DOK in comparison with NOMPC. CONCLUSIONS Our results indicated that SPRY2 overexpression is associated with human oral squamous-cell carcinogenesis.
Collapse
Affiliation(s)
- Pei-Hsien Liao
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hsun Kao
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jing-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Holgren C, Dougherty U, Edwin F, Cerasi D, Taylor I, Fichera A, Joseph L, Bissonnette M, Khare S. Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: sprouty/c-Met upregulation in human colonic adenocarcinomas. Oncogene 2010; 29:5241-53. [PMID: 20661223 PMCID: PMC2945447 DOI: 10.1038/onc.2010.264] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sprouty negatively regulates receptor tyrosine kinase signals by inhibiting Ras/ERK pathways. Sprouty is down-regulated in breast, prostate and liver cancers and appears to function as a tumor suppressor. The role of Sprouty in colonic neoplasia, however, has not been investigated. Sprouty-2 protein and mRNA transcripts were significantly up-regulated in human colonic adenocarcinomas. Strikingly, the c-Met receptor was also upregulated in tumors with increased sprouty-2. To delineate a potential causal relationship between sprouty-2 and c-Met, K-ras mutant HCT-116 colon cancer cells were transduced with purified TAT-sprouty-2 protein or stably transfected with full-length human sprouty-2 gene. Sprouty-2 up-regulation significantly increased cell proliferation by accelerating cell cycle transition. Sprouty-2 transfectants demonstrated strong up-regulation of c-Met protein and mRNA transcripts and hepatocyte growth factor stimulated ERK and Akt phosphorylation and enhanced cell migration and invasion. In contrast, knockdown of c-Met by siRNA significantly decreased cell proliferation, migration and invasion in sprouty-2 transfectants. Further, knockdown of sprouty-2 by siRNA in parental HT-29 and LS-174T colon cancer cells also decreased cell invasion. Sprouty-2 transfectants formed significantly larger tumor xenografts and demonstrated increased proliferation and angiogenesis and suppressed apoptosis. Sprouty-2 tumors metastasized to liver from cecal orthotopic implants suggesting sprouty-2 might also enhance metastatic signals. Thus in colon cancer sprouty functions as an oncogene and its effects are mediated in part by c-Met up-regulation.
Collapse
Affiliation(s)
- C Holgren
- Hines Veterans Affairs Medical Center, Hines, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Uchida S, Schneider A, Wiesnet M, Jungblut B, Zarjitskaya P, Jenniches K, Kreymborg KG, Seeger W, Braun T. An integrated approach for the systematic identification and characterization of heart-enriched genes with unknown functions. BMC Genomics 2009; 10:100. [PMID: 19267916 PMCID: PMC2657154 DOI: 10.1186/1471-2164-10-100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 03/06/2009] [Indexed: 12/11/2022] Open
Abstract
Background High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression). Results We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes. Conclusion We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.
Collapse
Affiliation(s)
- Shizuka Uchida
- Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Xie H, Diber A, Pollock S, Nemzer S, Safer H, Meloon B, Olson A, Hwang JJ, Endress GA, Savitsky K, Gill-More R. Bridging expressed sequence alignments through targeted cDNA sequencing. Genomics 2004; 83:572-6. [PMID: 15028280 DOI: 10.1016/j.ygeno.2003.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 07/30/2003] [Indexed: 11/21/2022]
Abstract
One of the major challenges in genome research is the identification of the complete set of genes in a genome. Alignments of expressed sequences (RNA and EST) with genomic sequences have been used to characterize genes. However, the number of alignments far exceeds the likely number of genes in a genome, suggesting that, for many genes, two or more alignments can be joined through overlapping sequences to yield accurate gene structures. High-throughput EST sequencing becomes less efficient in closing those alignment gaps due to its nonselective nature. We sought to bridge these alignments through a novel approach: targeted cDNA sequencing. Human expressed sequences from GenBank version 124 were aligned with the genomic sequence from NCBI build 24 using LEADS, Compugen's EST and RNA clustering and assembly software system. Nine hundred forty-eight pairs of alignments were selected based on EST clone information and/or their homology to the same known proteins. Reverse transcriptase PCR and sequencing yielded sequences for 363 of those pairs. These sequences helped characterize over 60 novel or otherwise incomplete genes in the recent UniGene build 153, which included over 1 million additional ESTs. These results indicate that this integrated and targeted strategy, combining computational prediction and experimental cDNA sequencing, can efficiently generate the overlapping sequences and enable the full characterization of genomes. Additional information about the contig pairs, the resultant overlapping sequences, tissue sources, and tissue profiles are available in a supplemental file.
Collapse
Affiliation(s)
- Hanqing Xie
- Compugen, Inc., 7 Center Drive, Suite 9, Jamesburg, NJ 08831, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xie H, Zhu WY, Wasserman A, Grebinskiy V, Olson A, Mintz L. Computational analysis of alternative splicing using EST tissue information. Genomics 2002; 80:326-30. [PMID: 12213203 DOI: 10.1006/geno.2002.6841] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expressed sequence tags (ESTs) from normal and tumor tissues have been deposited in public databases. These ESTs and all mRNA sequences were aligned with the human genome sequence using LEADS, Compugen's alternative splicing modeling platform. We developed a novel computational approach to analyze tissue information of aligned ESTs in order to identify cancer-specific alternative splicing and gene segments highly expressed in particular cancers. Several genes, including one encoding a possible pre-mRNA splicing factor, displayed cancer-specific alternative splicing. In addition, multiple candidate gene segments highly expressed in colon cancers were identified.
Collapse
Affiliation(s)
- Hanqing Xie
- Compugen Inc. 7 Centre Drive, Jamesburg, New Jersey 08831, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Brett D, Pospisil H, Valcárcel J, Reich J, Bork P. Alternative splicing and genome complexity. Nat Genet 2002; 30:29-30. [PMID: 11743582 DOI: 10.1038/ng803] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alternative splicing of mRNA allows many gene products with different functions to be produced from a single coding sequence. It has recently been proposed as a mechanism by which higher-order diversity is generated. Here we show, using large-scale expressed sequence tag (EST) analysis, that among seven different eukaryotes the amount of alternative splicing is comparable, with no large differences between humans and other animals.
Collapse
Affiliation(s)
- David Brett
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, Berlin-Buch, 13125 Germany
| | | | | | | | | |
Collapse
|
8
|
Abstract
Comprehensive Cancer Centres are now recognized as an important weapon in the war on cancer, but they had to fight a very different battle to become accepted by the academic community. Why were these centres developed? How do they contribute to cancer research? Have they achieved the aims for which they were set up? And how should they be improved? It is important to answer these questions because we believe that cancer centres, though in need of improvement, are vital parts of our anticancer strategy.
Collapse
Affiliation(s)
- D Nathan
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|