1
|
Gondal MN, Butt RN, Shah OS, Sultan MU, Mustafa G, Nasir Z, Hussain R, Khawar H, Qazi R, Tariq M, Faisal A, Chaudhary SU. A Personalized Therapeutics Approach Using an In Silico Drosophila Patient Model Reveals Optimal Chemo- and Targeted Therapy Combinations for Colorectal Cancer. Front Oncol 2021; 11:692592. [PMID: 34336681 PMCID: PMC8323493 DOI: 10.3389/fonc.2021.692592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
In silico models of biomolecular regulation in cancer, annotated with patient-specific gene expression data, can aid in the development of novel personalized cancer therapeutic strategies. Drosophila melanogaster is a well-established animal model that is increasingly being employed to evaluate such preclinical personalized cancer therapies. Here, we report five Boolean network models of biomolecular regulation in cells lining the Drosophila midgut epithelium and annotate them with colorectal cancer patient-specific mutation data to develop an in silico Drosophila Patient Model (DPM). We employed cell-type-specific RNA-seq gene expression data from the FlyGut-seq database to annotate and then validate these networks. Next, we developed three literature-based colorectal cancer case studies to evaluate cell fate outcomes from the model. Results obtained from analyses of the proposed DPM help: (i) elucidate cell fate evolution in colorectal tumorigenesis, (ii) validate cytotoxicity of nine FDA-approved CRC drugs, and (iii) devise optimal personalized treatment combinations. The personalized network models helped identify synergistic combinations of paclitaxel-regorafenib, paclitaxel-bortezomib, docetaxel-bortezomib, and paclitaxel-imatinib for treating different colorectal cancer patients. Follow-on therapeutic screening of six colorectal cancer patients from cBioPortal using this drug combination demonstrated a 100% increase in apoptosis and a 100% decrease in proliferation. In conclusion, this work outlines a novel roadmap for decoding colorectal tumorigenesis along with the development of personalized combinatorial therapeutics for preclinical translational studies.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rida Nasir Butt
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Osama Shiraz Shah
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Umer Sultan
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ghulam Mustafa
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Nasir
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Risham Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Huma Khawar
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Cancer Therapeutics Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Millet-Boureima C, Selber-Hnatiw S, Gamberi C. Drug discovery and chemical probing in Drosophila. Genome 2020; 64:147-159. [PMID: 32551911 DOI: 10.1139/gen-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flies are increasingly utilized in drug discovery and chemical probing in vivo, which are novel technologies complementary to genetic probing in fundamental biological studies. Excellent genetic conservation, small size, short generation time, and over one hundred years of genetics make Drosophila an attractive model for rapid assay readout and use of analytical amounts of compound, enabling the experimental iterations needed in early drug development at a fraction of time and costs. Here, we describe an effective drug-testing pipeline using adult flies that can be easily implemented to study several disease models and different genotypes to discover novel molecular insight, probes, quality lead compounds, and develop novel prototype drugs.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Susannah Selber-Hnatiw
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
3
|
Bangi E. A Drosophila Based Cancer Drug Discovery Framework. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:237-248. [PMID: 31520359 DOI: 10.1007/978-3-030-23629-8_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years, there has been growing interest in using Drosophila for drug discovery as it provides a unique opportunity to screen small molecules against complex disease phenotypes in a whole animal setting. Furthermore, gene-compound interaction experiments that combine compound feeding with complex genetic manipulations enable exploration of compound mechanisms of response and resistance to an extent that is difficult to achieve in other experimental models. Here, I discuss how compound screening and testing approaches reported in Drosophila fit into the current cancer drug discovery pipeline. I then propose a framework for a Drosophila-based cancer drug discovery strategy which would allow the Drosophila research community to effectively leverage the power of Drosophila to identify candidate therapeutics and push our discoveries into the clinic.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
4
|
Abstract
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools.
Collapse
Affiliation(s)
- M Sonoshita
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - R L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
5
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
6
|
Gao G, Chen L, Huang C. Anti-cancer drug discovery: update and comparisons in yeast, Drosophila, and zebrafish. Curr Mol Pharmacol 2015; 7:44-51. [PMID: 24993385 DOI: 10.2174/1874467207666140702113629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 12/17/2022]
Abstract
Discovery of novel cancer chemotherapeutics focuses on screening and identifying compounds that can target 'cancer-specific' biological processes while causing minimal toxicity to non-tumor cells. Alternatively, model organisms with highly conserved cancer-related cellular processes relative to human cells may offer new opportunities for anticancer drug discovery when combined with chemical screening. Some organisms used for chemotherapeutic discovery include yeast, Drosophila, and zebrafish which are similar in important ways relevant to cancer study but offer distinct advantages as well. Here, we describe these model attributes and the rationale for using them in cancer drug screening research.
Collapse
Affiliation(s)
| | | | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| |
Collapse
|
7
|
Tram NTQ, Trang NTT, Thao DTP, Thuoc TL. Production of Polyclonal Anti-dUCH (Drosophila Ubiquitin Carboxyl-terminal Hydrolase) Antibodies. Monoclon Antib Immunodiagn Immunother 2013; 32:105-12. [DOI: 10.1089/mab.2012.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nguyen Thi Quynh Tram
- Department of Molecular and Environmental Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thu Trang
- Department of Molecular and Environmental Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tran Linh Thuoc
- Department of Molecular and Environmental Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Gladstone M, Su TT. Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 2011; 38:497-504. [PMID: 22035870 DOI: 10.1016/j.jgg.2011.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 01/05/2023]
Abstract
Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety. It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later. In this regard, it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays. Drosophila melanogaster has emerged as a potential whole animal model for drug screening. Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer. A recent review provides a comprehensive summary of drug screening in Drosophila, but with an emphasis on neurodegenerative disorders. Here, we review Drosophila screens in the literature aimed at cancer therapeutics.
Collapse
Affiliation(s)
- Mara Gladstone
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, USA
| | | |
Collapse
|
9
|
Aritakula A, Ramasamy A. Drosophila-based in vivo assay for the validation of inhibitors of the epidermal growth factor receptor/Ras pathway. J Biosci 2009; 33:731-42. [PMID: 19179761 DOI: 10.1007/s12038-008-0093-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is a common phenomenon observed in most cancers. Clinical treatment of such cancer involves the use of chemotherapeutic agents such as ge ? tinib and erlotinib which are inhibitors of tyrosine kinase (TK). These small molecules bind to the ATP-binding sites of the TK domain of EGFR.Our in silico analysis suggests that the TK domains of Drosophila and human EGFR are highly conserved. We therefore employed the Drosophila system to validate the in silico observations made with two important anticancer drugs.Since a large number of mutant flies are available,it was possible to investigate the various components of the EGFR/Ras/Raf/MAPK pathways and the phosphorylation status of diphosphorylated extracellular signal-regulated kinase (dp-ERK1/2). These studies confirm the binding of the anilinoquinazolines to the Drosophila EGFR protein and modulation of its activity. Thus,Drosophila appears to be a robust and simple model system for screening newer anticancer drugs that act as TK inhibitors (TKIs).
Collapse
Affiliation(s)
- Anuradha Aritakula
- Division of Biological Sciences,Vittal Mallya Scientific Research Foundation, K R Road,P O Box 406, Bangalore 560 004, India.
| | | |
Collapse
|
10
|
Sharma PR, Shanmugavel M, Saxena AK, Qazi GN. Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytother Res 2009; 22:1587-94. [PMID: 19067377 DOI: 10.1002/ptr.2511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AP9-cd, a synergistic lignan mixture from Cedrus deodara (Pinaceae) consisting of (-)-wikstromal, (-)-matairesinol and dibenzyl butyrolactol, depicted cytotoxic effects against numerous human cancer cell lines reported previously. The aim of this study was to investigate the mechanism of cell death in human cancer cells. The viability, morphological and ultrastructural changes in Molt-4 cells were investigated. Using the trypan blue exclusion assay, we demonstrated that AP9-cd significantly reduced the viability of Molt-4 cells in a time- and dose-dependent manner. Apoptotic assays using light microscopy revealed that this agent induced Molt-4 cell apoptosis at varied concentrations. The treatment causes a loss in cell viability by activating the apoptotic process as identified by light and electron microscopy. The morphological changes of intracellular organelles in Molt-4 cells treated with 30 microg/ml of AP9-cd revealed the disruption of mitochondrial cristae. Other features included the vacuolization, chromatin condensation and formation of micronuclei. Surface ultrastructural studies of four different tumor cell lines (Molt-4, HL-60, PC-3 and A-549) treated with AP9-cd depicted loss of surface projections, condensation and formation of apoptotic bodies. AP9-cd treatment to transgenic fruit fly, Drosophila, carrying human adenomatous polpyposis coli (hAPC) gene enhanced eye phenotypes and therefore may inhibit Wnt/Wg pathway which is important in the aetiology of a number of human cancers.
Collapse
Affiliation(s)
- Parduman R Sharma
- Division of Pharmacology, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road Jammu Tawi-180016, India.
| | | | | | | |
Collapse
|
11
|
Human APC sequesters β-catenin even in the absence of GSK-3β in a Drosophila model. Oncogene 2007; 27:2488-93. [DOI: 10.1038/sj.onc.1210890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Abstract
As populations benefit from increasing lifespans, neurodegenerative diseases have emerged as a critical health concern. How can the fruit fly, Drosophila melanogaster, contribute to curing human diseases of the nervous system? A growing number of neurodegenerative diseases, as well as other human diseases, are being modeled in Drosophila and used as a platform to identify and validate cellular pathways that contribute to neurodegeneration and to identify promising therapeutic targets by using a variety of approaches from screens to target validation. The unique properties and tools available in the Drosophila system, coupled with the fact that testing in vivo has proven highly productive, have accelerated the progress of testing therapeutic strategies in mice and, ultimately, humans. This review highlights selected recent applications to illustrate the use of Drosophila in studying neurodegenerative diseases.
Collapse
Affiliation(s)
- J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300, USA
| | | |
Collapse
|
13
|
Bajpai R, Sambrani N, Stadelmayer B, Shashidhara LS. Identification of a novel target of D/V signaling in Drosophila wing disc: Wg-independent function of the organizer. Gene Expr Patterns 2005; 5:113-21. [PMID: 15533826 DOI: 10.1016/j.modgep.2004.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 05/24/2004] [Indexed: 01/12/2023]
Abstract
Growth and patterning during Drosophila wing development are mediated by signaling from its dorso-ventral (D/V) organizer. Wingless is expressed in the D/V boundary and functions as a morphogen to activate target genes at a distance. Wingless pathway and thereby D/V signaling is negatively regulated by the homeotic gene Ultrabithorax (Ubx) to mediate haltere development. In an enhancer-trap screen to identify genes that show differential expression between wing and haltere discs, we identified CG32062, which codes for a RNA-binding protein. In wing discs, CG32062 is expressed only in non-D/V cells. CG32062 expression in non-D/V cells is dependent on Notch-mediated signaling from the D/V boundary. However, CG32062 expression is independent of Wingless function, thus providing evidence for a second long-range signaling mechanism of the D/V organizer. In haltere discs, CG32062 is negatively regulated by Ubx. The non-cell autonomous nature of Ubx-mediated repression of CG32062 expression suggests that the novel component of D/V signaling is also negatively regulated during haltere specification.
Collapse
Affiliation(s)
- Ruchi Bajpai
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India 500 007
| | | | | | | |
Collapse
|
14
|
Bajpai R, Makhijani K, Rao PR, Shashidhara LS. DrosophilaTwins regulates Armadillo levels in response to Wg/Wnt signal. Development 2004; 131:1007-16. [PMID: 14973271 DOI: 10.1242/dev.00980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein Phosphatase 2A (PP2A) has a heterotrimeric-subunit structure,consisting of a core dimer of ∼36 kDa catalytic and ∼65 kDa scaffold subunits complexed to a third variable regulatory subunit. Several studies have implicated PP2A in Wg/Wnt signaling. However, reports on the precise nature of PP2A role in Wg/Wnt pathway in different organisms are conflicting. We show that twins (tws), which codes for the B/PR55 regulatory subunit of PP2A in Drosophila, is a positive regulator of Wg/Wnt signaling. In tws- wing discs both short- and long-range targets of Wingless morphogen are downregulated. Analyses of tws- mitotic clones suggest that requirement of Tws in Wingless pathway is cell-autonomous. Epistatic genetic studies indicate that Tws functions downstream of Dishevelled and upstream of Sgg and Armadillo. Our results suggest that Tws is required for the stabilization of Armadillo/β-catenin in response to Wg/Wnt signaling. Interestingly,overexpression of, otherwise normal, Tws protein induce dominant-negative phenotypes. The conflicting reports on the role of PP2A in Wg/Wnt signaling could be due to the dominant-negative effect caused by the overexpression of one of the subunits.
Collapse
Affiliation(s)
- Ruchi Bajpai
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
15
|
Settle M, Gordon MD, Nadella M, Dankort D, Muller W, Jacobs JR. Genetic identification of effectors downstream of Neu (ErbB-2) autophosphorylation sites in a Drosophila model. Oncogene 2003; 22:1916-26. [PMID: 12673197 DOI: 10.1038/sj.onc.1206240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ErbB-2/Neu receptor tyrosine kinase plays a causal role in tumorigenesis in mammals. Neu's carboxyl terminus contains five phosphorylated tyrosines that mediate transformation through interaction with cytoplasmic SH2 or PTB containing adaptor proteins. We show that Drosophila adaptors signal from individual phosphotyrosine sites of rat Neu. Activated Neu expression in the midline glia suppressed apoptosis, similar to that seen with activated Drosophila EGF-R expression. Expression in eye and wing tissues generated graded phenotypes suitable for dosage-sensitive modifier genetics. Suppression of ErbB-2/Neu-induced phenotypes in tissues haplosufficient for genes encoding adaptor protein or second messengers suggests that pTyr 1227(YD) signals require Shc, and that pTyr 1253 (YE) signalling does not employ Ras, but does require Raf function. Signalling from pTyr (YB) was affected by a haplosufficiency in drk (Grb-2), and in genes thought to function downstream of Grb-2: dab, sos, csw (Shp-2), and dos (Gab-1). These data demonstrate the power of Drosophila genetics to unmask the molecules that signal from oncogenic ErbB-2/Neu.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Apoptosis/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- ErbB Receptors/physiology
- Eye/growth & development
- Eye Proteins/genetics
- Eye Proteins/physiology
- Gene Dosage
- Gene Expression Regulation, Developmental
- Morphogenesis/genetics
- Morphogenesis/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Phenotype
- Phosphorylation
- Phosphotyrosine/chemistry
- Protein Kinases
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Protein Tyrosine Phosphatases, Non-Receptor
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Rats
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/physiology
- Receptors, Invertebrate Peptide/physiology
- Recombinant Fusion Proteins/physiology
- Shc Signaling Adaptor Proteins
- Signal Transduction/genetics
- Signal Transduction/physiology
- Son of Sevenless Protein, Drosophila/genetics
- Son of Sevenless Protein, Drosophila/physiology
- Structure-Activity Relationship
- Wings, Animal/growth & development
Collapse
Affiliation(s)
- Mark Settle
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Prasad M, Bajpai R, Shashidhara LS. Regulation of Wingless and Vestigial expression in wing and haltere discs of Drosophila. Development 2003; 130:1537-47. [PMID: 12620980 DOI: 10.1242/dev.00393] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the third thoracic segment of Drosophila, wing development is suppressed by the homeotic selector gene Ultrabithorax (Ubx) in order to mediate haltere development. Previously, we have shown that Ubx represses dorsoventral (DV) signaling to specify haltere fate. Here we examine the mechanism of Ubx-mediated downregulation of DV signaling. We show that Wingless (Wg) and Vestigial (Vg) are differentially regulated in wing and haltere discs. In wing discs, although Vg expression in non-DV cells is dependent on DV boundary function of Wg, it maintains its expression by autoregulation. Thus, overexpression of Vg in non-DV cells can bypass the requirement for Wg signaling from the DV boundary. Ubx functions, at least, at two levels to repress Vestigial expression in non-DV cells of haltere discs. At the DV boundary, it functions downstream of Shaggy/GSK3 beta to enhance the degradation of Armadillo (Arm), which causes downregulation of Wg signaling. In non-DV cells, Ubx inhibits event(s) downstream of Arm, but upstream of Vg autoregulation. Repression of Vg at multiple levels appears to be crucial for Ubx-mediated specification of the haltere fate. Overexpression of Vg in haltere discs is enough to override Ubx function and cause haltere-to-wing homeotic transformations.
Collapse
Affiliation(s)
- Mohit Prasad
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | |
Collapse
|