1
|
Gallagher LE, Radhi OA, Abdullah MO, McCluskey AG, Boyd M, Chan EYW. Lysosomotropism depends on glucose: a chloroquine resistance mechanism. Cell Death Dis 2017; 8:e3014. [PMID: 28837152 PMCID: PMC5596595 DOI: 10.1038/cddis.2017.416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
There has been long-standing interest in targeting pro-survival autophagy as a combinational cancer therapeutic strategy. Clinical trials are in progress testing chloroquine (CQ) or its derivatives in combination with chemo- or radiotherapy for solid and haematological cancers. Although CQ has shown efficacy in preclinical models, its mechanism of action remains equivocal. Here, we tested how effectively CQ sensitises metastatic breast cancer cells to further stress conditions such as ionising irradiation, doxorubicin, PI3K-Akt inhibition and serum withdrawal. Contrary to the conventional model, the cytotoxic effects of CQ were found to be autophagy-independent, as genetic targeting of ATG7 or the ULK1/2 complex could not sensitise cells, like CQ, to serum depletion. Interestingly, although CQ combined with serum starvation was robustly cytotoxic, further glucose starvation under these conditions led to a full rescue of cell viability. Inhibition of hexokinase using 2-deoxyglucose (2DG) similarly led to CQ resistance. As this form of cell death did not resemble classical caspase-dependent apoptosis, we hypothesised that CQ-mediated cytotoxicity was primarily via a lysosome-dependent mechanism. Indeed, CQ treatment led to marked lysosomal swelling and recruitment of Galectin3 to sites of membrane damage. Strikingly, glucose starvation or 2DG prevented CQ from inducing lysosomal damage and subsequent cell death. Importantly, we found that the related compound, amodiaquine, was more potent than CQ for cell killing and not susceptible to interference from glucose starvation. Taken together, our data indicate that CQ effectively targets the lysosome to sensitise towards cell death but is prone to a glucose-dependent resistance mechanism, thus providing rationale for the related compound amodiaquine (currently used in humans) as a better therapeutic option for cancer.
Collapse
Affiliation(s)
- Laura E Gallagher
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| | - Ohood A Radhi
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| | - Mahmud O Abdullah
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| | - Anthony G McCluskey
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| | - Marie Boyd
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| | - Edmond Y W Chan
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland G4 0RE, UK
| |
Collapse
|
2
|
Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer 2015; 62:5-11. [PMID: 25175627 PMCID: PMC4237663 DOI: 10.1002/pbc.25200] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for (123)I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to (131) I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of (131)I-mIBG therapy.
Collapse
Affiliation(s)
- Keri A Streby
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Nilay Shah
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Mark A Ranalli
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Anne Kunkler
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| |
Collapse
|
3
|
Evaluation of Norepinephrine Transporter Expression and Metaiodobenzylguanidine Avidity in Neuroblastoma: A Report from the Children's Oncology Group. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2012; 2012:250834. [PMID: 23050139 PMCID: PMC3463166 DOI: 10.1155/2012/250834] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022]
Abstract
Purpose. (123)I-metaiodobenzylguanidine (MIBG) is used for the diagnostic evaluation of neuroblastoma. We evaluated the relationship between norepinephrine transporter (NET) expression and clinical MIBG uptake. Methods. Quantitative reverse transcription PCR (N = 82) and immunohistochemistry (IHC; N = 61) were performed for neuroblastoma NET mRNA and protein expression and correlated with MIBG avidity on diagnostic scans. The correlation of NET expression with clinical features was also performed. Results. Median NET mRNA expression level for the 19 MIBG avid patients was 12.9% (range 1.6-73.7%) versus 5.9% (range 0.6-110.0%) for the 8 nonavid patients (P = 0.31). Median percent NET protein expression was 50% (range 0-100%) in MIBG avid patients compared to 10% (range 0-80%) in nonavid patients (P = 0.027). MYCN amplified tumors had lower NET protein expression compared to nonamplified tumors (10% versus 50%; P = 0.0002). Conclusions. NET protein expression in neuroblastoma correlates with MIBG avidity. MYCN amplified tumors have lower NET protein expression.
Collapse
|
4
|
Sorensen A, Mairs RJ, Braidwood L, Joyce C, Conner J, Pimlott S, Brown M, Boyd M. In vivo evaluation of a cancer therapy strategy combining HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy. J Nucl Med 2012; 53:647-54. [PMID: 22414636 DOI: 10.2967/jnumed.111.090886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Oncolytic herpes viruses show promise for cancer treatment. However, it is unlikely that they will fulfill their therapeutic potential when used as monotherapies. An alternative strategy is to use these viruses not only as oncolytic agents but also as a delivery mechanism of therapeutic transgenes to enhance tumor cell killing. The herpes simplex virus 1 deletion mutant HSV1716 is a conditionally replicating oncolytic virus that selectively replicates in and lyses dividing tumor cells. It has a proven safety profile in clinical trials and has demonstrated efficacy as a gene-delivery vehicle. To enhance its therapeutic potential, we have engineered HSV1716 to convey the noradrenaline transporter (NAT) gene (HSV1716/NAT), whose expression endows infected cells with the capacity to accumulate the noradrenaline analog metaiodobenzylguanidine (MIBG). Thus, the NAT gene-infected cells are susceptible to targeted radiotherapy using radiolabeled (131)I-MIBG, a strategy that has already shown promise for combined targeted radiotherapy-gene therapy in cancer cells after plasmid-mediated transfection. METHODS We used HSV1716/NAT as a dual cell lysis-gene delivery vehicle for targeting the NAT transgene to human tumor xenografts in vivo. RESULTS In tumor xenografts that did not express NAT, intratumoral or intravenous injection of HSV1716/NAT induced the capacity for active uptake of (131)I-MIBG. Administration of HSV1716/NAT and (131)I-MIBG resulted in decreased tumor growth and enhanced survival relative to injection of either agent alone. Efficacy was dependent on the scheduling of delivery of the 2 agents. CONCLUSION These findings support a role for combination radiotherapy-gene therapy for cancer using HSV1716 expressing the NAT transgene and targeted radionuclide therapy.
Collapse
Affiliation(s)
- Annette Sorensen
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The University of Chicago, The Brain Tumor Center, Chicago, Illinois 60637, USA
| | | |
Collapse
|
6
|
Kölby L, Bernhardt P, Johanson V, Wängberg B, Muth A, Jansson S, Forssell-Aronsson E, Nilsson O, Ahlman H. Can Quantification of VMAT and SSTR Expression Be Helpful for Planning Radionuclide Therapy of Malignant Pheochromocytomas? Ann N Y Acad Sci 2006; 1073:491-7. [PMID: 17102116 DOI: 10.1196/annals.1353.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor-specific uptake of the radio-iodinated norepinephrine analogue meta-iodobenzylguanidine (MIBG) or uptake of radiolabeled somatostatin analogues via somatostatin receptors (SSTRs) are possibilities to diagnose and treat malignant pheochromocytomas/paragangliomas (PCs/PGs). The aims of this study were to investigate the quantitative expression of vesicular monoamine transporters (VMAT 1, 2) and all five SSTRs in malignant pheochromocytoma/paraganglioma (PC/PG) to evaluate the possibilities for tumor-specific radionuclide therapy. High scintigraphic 123I-MIBG uptake was found in two malignant PGs with high VMAT expression (500-730 copies of VMAT 1, 1,500-1,700 copies of VMAT 2 per 1,000 beta-actin), while no 123I-MIBG uptake was found in the malignant PG with low VMAT expression (330 copies of VMAT 1, 350 copies of VMAT 2 per 1,000 beta-actin). The two patients with high VMAT expression and high 123I-MIBG uptake were treated with 131I-MIBG (2-3x8 GBq). In vitro, the VMAT antagonist, reserpine, and the membrane pump inhibitor, clomipramine, inhibited the uptake of 123I-MIBG into tumor cells equally well (48% and 53% reduction respectively, P<0.001). SSTR2 was the most abundant receptor subtype, but in the two malignant PGs its expression was only 110-260 copies/1,000 beta-actin. The transporters at the cell membrane and in the vesicular membrane both appear to be of importance for the uptake of 123I-MIBG into malignant PC/PG. Quantitative determination of VMAT expression may be helpful in selecting patients suitable for radionuclide therapy with 131I-MIBG. The present data indicate that SSTR-mediated radionuclide therapy will not be effective treatment of malignant PC/PG.
Collapse
Affiliation(s)
- Lars Kölby
- Lundberg Laboratory for Cancer Research, Institute for Surgical Sciences, Department of Surgery, Göteborg University, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang W, Tai CK, Kershaw AD, Solly SK, Klatzmann D, Kasahara N, Chen TC. Use of replication-competent retroviral vectors in an immunocompetent intracranial glioma model. Neurosurg Focus 2006; 20:E25. [PMID: 16709031 PMCID: PMC8295718 DOI: 10.3171/foc.2006.20.4.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors had previously reported on a replication-competent retrovirus (RCR) that has been demonstrated to be stable, capable of effective transduction, and able to prolong survival in an intracranial tumor model in nude mice. The purpose of this study was further investigation of this gene therapy option. METHODS The transduction efficiency of RCR in RG2, an immunocompetent intracranial tumor model, was tested in Fischer 344 rats. The immune response to the RCR vector was expressed by the quantification of CD4, CD8, and CD11/b in tumors. The pharmaceutical efficacy of the suicide gene CD in converting prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) was measured using fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy. Animal survival data were plotted on Kaplan-Meier survival curves. Finally, the biodistribution of RCR was determined using quantitative real-time polymerase chain reaction (RT-PCR) for the detection of retroviral env gene. There was no evidence of viral transduction in normal brain cells. Neither severe inflammation nor immunoreaction occurred after intracranial injection of RCR-green fluorescent protein compared with phosphate-buffered saline (PBS). The 19F-NMR spectroscopy studies demonstrated that RCR-CD was able to convert 5-FC to 5-FU effectively in vitro. The infection of RG2 brain tumors with RCR-CD and their subsequent treatment with 5-FC significantly prolonged survival compared with that in animals with RG2 transduced tumors treated with PBS. In contrast to the nude mouse model, evidence of virus dissemination to the systemic organs after intracranial injection was not detected using RT-PCR. CONCLUSIONS The RCR-mediated suicide gene therapy described in this paper effectively transduced malignant gliomas in an immunocompetent in vivo rodent model, prolonging survival, without evidence of severe intracranial inflammation, and without local transduction of normal brain cells or systemic organs.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Mairs RJ, Fullerton NE, Cosimo E, Boyd M. Gene manipulation to enhance MIBG-targeted radionuclide therapy. Nucl Med Biol 2006; 32:749-53. [PMID: 16243651 DOI: 10.1016/j.nucmedbio.2005.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
The goal of targeted radionuclide therapy is the deposition in malignant cells of sterilizing doses of radiation without damaging normal tissue. The radiopharmaceutical [(131)I]meta-iodobenzylguanidine ([(131)I]MIBG) is an effective single agent for the treatment of neuroblastoma. However, uptake of the drug in malignant sites is insufficient to cure disease. A growing body of experimental evidence indicates exciting possibilities for the integration of gene transfer with [(131)I]MIBG-targeted radiotherapy.
Collapse
Affiliation(s)
- Robert J Mairs
- Targeted Therapy Group, Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow.
| | | | | | | |
Collapse
|
9
|
Sonabend AM, Ulasov IV, Lesniak MS. Conditionally replicative adenoviral vectors for malignant glioma. Rev Med Virol 2006; 16:99-115. [PMID: 16416455 DOI: 10.1002/rmv.490] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High-grade gliomas constitute an important challenge to modern medicine, and although great effort has been made to prolong patient survival, the prognosis for this disease remains poor. Due to recent discoveries in the molecular basis of gliomas, gene therapy is becoming a promising alternative. In this review, we discuss the use of conditionally replicative adenoviral vectors (CRAd) and their applications in neuro-oncology. Such vectors, when rendered conditionally replicative via transductional and transcriptional modifications, offer great promise for patients with malignant brain tumours. We review data from preclinical and clinical studies utilising such vectors and discuss the limitations and future perspectives of CRAd oncolytic therapy for malignant glioma.
Collapse
Affiliation(s)
- Adam M Sonabend
- Division of Neurosurgery, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
10
|
Cunningham AP, Love WK, Zhang RW, Andrews LG, Tollefsbol TO. Telomerase inhibition in cancer therapeutics: molecular-based approaches. Curr Med Chem 2006; 13:2875-88. [PMID: 17073634 PMCID: PMC2423208 DOI: 10.2174/092986706778521887] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current standard cancer therapies (chemotherapy and radiation) often cause serious adverse off-target effects. Drug design strategies are therefore being developed that will more precisely target cancer cells for destruction while leaving surrounding normal cells relatively unaffected. Telomerase, widely expressed in most human cancers but almost undetectable in normal somatic cells, provides an exciting drug target. This review focuses on recent pharmacogenomic approaches to telomerase inhibition. Antisense oligonucleotides, RNA interference, ribozymes, mutant expression, and the exploitation of differential telomerase expression as a strategy for targeted oncolysis are discussed here in the context of cancer therapeutics. Reports of synergism between telomerase inhibitors and traditional cancer therapeutic agents are also analyzed.
Collapse
MESH Headings
- Drug Design
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Humans
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Telomerase/antagonists & inhibitors
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- A P Cunningham
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
11
|
Fullerton NE, Mairs RJ, Kirk D, Keith WN, Carruthers R, McCluskey AG, Brown M, Wilson L, Boyd M. Application of Targeted Radiotherapy/Gene Therapy to Bladder Cancer Cell Lines. Eur Urol 2005; 47:250-6. [PMID: 15661422 DOI: 10.1016/j.eururo.2004.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVES A targeted radiotherapy/gene therapy strategy for transitional cell carcinoma of bladder is described, using [131I]meta-iodobenzylguanidine ([131I]MIBG), a radionuclide combined with a tumour-seeking drug. The aim is to decrease side effects from radiation toxicity, while increasing radiation dose to tumour. This tumour cell kill approach is augmented by radiological bystander effects. METHODS The bladder cancer cell line EJ138 was transfected with a gene encoding the noradrenaline transporter (NAT) under the control of tumour-specific telomerase promoters. Resulting uptake of [131I]MIBG was assessed by gamma-counting of cell lysates, and NAT transgene expression by real-time RT-PCR. Cell kill of monolayers and disaggregated spheroids, dosed with [131I]MIBG, was assessed by clonogenic assay. RESULTS NAT gene transfected cells exhibited a significantly increased active uptake of [131I]MIBG, leading to dose-dependent cell kill. Clonogenic assay of disaggregated spheroids, a three-dimensional model, suggested cell kill via bystander effects. CONCLUSIONS Expression of a functional NAT after in vitro transfection of bladder cancer cells with the NAT gene under the control of telomerase promoters leads to active uptake of [131I]MIBG and dose-dependent cell kill. This strategy could produce a promising new treatment option for bladder cancer.
Collapse
Affiliation(s)
- Natasha E Fullerton
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fullerton NE, Boyd M, Mairs RJ, Keith WN, Alderwish O, Brown MM, Livingstone A, Kirk D. Combining a targeted radiotherapy and gene therapy approach for adenocarcinoma of prostate. Prostate Cancer Prostatic Dis 2004; 7:355-63. [PMID: 15477875 DOI: 10.1038/sj.pcan.4500760] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A targeted radiotherapy/gene therapy approach for prostate cancer, using the radiopharmaceutical [(131)I]meta-iodobenzylguanidine ([(131)I]MIBG), would restrict the effects of radiotherapy to malignant cells, thereby increasing efficacy and decreasing morbidity of radiotherapy. Prostate cancer cells were transfected with a transgene encoding the noradrenaline transporter (NAT) under the control of tumour-specific telomerase promoters, enabling them to actively take up [(131)I]MIBG. This led to tumour-specific cell kill. This strategy has the advantage of generating a radiological bystander effect, leading to the destruction of neighbouring tumour cells that have escaped transfection. This targeted approach could be a promising tumour-specific treatment option for prostate cancer.
Collapse
Affiliation(s)
- N E Fullerton
- Centre for Oncology & Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
14
|
Abstract
Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer with low molecular weight radiopharmaceuticals.
Collapse
Affiliation(s)
- R. J. Mairs
- Targeted Therapy Group, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, Scotland, UK
| | - M. Boyd
- Targeted Therapy Group, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
15
|
Abstract
Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future.
Collapse
Affiliation(s)
- Tracy Robson
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - David G. Hirst
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| |
Collapse
|
16
|
Chen Z, Corey DR. Telomerase inhibitors: a new option for chemotherapy. Adv Cancer Res 2003. [DOI: 10.1016/s0065-230x(03)87294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Abstract
Telomeres are the structures that protect eukaryotic chromosomes from recognition by DNA damage surveillance mechanisms and are maintained in the germ line of multicellular animals by telomerase. In most human somatic cells telomerase is silenced during development and after extensive cell division telomeres shorten to trigger growth arrest. Around 80% of human cancers escape from this growth arrest by re-activating telomerase but at diagnosis many cancers still have very short telomeres making them very vulnerable to the inhibition of telomerase. As normal cells have a considerable telomere reserve, even in elderly humans, this makes telomerase an attractive and potentially selective anti-cancer drug target. Proof-of-principle experiments are reviewed which show that this optimism may be justified at least for the subset of human cancers with short telomeres. I also address many of the commonly raised concerns that surround telomerase as a target for anti-cancer drug design.
Collapse
Affiliation(s)
- Eric Kenneth Parkinson
- Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Höpfner M, Sutter AP, Beck NI, Barthel B, Maaser K, Jockers-Scherübl MC, Zeitz M, Scherübl H. Meta-iodobenzylguanidine induces growth inhibition and apoptosis of neuroendocrine gastrointestinal tumor cells. Int J Cancer 2002; 101:210-6. [PMID: 12209970 DOI: 10.1002/ijc.10553] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroendocrine gastrointestinal tumors take up, decarboxylate and store large amounts of monoamines. Radioactive-labeled monoamines like the norepinephrine analogue meta-iodobenzylguanidine (MIBG) have been used for the imaging of neuroendocrine tumors for many years. MIBG is selectively taken up via norepinephrine transporters (NETs) localized in the plasma membrane of neuroendocrine gastrointestinal tumor cells and thereby offers the possibility for specific and innovative therapeutic approaches. We investigated the antiproliferative, cytotoxic, cell cycle-arresting and apoptosis-inducing effects of MIBG in the neuroendocrine gastrointestinal tumor cell line STC-1 and for control in the nonneuroendocrine colorectal cancer cell line HT-29. RT-PCR revealed the expression of NET in STC-1 but not in HT-29 cells. MIBG dose-dependently induced cytotoxicity and growth inhibition of STC-1 cells. It potently induced apoptosis in STC-1 cells as assessed by changes in the mitochondrial membrane potential, activation of caspase-3 and DNA fragmentation. Moreover, MIBG altered the expression of several genes involved in proliferation, apoptosis and stress responses as shown by cDNA arrays. In contrast, neither cytotoxicity, nor growth inhibition nor induction of apoptosis were detected in response to MIBG in the NET-deficient colorectal cancer cell line HT-29. Our data show that MIBG induces growth inhibition and apoptosis in neuroendocrine gastrointestinal tumor cells. MIBG did not arrest the cell cycle in either cell line. Thus, monoamine transporters in the plasma membrane of neuroendocrine gastrointestinal tumor cells are promising targets for innovative and specific treatment strategies of these tumors.
Collapse
Affiliation(s)
- Michael Höpfner
- Medical Clinic I, University Hospital Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Boyd M, Mairs SC, Stevenson K, Livingstone A, Clark AM, Ross SC, Mairs RJ. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy. J Gene Med 2002; 4:567-76. [PMID: 12221650 DOI: 10.1002/jgm.293] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We describe an in vitro tumour model for targeted radiotherapy and gene therapy that incorporates cell population heterogeneity. MATERIALS AND METHODS Transfectant mosaic spheroids (TMS) and transfected mosaic monolayers (TMM) are composed of two cell populations derived from a single cell line. The cells of one population were transfected with the noradrenaline transporter gene (NAT), allowing active uptake of a radiolabelled targeting agent meta-[131I]iodobenzylguanidine ([131I]MIBG); the other population of cells was derived from the same parent line and transfected with a marker gene - green fluorescent protein (GFP). After treatment with [131I]MIBG, cell kill was determined in TMM by clonogenic assay and in TMS by clonogenic assay and spheroid growth delay. RESULTS We have used the TMS model to assess the 'radiological bystander effect' (radiation cross-fire) conferred by the beta-emitting radiopharmaceutical [131I] MIBG whose cellular uptake is facilitated by the transfected gene encoding NAT. We show that cell killing by [131I]MIBG in both TMS and TMM cultures increased in direct proportion to the fraction of NAT-transfected cells and that the degree of cell killing against fraction transfected was greater in TMS, suggestive of a greater bystander effect in the three-dimensional culture system. CONCLUSIONS TMS provide a useful model for assessment of the effectiveness of targeted radiotherapy in combination with gene therapy when less than 100% of the target cell population is expressing the NAT transgene. Further, this novel model offers the unique opportunity to investigate radiation-induced bystander effects and their contribution to cell cytotoxicity in radiotherapy and other gene therapy applications.
Collapse
Affiliation(s)
- M Boyd
- Department of Radiation Oncology, Glasgow University, CRC Beatson Laboratories, Glasgow, Scotland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002; 30:839-65. [PMID: 11842096 PMCID: PMC100331 DOI: 10.1093/nar/30.4.839] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/29/2001] [Accepted: 11/29/2001] [Indexed: 01/14/2023] Open
Abstract
The extremities of eukaryotic chromosomes are called telomeres. They have a structure unlike the bulk of the chromosome, which allows the cell DNA repair machinery to distinguish them from 'broken' DNA ends. But these specialised structures present a problem when it comes to replicating the DNA. Indeed, telomeric DNA progressively erodes with each round of cell division in cells that do not express telomerase, a specialised reverse transcriptase necessary to fully duplicate the telomeric DNA. Telomerase is expressed in tumour cells but not in most somatic cells and thus telomeres and telomerase may be proposed as attractive targets for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|