1
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
The stem cell revolution: on the role of CD164 as a human stem cell marker. NPJ Regen Med 2021; 6:33. [PMID: 34103536 PMCID: PMC8187384 DOI: 10.1038/s41536-021-00143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Accurately defining hierarchical relationships between human stem cells and their progeny, and using this knowledge for new cellular therapies, will undoubtedly lead to further successful treatments for life threatening and chronic diseases, which represent substantial burdens on patient quality of life and to healthcare systems globally. Clinical translation relies in part on appropriate biomarker, in vitro manipulation and transplantation strategies. CD164 has recently been cited as an important biomarker for enriching both human haematopoietic and skeletal stem cells, yet a thorough description of extant human CD164 monoclonal antibody (Mab) characteristics, which are critical for identifying and purifying these stem cells, was not discussed in these articles. Here, we highlight earlier but crucial research describing these relevant characteristics, including the differing human CD164 Mab avidities and their binding sites on the human CD164 sialomucin, which importantly may affect subsequent stem cell function and fate.
Collapse
|
3
|
Yu VW, Yusuf RZ, Oki T, Wu J, Saez B, Wang X, Cook C, Baryawno N, Ziller MJ, Lee E, Gu H, Meissner A, Lin CP, Kharchenko PV, Scadden DT. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell 2017; 168:944-945. [PMID: 28235203 PMCID: PMC5510238 DOI: 10.1016/j.cell.2017.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of—and molecular basis for—heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted.
Collapse
Affiliation(s)
- Vionnie W.C. Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rushdia Z. Yusuf
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Toshihiko Oki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Juwell Wu
- Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Borja Saez
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xin Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Colleen Cook
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael J. Ziller
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Eunjung Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hongcang Gu
- Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Charles P. Lin
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter V. Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell 2016; 167:1310-1322.e17. [DOI: 10.1016/j.cell.2016.10.045] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
|
5
|
Kim S, Kim N, Presson AP, Metzger ME, Bonifacino AC, Sehl M, Chow SA, Crooks GM, Dunbar CE, An DS, Donahue RE, Chen ISY. Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. Cell Stem Cell 2014; 14:473-85. [PMID: 24702996 DOI: 10.1016/j.stem.2013.12.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/13/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work.
Collapse
Affiliation(s)
- Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Angela P Presson
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark E Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Aylin C Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Mary Sehl
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samson A Chow
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Dong Sung An
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Sharma M, Sharma P, Tripathi RP, Gurudutta GU. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 2009; 13:4385-402. [PMID: 19602034 PMCID: PMC4515054 DOI: 10.1111/j.1582-4934.2009.00857.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), adherent fibroblastoid cells, present in bone marrow and many other tissues can be easily isolated and expanded in vitro. They are capable of differentiating into different cell types such as osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial cells and neuronal cells. Such immense plasticity coupled with their ability to modulate the activity of immune cells makes them attractive for stem cell-based therapy aimed at treating previously incurable disorders. Preclinical studies have reported successful use of MSCs for delivering therapeutic proteins and repairing defects in a variety of disease models. These studies highlighted the in vivo potential of MSCs and their ability to home to injury sites and modify the microenvironment by secreting paracrine factors to augment tissue repair. Their therapeutic applicability has been widened by genetic modification to enhance differentiation and tissue targeting, and use in tissue engineering. Clinical trials for diseases such as osteogenesis imperfecta, graft-versus-host disease and myocardial infarction have shown some promise, demonstrating the safe use of both allogeneic and autologous cells. However, lack of knowledge of MSC behaviour and responses in vitro and in vivo force the need for basic and animal studies before heading to the clinic. Contrasting reports on immunomodulatory functions and tumorigenicity along with issues such as mode of cell delivery, lack of specific marker, low survival and engraftment require urgent attention to harness the potential of MSC-based therapy in the near future.
Collapse
Affiliation(s)
- Neeraj Kumar Satija
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Derdouch S, Gay W, Nègre D, Prost S, Le Dantec M, Delache B, Auregan G, Andrieu T, Leplat JJ, Cosset FL, Le Grand R. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34+ bone marrow cells, following gamma irradiation in cynomolgus macaques. Retrovirology 2008; 5:50. [PMID: 18565229 PMCID: PMC2464606 DOI: 10.1186/1742-4690-5-50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 06/19/2008] [Indexed: 01/08/2023] Open
Abstract
Background Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myeloablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34+ bone marrow cells following gamma irradiation in cynomolgus macaques. Results The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% ± 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudotyped and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% ± 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producingeGFP were detected as early as three days after transplantation, and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion The transplantation of CD34+ bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T- and B-lymphocyte, thrombocyte and red blood cell compartments.
Collapse
Affiliation(s)
- Sonia Derdouch
- CEA, service d'Immuno-Virologie, Institut des Maladies Emergentes et Thérapies Innovantes, Direction des Sciences du Vivant, Fontenay aux Roses, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rajesh D, Chinnasamy N, Mitalipov SM, Wolf DP, Slukvin I, Thomson JA, Shaaban AF. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells. Stem Cells 2007; 25:490-9. [PMID: 17284653 DOI: 10.1634/stemcells.2006-0277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progress toward clinical application of ESC-derived hematopoietic cellular transplantation will require rigorous evaluation in a large animal allogeneic model. However, in contrast to human ESCs (hESCs), efforts to induce conclusive hematopoietic differentiation from rhesus macaque ESCs (rESCs) have been unsuccessful. Characterizing these poorly understood functional differences will facilitate progress in this area and likely clarify the critical steps involved in the hematopoietic differentiation of ESCs. To accomplish this goal, we compared the hematopoietic differentiation of hESCs with that of rESCs in both EB culture and stroma coculture. Initially, undifferentiated rESCs and hESCs were adapted to growth on Matrigel without a change in their phenotype or karyotype. Subsequent differentiation of rESCs in OP9 stroma led to the development of CD34(+)CD45(-) cells that gave rise to endothelial cell networks in methylcellulose culture. In the same conditions, hESCs exhibited convincing hematopoietic differentiation. In cytokine-supplemented EB culture, rESCs demonstrated improved hematopoietic differentiation with higher levels of CD34(+) and detectable levels of CD45(+) cells. However, these levels remained dramatically lower than those for hESCs in identical culture conditions. Subsequent plating of cytokine-supplemented rhesus EBs in methylcellulose culture led to the formation of mixed colonies of erythroid, myeloid, and endothelial cells, confirming the existence of bipotential hematoendothelial progenitors in the cytokine-supplemented EB cultures. Evaluation of four different rESC lines confirmed the validity of these disparities. Although rESCs have the potential for hematopoietic differentiation, they exhibit a pause at the hemangioblast stage of hematopoietic development in culture conditions developed for hESCs.
Collapse
Affiliation(s)
- Deepika Rajesh
- Department of Surgery, University of Wisconsin Medical School, K4/760 Clinical Science Center, 600 Highland Avenue, Madison, Wisconsin 53792-7375, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Dunbar CE. Stem cell gene transfer: insights into integration and hematopoiesis from primate genetic marking studies. Ann N Y Acad Sci 2006; 1044:178-82. [PMID: 15958711 DOI: 10.1196/annals.1349.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genetic marking strategies in the nonhuman primate model have elucidated a number of principles with relevance to implementation of clinical stem cell therapies, including the lineage potential, number, and life span of hematopoietic stem and progenitor cells. The recent occurrence of leukemias likely related to insertional activation of a proto-oncogene in two patients with X-severe combined immunodeficiency (SCID) syndromes treated with CD34(+) cells transduced with retroviral vectors expressing the corrective common gamma cytokine receptor gene has refocused attention on the issue of retroviral integration. We have analyzed >1500 independent insertions from rhesus macaques transplanted with CD34(+) cells transduced with either MLV or SIV vectors. Of these, 46 rhesus macaques followed long term have not had progression to leukemia, abnormal hematopoiesis, or clonal hematopoiesis. However, the pattern of both MLV and SIV integrants in cells of these animals was found to be highly nonrandom, with a propensity for insertions of both vectors within genes: for MLV particularly near the transcription start site, and for SIV particularly in gene-dense regions.
Collapse
Affiliation(s)
- Cynthia E Dunbar
- Molecular Hematopoiesis Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 CRC, Room 4E-5132, Bethesda, MD 20892-1202, USA.
| |
Collapse
|
10
|
Graham JJ, Lederman RJ, Dick AJ. Magnetic resonance imaging and its role in myocardial regenerative therapy. Regen Med 2006; 1:347-55. [PMID: 17465788 DOI: 10.2217/17460751.1.3.347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been extensive interest recently in cardiac stem cell therapy. Current research has been hampered by differences in cell type, methods of delivery and efficacy evaluation. In this article we review the use of magnetic resonance imaging in this growing area and argue that it is well suited to all areas of myocardial regeneration: from patient identification, through cell delivery and tracking of appropriately labeled cells, to evaluation of therapeutic effect. Potential future advances are discussed including magnetic resonance imaging-guided intervention suites and the use of higher field strength magnets for cell tracking.
Collapse
Affiliation(s)
- John J Graham
- Division of Cardiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | |
Collapse
|
11
|
Affiliation(s)
- Alexander J Dick
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|
12
|
Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S, Bridger G, Dunbar CE, Hematti P. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006; 107:3772-8. [PMID: 16439684 PMCID: PMC1895780 DOI: 10.1182/blood-2005-09-3592] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AMD3100, a bicyclam antagonist of the chemokine receptor CXCR4, has been shown to induce rapid mobilization of CD34(+) hematopoietic cells in mice, dogs, and humans, offering an alternative to G-CSF mobilization of peripheral-blood hematopoietic stem cells. In this study, AMD3100-mobilized CD34(+) cells were phenotypically analyzed, marked with Neo(R)-containing retroviral vectors, and subsequently transplanted into myeloablated rhesus macaques. We show engraftment of transduced AMD3100-mobilized CD34(+) cells with Neo(R) gene marked myeloid and lymphoid cells up to 32 months after transplantation, demonstrating the ability of AMD3100 to mobilize true long-term repopulating hematopoietic stem cells. More AMD3100-mobilized CD34(+) cells are in the G(1) phase of the cell cycle and more cells express CXCR4 and VLA-4 compared with G-CSF-mobilized CD34(+) cells. In vivo gene marking levels obtained with AMD3100-mobilized CD34(+) cells were better than those obtained using CD34(+) cells mobilized with G-CSF alone. Overall, these results indicate that AMD3100 mobilizes a population of hematopoietic stem cells with intrinsic characteristics different from those of hematopoietic stem cells mobilized with G-CSF, suggesting fundamental differences in the mechanism of AMD3100-mediated and G-CSF-mediated hematopoietic stem cell mobilization. Thus, AMD3100-mobilized CD34(+) cells represent an alternative source of hematopoietic stem cells for clinical stem cell transplantation and genetic manipulation with integrating retroviral vectors.
Collapse
Affiliation(s)
- André Larochelle
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10 CRC, Rm 4E-5132, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Donahue RE, Kuramoto K, Dunbar CE. Large animal models for stem and progenitor cell analysis. CURRENT PROTOCOLS IN IMMUNOLOGY 2005; Chapter 22:22A.1.1-22A.1.29. [PMID: 18432946 DOI: 10.1002/0471142735.im22a01s69] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extrapolation of an understanding regarding hematopoiesis and, in particular, hematopoietic stem cells (HSCs) from rodent models or in vitro human cell models to applications in humans has proven very difficult. This is not surprising, given the differences between rodent and human hematopoietic physiology and the lack of true in vitro assays for HSCs. Therefore, translational preclinical development of genetic and cellular therapies is dependent on the utilization of practical and well-defined large animal models. This chapter will introduce the most commonly used model species, including macaques, baboons, dogs, cats, and sheep, and explain the particular advantages and limitations of each. Specific protocols for the support of macaques through ablative cell and gene therapy procedures will be included to introduce investigators to the types of resources and support required to maintain a large animal facility dedicated to high-intensity experimentation, and also to introduce investigators to the types of procedures that are possible.
Collapse
Affiliation(s)
| | - Ken Kuramoto
- National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
14
|
Abstract
Genetic marking strategies in the non-human primate model have elucidated a number of principles relevant to implementation of clinical stem cell therapies, including the lineage potential, number and lifespan of hematopoietic stem and progenitor cells, and differences in the functional properties of marrow cells mobilized into the peripheral blood utilizing different regimens.
Collapse
Affiliation(s)
- C E Dunbar
- Molecular Hematopoiesis Section, Hematology Branch National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Bécard N, de Revel T, Sorg T, Dormont D, Le Grand R. Expression of human IL-1alpha after intramarrow gene transfer into healthy non-human primate by adenoviral vector. J Med Primatol 2005; 34:1-12. [PMID: 15667338 DOI: 10.1111/j.1600-0684.2004.00085.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1alpha (IL-1alpha) is a multifunctional cytokine that stimulates myelopoiesis in macaque. However, daily systemic injections of IL-1alpha are associated with severe side effects. We therefore investigated the feasibility of a gene therapy strategy aimed at increasing the IL-1alpha local production in bone marrow with limited release of the vector into the blood circulation. Intra-medullar administration of adenoviral vector containing human IL-1alpha (huIL-1alpha) gene resulted in enhanced neutrophil, monocyte and platelet counts during the two first weeks after injection. The DNA vector, the transgene expression and the huIL-1alpha production was detected in treated bone marrow without significant detection of huIL-1alpha in the peripheral blood. Associated with huIL-1alpha production, we observed concomitant plasma C reactive protein and IL-1Ra peaks in the acellular fraction of treated bone marrow at days 3 and 7. No abnormal clinical side effects were observed in any of the animals following the adenoviral vector injection.
Collapse
Affiliation(s)
- Nicolas Bécard
- Commissariat à l'Energie Atomique, Laboratoire d'Immuno-Pathologie Experimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, 18 route du panorama, 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Shepherd BE, Guttorp P, Lansdorp PM, Abkowitz JL. Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths. Exp Hematol 2004; 32:1040-50. [PMID: 15539081 DOI: 10.1016/j.exphem.2004.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study in vivo behavior of hematopoietic stem cells (HSC). MATERIALS AND METHODS Behavior of HSC is difficult to study because one cannot observe and track cells within the marrow microenvironment. Therefore, information must be obtained from indirect means, such as competitive repopulation assays or surrogate studies, such as observations of telomere shortening in granulocytes. In this article, we use granulocyte telomere length data and a novel approach, stochastic simulation, to derive replication rates of HSC. The approach is first applied to cats and then to humans. RESULTS Human HSC replicate infrequently, on average once per 45 weeks (range: once per 23 to once per 67 weeks). CONCLUSIONS This rate is substantially slower than the average replication rates estimated for murine (once per 2.5 weeks) and feline (once per 8.3-10 weeks) HSC in vivo.
Collapse
Affiliation(s)
- Bryan E Shepherd
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
17
|
Steinman R, Yaroslavskiy B, Goff JP, Alber SM, Watkins SC. Cdk-inhibitors and exit from quiescence in primitive haematopoietic cell subsets. Br J Haematol 2004; 124:358-65. [PMID: 14717785 DOI: 10.1046/j.1365-2141.2003.04780.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolonged quiescence of haematopoietic stem cells has been proposed to support durable haematopoiesis through clonal succession. Genetic experiments in mice have implicated the cyclin-dependent kinase inhibitor (cdki) p21Waf1 in sustaining stem cell quiescence, and the cdki p27Kip1 in inhibiting the expansion of more mature progenitor cells. The expression of these inhibitory proteins in human haematopoietic stem cell candidates has not hitherto been studied. We describe a rare subpopulation (3 x 10-7 umbilical cord mononuclear cells) of lineage-negative cells that exhibited sustained resistance over months to cytokine-induced cycling, and characterized the expression of p21Waf1 and p27Kip1 proteins in these cells. Whereas p27Kip1 was uniformly expressed in these cells, the expression of p21Waf1 in this population and in lineage-negative CD34+ cells was variable. For this rare subset of cells exhibiting prolonged quiescence, p21Waf1 may be dispensable and p27Kip1 necessary for growth arrest.
Collapse
Affiliation(s)
- Richard Steinman
- Suite 2.19 Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
18
|
Kiem HP, Sellers S, Thomasson B, Morris JC, Tisdale JF, Horn PA, Hematti P, Adler R, Kuramoto K, Calmels B, Bonifacino A, Hu J, von Kalle C, Schmidt M, Sorrentino B, Nienhuis A, Blau CA, Andrews RG, Donahue RE, Dunbar CE. Long-Term Clinical and Molecular Follow-up of Large Animals Receiving Retrovirally Transduced Stem and Progenitor Cells: No Progression to Clonal Hematopoiesis or Leukemia. Mol Ther 2004; 9:389-95. [PMID: 15006605 DOI: 10.1016/j.ymthe.2003.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 12/12/2003] [Indexed: 11/24/2022] Open
Abstract
There has been significant progress toward clinically relevant levels of retroviral gene transfer into hematopoietic stem cells (HSC), and the therapeutic potential of HSC-based gene transfer has been convincingly demonstrated in children with severe combined immunodeficiency syndrome (SCID). However, the subsequent development of leukemia in two children with X-linked SCID who were apparently cured after transplantation of retrovirally corrected CD34+ cells has raised concerns regarding the safety of gene therapy approaches utilizing integrating vectors. Nonhuman primates and dogs represent the best available models for gene transfer safety and efficacy and are particularly valuable for evaluation of long-term effects. We have followed 42 rhesus macaques, 23 baboons, and 17 dogs with significant levels of gene transfer for a median of 3.5 years (range 1-7) after infusion of CD34+ cells transduced with retroviral vectors expressing marker or drug-resistance genes. None developed abnormal hematopoiesis or leukemia. Integration site analysis confirmed stable, polyclonal retrovirally marked hematopoiesis, without progression toward mono- or oligoclonality over time. These results suggest that retroviral integrations using replication-incompetent vectors, at copy numbers achieved using standard protocols, are unlikely to result in leukemogenesis and that patient- or transgene-specific factors most likely contributed to the occurrence of leukemia in the X-SCID gene therapy trial.
Collapse
Affiliation(s)
- Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Division of Orcology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 2003; 103:1941-8. [PMID: 14592834 DOI: 10.1182/blood-2003-05-1601] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the infusion of umbilical cord blood (UCB) from multiple donors can be a strategy to overcome the cell dose limitation frequently encountered in UCB transplantation, clinical trials have revealed that cells from one donor dominate engraftment. To investigate the origin of and the factors influencing this inequality, we performed mixed transplantation of 2 UCB units with varying degrees of HLA disparities into NOD/SCID mice and determined donor origins by polymerase chain reaction-sequence-specific oligonucleotide probe (PCR-SSOP) or real-time quantitative (RQ)-PCR for human short tandem repeats (STRs). When total mononuclear cells from 2 units were transplanted as a mixture, cells from one donor predominated (ratio, 81:19), despite comparable overall engraftment when infused as single units, and no augmentation in overall engraftment was observed when compared with the single-unit controls. However, lineage depletion or cotransplantation of mesenchymal stromal cells (MSCs) expanded from third-party bone marrow resulted in more balanced coengraftment. Direct comparison of double UCB transplantation in the presence or absence of MSCs showed that the reduced deviation in the donor ratio (1.8:1 vs. 2.8:1) correlated with a higher overall level of engraftment with MSC cotransplantation. These results indicate that third-party MSCs can be used to alleviate donor deviation and to facilitate engraftment of multidonor UCB.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Cell and Gene Therapy Institute and the Department of Cellular Medicine and Biology, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Allison Hinds K, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003; 108:1009-14. [PMID: 12912822 PMCID: PMC1490325 DOI: 10.1161/01.cir.0000084537.66419.7a] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Delivery and tracking of endomyocardial stem cells are limited by the inability to image transplanted cells noninvasively in the beating heart. We hypothesized that mesenchymal stem cells (MSCs) could be labeled with a iron fluorophore particle (IFP) to provide MRI contrast in vivo to assess immediate and long-term localization. METHODS AND RESULTS MSCs were isolated from swine. Short-term incubation of MSCs with IFP resulted in dose-dependent and efficient labeling. Labeled cells remained viable for multiple passages and retained in vitro proliferation and differentiation capacity. Labeled MSCs (10(4) to 10(6) cells/150 microL) were injected percutaneously into normal and freshly infarcted myocardium in swine. One, 3, and 1 animals underwent serial cardiac MRI (1.5T) for 4, 8, and 21 days, respectively. MRI contrast properties were measured both in vivo and in vitro for cells embedded in agar. Injection sites containing as few as 10(5) MSCs could be detected and contained intact IFP-bearing MSCs on histology. CONCLUSIONS IFP labeling of MSCs imparts useful MRI contrast, enabling ready detection in the beating heart on a conventional cardiac MR scanner after transplantation into normal and infarcted myocardium. The dual-labeled MSCs can be identified at locations corresponding to injection sites, both ex vivo using fluorescence microscopy and in vivo using susceptibility contrast on MRI. This technology may permit effective in vivo study of stem cell retention, engraftment, and migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Robert J. Lederman
- Correspondence to Robert J. Lederman, MD, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 2c713, Bethesda, MD 20892-1538. E-mail
| |
Collapse
|
21
|
Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101:2099-114. [PMID: 12511419 DOI: 10.1182/blood-2002-07-2314] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent conceptual and technical improvements have resulted in clinically meaningful levels of gene transfer into repopulating hematopoietic stem cells. At the same time, evidence is accumulating that gene therapy may induce several kinds of unexpected side effects, based on preclinical and clinical data. To assess the therapeutic potential of genetic interventions in hematopoietic cells, it will be important to derive a classification of side effects, to obtain insights into their underlying mechanisms, and to use rigorous statistical approaches in comparing data. We here review side effects related to target cell manipulation; vector production; transgene insertion and expression; selection procedures for transgenic cells; and immune surveillance. We also address some inherent differences between hematopoiesis in the most commonly used animal model, the laboratory mouse, and in humans. It is our intention to emphasize the need for a critical and hypothesis-driven analysis of "transgene toxicology," in order to improve safety, efficiency, and prognosis for the yet small but expanding group of patients that could benefit from gene therapy.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Baerlocher GM, Mak J, Röth A, Rice KS, Lansdorp PM. Telomere shortening in leukocyte subpopulations from baboons. J Leukoc Biol 2003; 73:289-96. [PMID: 12554806 DOI: 10.1189/jlb.0702361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To address questions about telomere length regulation in nonhuman primates, we studied the telomere length in subpopulations of leukocytes from the peripheral blood of baboons aged 0.2-26.5 years. Telomere length in granulocytes, B cells, and subpopulations of T cells all decreased with age. Overall, telomere length kinetics were lineage- and cell subset-specific. T cells showed the most pronounced, overall decline in telomere length. Levels of telomerase in stimulated T cells from old animals were lower than in corresponding cells from young animals. Memory T cells with very short telomeres accumulated in old animals. In contrast, the average telomere length values in B cells remained relatively constant from middle age onward. Individual B cells showed highly variable telomere length, and B cells with very long telomeres were observed after the ages of 1-2 years. In general, cell type-specific telomere kinetics in baboons were remarkably similar to those observed in humans.
Collapse
Affiliation(s)
- Gabriela M Baerlocher
- Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
| | | | | | | | | |
Collapse
|