1
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
2
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
3
|
Veite-Schmahl MJ, Regan DP, Rivers AC, Nowatzke JF, Kennedy MA. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling. J Vis Exp 2017. [PMID: 28872120 DOI: 10.3791/55647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1acre/+;LSL-KrasG12D/+) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.
Collapse
Affiliation(s)
| | - Daniel P Regan
- Department of Chemistry & Biochemistry, Miami University
| | - Adam C Rivers
- Department of Chemistry & Biochemistry, Miami University
| | - Joseph F Nowatzke
- Department of Chemistry & Biochemistry, Miami University; College of Medicine, Central Michigan University
| | | |
Collapse
|
4
|
Lollini PL, Cavallo F, De Giovanni C, Nanni P. Preclinical vaccines against mammary carcinoma. Expert Rev Vaccines 2014; 12:1449-63. [DOI: 10.1586/14760584.2013.845530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Olme CH, Finnon R, Brown N, Kabacik S, Bouffler S, Badie C. Live cell detection of chromosome 2 deletion and Sfpi1/PU1 loss in radiation-induced mouse acute myeloid leukaemia. Leuk Res 2013; 37:1374-82. [PMID: 23806234 PMCID: PMC3775122 DOI: 10.1016/j.leukres.2013.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/20/2022]
Abstract
The CBA/H mouse model of radiation-induced acute myeloid leukaemia (rAML) has been studied for decades to bring to light the molecular mechanisms associated with multistage carcinogenesis. A specific interstitial deletion of chromosome 2 found in a high proportion of rAML is recognised as the initiating event. The deletion leads to the loss of Sfpi, a gene essential for haematopoietic development. Its product, the transcription factor PU.1 acts as a tumour suppressor in this model. Although the deletion can be detected early following ionising radiation exposure by cytogenetic techniques, precise characterisation of the haematopoietic cells carrying the deletion and the study of their fate in vivo cannot be achieved. Here, using a genetically engineered C57BL/6 mouse model expressing the GFP fluorescent molecule under the control of the Sfpi1 promoter, which we have bred onto the rAML-susceptible CBA/H strain, we demonstrate that GFP expression did not interfere with X-ray induced leukaemia incidence and that GFP fluorescence in live leukaemic cells is a surrogate marker of radiation-induced chromosome 2 deletions with or without point mutations on the remaining allele of the Sfpi1 gene. This study presents the first experimental evidence for the detection of this leukaemia initiating event in live leukemic cells.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Chromosome Deletion
- Disease Models, Animal
- Exons
- Female
- Flow Cytometry
- Gene Deletion
- Gene Expression
- Genes, Reporter
- Genetic Predisposition to Disease
- Immunophenotyping
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Radiation-Induced/genetics
- Leukemia, Radiation-Induced/metabolism
- Mice
- Mutation
- Proto-Oncogene Proteins/genetics
- Trans-Activators/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
| | | | | | | | | | - C. Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, UK
| |
Collapse
|
6
|
Terriente J, Pujades C. Use of Zebrafish Embryos for Small Molecule Screening Related to Cancer. Dev Dyn 2013. [DOI: 10.1002/dvdy.23912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| |
Collapse
|
7
|
Abstract
History of cancer disease models clearly illustrates the evolving nature of these concepts. Since such models undergo continual revisions and additions as a result of underlying medical research, they also tend to reorganize knowledge and allow perceiving previously unseen relationships. Growth of medical thought has been influenced for many centuries by an ancient Hippocratic concept of disease seen as a disturbance in bodily “humors.” True mechanisms of cell and tissue injury started to be elucidated only with the advent of postmortem pathological findings. Concerning cancer, when first disease-producing bacteria were identified in the nineteenth century, also neoplasms were treated as infectious diseases. Foreign organisms were thought to be present inside tumors. However, this hypothesis could not be confirmed by microscopic or histochemical studies. The latter suggested, instead, that tumors were rather formed by abnormal cells. Cancer was then started to be regarded as a disease of cells. This interpretation was radically altered by later developments in genetics which suggested that neoplasms can be treated as genetic diseases as pathologic cellular lesions are caused by mutations in specific genes. More recent models have compared carcinogenesis to evolutionary processes. Due to genetic instability, successive mutations, appearing in cells, lead to selection of cancer cells which feature specific phenotypic traits. The newest data indicate that there may be also a link between cancer and mutated stem cells. The review discusses main concepts of tumor origin forwarded since the beginnings of the nineteenth century.
Collapse
|
8
|
Kozuch PS, Rocha-Lima CM, Dragovich T, Hochster H, O'Neil BH, Atiq OT, Pipas JM, Ryan DP, Lenz HJ. Bortezomib with or without irinotecan in relapsed or refractory colorectal cancer: results from a randomized phase II study. J Clin Oncol 2008; 26:2320-6. [PMID: 18467723 DOI: 10.1200/jco.2007.14.0152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the efficacy and toxicity of bortezomib with or without irinotecan, in patients with relapsed or refractory colorectal cancer (CRC). PATIENTS AND METHODS Patients were randomly assigned in a 3:4 ratio to bortezomib 1.5 mg/m(2) (arm A) or bortezomib 1.3 mg/m(2) plus irinotecan 125 mg/m(2) (arm B). A treatment cycle of 21 days consisted of four bortezomib doses on days 1, 4, 8, and 11, plus, in arm B, irinotecan on days 1 and 8. The primary objective of this randomized, multicenter, open-label, phase II study was to determine tumor response to treatment. Secondary objectives were safety and tolerability. RESULTS A preplanned interim analysis to assess efficacy revealed inadequate activity, resulting in early termination of this study. A total of 102 patients were treated, 45 in arm A and 57 in arm B. Baseline characteristics were comparable. The investigator-assessed response rate was 0 in arm A and 3.5% in arm B (all partial responses). Adverse events in both treatment arms were as expected, with no significant additive toxicity. The most common grade >or= 3 adverse events reported, per patient, during the study were fatigue (27%), vomiting (13%), nausea (11%), and peripheral sensory neuropathy (11%) in arm A, and diarrhea (33%), fatigue (25%), neutropenia (23%), thrombocytopenia (18%), dyspnea (12%), abdominal pain (12%), dehydration (12%), and anemia (11%) in arm B. CONCLUSION Bortezomib alone or in combination with irinotecan was not effective in patients with relapsed or refractory CRC.
Collapse
Affiliation(s)
- Peter S Kozuch
- Continuum Cancer Centers of New York, St Luke's-Roosevelt Hospital, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The use of xenograft models for the selection of cancer treatments with the EGFR as an example. Crit Rev Oncol Hematol 2008; 65:200-11. [PMID: 18389522 DOI: 10.1016/j.critrevonc.2007.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mouse models of cancer have consistently been used to qualify new anti-cancer drugs for development of human clinical trials. The most used models are xenografts of human tumors grown subcutaneously in immunodeficient mice such as athymic (nude) or severe combined immune deficient (SCID) mice. However, the number of anti-cancer agents that fail in the clinic far outweighs those considered effective, suggesting that the selection procedure for progression of molecules into the clinic requires improvement. This has provoked considerable skepticism about the value of using such preclinical models. As a result, a shift has occurred towards developing and using spontaneous mouse tumor arising in transgenic and/or knockout mice engineered to recapitulate various genetic alterations thought to be causative of specific types of human cancers. Alternatively, the option has been to improve human tumor xenograft models by using orthotopic transplantation and, therefore, promotion of metastatic spread of the resultant 'primary' tumors. Here we review the value and the limitations of xenograft models and their role in developing new anti-cancer treatments.
Collapse
|
10
|
Omidvar N, Kogan S, Beurlet S, le Pogam C, Janin A, West R, Noguera ME, Reboul M, Soulie A, Leboeuf C, Setterblad N, Felsher D, Lagasse E, Mohamedali A, Thomas NSB, Fenaux P, Fontenay M, Pla M, Mufti GJ, Weissman I, Chomienne C, Padua RA. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 2008; 67:11657-67. [PMID: 18089795 DOI: 10.1158/0008-5472.can-07-0196] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myelodysplastic syndromes (MDS) are clonal stem cell hematologic disorders that evolve to acute myeloid leukemia (AML) and thus model multistep leukemogenesis. Activating RAS mutations and overexpression of BCL-2 are prognostic features of MDS/AML transformation. Using NRASD12 and BCL-2, we created two distinct models of MDS and AML, where human (h)BCL-2 is conditionally or constitutively expressed. Our novel transplantable in vivo models show that expression of hBCL-2 in a primitive compartment by mouse mammary tumor virus-long terminal repeat results in a disease resembling human MDS, whereas the myeloid MRP8 promoter induces a disease with characteristics of human AML. Expanded leukemic stem cell (Lin(-)/Sca-1(+)/c-Kit(+)) populations and hBCL-2 in the increased RAS-GTP complex within the expanded Sca-1(+) compartment are described in both MDS/AML-like diseases. Furthermore, the oncogenic compartmentalizations provide the proapoptotic versus antiapoptotic mechanisms, by activating extracellular signal-regulated kinase and AKT signaling, in determination of the neoplastic phenotype. When hBCL-2 is switched off with doxycycline in the MDS mice, partial reversal of the phenotype was observed with persistence of bone marrow blasts and tissue infiltration as RAS recruits endogenous mouse (m)BCL-2 to remain active, thus demonstrating the role of the complex in the disease. This represents the first in vivo progression model of MDS/AML dependent on the formation of a BCL-2:RAS-GTP complex. The colocalization of BCL-2 and RAS in the bone marrow of MDS/AML patients offers targeting either oncogene as a therapeutic strategy.
Collapse
Affiliation(s)
- Nader Omidvar
- Institut National de la Sante et de la Recherche Medicale U718 and 728, Université Paris 7 Denis Diderot, Faculté de Médicine, Institut Universitaire d'Hématologie-IFR105, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chang MY, Boulden J, Katz JB, Wang L, Meyer TJ, Soler AP, Muller AJ, Prendergast GC. Bin1 ablation increases susceptibility to cancer during aging, particularly lung cancer. Cancer Res 2007; 67:7605-12. [PMID: 17699764 DOI: 10.1158/0008-5472.can-07-1100] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Age is the major risk factor for cancer, but few genetic pathways that modify cancer incidence during aging have been described. Bin1 is a prototypic member of the BAR adapter gene family that functions in vesicle dynamics and nuclear processes. Bin1 limits oncogenesis and is often attenuated in human cancers, but its role in cancer suppression has yet to be evaluated fully in vivo. In the mouse, homozygous deletion of Bin1 causes developmental lethality, so to assess this role, we examined cancer incidence in mosaic null mice generated by a modified Cre-lox technology. During study of these animals, one notable phenotype was an extended period of female fecundity during aging, with mosaic null animals retaining reproductive capability until the age of 17.3 +/- 1.1 months. Through 1 year of age, cancer incidence was unaffected by Bin1 ablation; however, by 18 to 20 months of age, approximately 50% of mosaic mice presented with lung adenocarcinoma and approximately 10% with hepatocarcinoma. Aging mosaic mice also displayed a higher incidence of inflammation and/or premalignant lesions, especially in the heart and prostate. In mice where colon tumors were initiated by a ras-activating carcinogen, Bin1 ablation facilitated progression to more aggressive invasive status. In cases of human lung and colon cancers, immunohistochemical analyses evidenced frequent attenuation of Bin1 expression, paralleling observations in other solid tumors. Taken together, our findings highlight an important role for Bin1 as a negative modifier of inflammation and cancer susceptibility during aging.
Collapse
Affiliation(s)
- Mee Young Chang
- Lankenau Institute for Medical Research, Lankenau Hospital, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang MY, Boulden J, Sutanto-Ward E, Duhadaway JB, Soler AP, Muller AJ, Prendergast GC. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res 2007; 67:100-7. [PMID: 17210688 DOI: 10.1158/0008-5472.can-06-2742] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes that modify oncogenesis may influence dormancy versus progression in cancer, thereby affecting clinical outcomes. The Bin1 gene encodes a nucleocytosolic adapter protein that interacts with and suppresses the cell transforming activity of Myc. Bin1 is often attenuated in breast cancer but its ability to negatively modify oncogenesis or progression in this context has not been gauged directly. In this study, we investigated the effects of mammary gland-specific deletion of Bin1 on initiation and progression of breast cancer in mice. Bin1 loss delayed the outgrowth and involution of the glandular ductal network during pregnancy but had no effect on tumor susceptibility. In contrast, in mice where tumors were initiated by the ras-activating carcinogen 7,12-dimethylbenz(a)anthracene, Bin1 loss strongly accentuated the formation of poorly differentiated tumors characterized by increased proliferation, survival, and motility. This effect was specific as Bin1 loss did not accentuate progression of tumors initiated by an overexpressed mouse mammary tumor virus-c-myc transgene, which on its own produced poorly differentiated and aggressive tumors. These findings suggest that Bin1 loss cooperates with ras activation to drive progression, establishing a role for Bin1 as a negative modifier of oncogenicity and progression in breast cancer.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Base Sequence
- Carcinogens
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cocarcinogenesis
- Disease Progression
- Female
- Gene Deletion
- Genes, ras
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/physiology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Pregnancy
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Mee Young Chang
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sander S, Bullinger L, Karlsson A, Giuriato S, Hernandez-Boussard T, Felsher DW, Pollack JR. Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model. Oncogene 2005; 24:6101-7. [PMID: 16007205 DOI: 10.1038/sj.onc.1208751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microarray-based formats offer a high-resolution alternative to conventional, chromosome-based comparative genomic hybridization (CGH) methods for assessing DNA copy number alteration (CNA) genome-wide in human cancer. For murine tumors, array CGH should provide even greater advantage, since murine chromosomes are more difficult to individually discern. We report here the adaptation and evaluation of a cDNA microarray-based CGH method for the routine characterization of CNAs in murine tumors, using mouse cDNA microarrays representing approximately 14,000 different genes, thereby providing an average mapping resolution of 109 kb. As a first application, we have characterized CNAs in a set of 10 primary and recurrent lymphomas derived from a Myc-induced murine lymphoma model. In primary lymphomas and more commonly in Myc-independent relapses, we identified a recurrent genomic DNA loss at chromosome 3G3-3H4, and recurrent amplifications at chromosome 3F2.1-3G3 and chromosome 15E1/E2-15F3, the boundaries of which we defined with high resolution. Further, by profiling gene expression using the same microarray platform, we identified within CNAs the relevant subset of candidate cancer genes displaying comparably altered expression, including Mcl1 (myeloid cell leukemia sequence 1), a highly expressed antiapoptotic gene residing within the chr 3 amplicon peak. CGH on mouse cDNA microarrays therefore represents a reliable method for the high-resolution characterization of CNAs in murine tumors, and a powerful approach for elucidating the molecular events in tumor development and progression in murine models.
Collapse
Affiliation(s)
- Sandrine Sander
- Department of Pathology, Stanford University, Stanford, CA 94305-5176, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Griffin C, Waard HD, Deans B, Thacker J. The involvement of key DNA repair pathways in the formation of chromosome rearrangements in embryonic stem cells. DNA Repair (Amst) 2005; 4:1019-27. [PMID: 15979950 DOI: 10.1016/j.dnarep.2005.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 11/25/2022]
Abstract
It is vital that embryonic stem (ES) cells, which give rise to the diverse tissues of the mature organism, maintain genetic stability. To understand mechanisms for the prevention and causation of chromosomal instability, we have used spectral karyotyping (SKY) to analyse ES cells from wild-type and repair-gene knockout mice. We chose cells deficient in Ku70 (DNA end joining), Xrcc2 (gene conversion), Ercc1 (single-strand annealing) and Csb (transcription-coupled repair) to represent potentially-important DNA repair pathways, plus an Xpc-deficient line to examine loss of global nucleotide excision repair (NER). Spontaneous and radiation (X-ray or alpha-particle)-induced chromosome changes were assessed to measure the influence of different levels of damage severity on response. We show that most repair pathways (except for global NER) protect against chromosome changes induced by ionizing radiations, while only homology-dependent pathways protect against spontaneous chromosomal change in ES cells. However, for a given level of damage, the prevalence of different types of changes alters in the different repair-deficient lines. Thus, loss of Ercc1, Csb or Ku70 leads to increased fragment formation, but loss of Xrcc2 promotes exchanges between chromosomes. Strikingly, we found that loss of the Csb gene function specifically protects ES cells from complex exchanges, suggesting a role for transcription-associated events in complex exchange formation.
Collapse
Affiliation(s)
- Carol Griffin
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, England, UK
| | | | | | | |
Collapse
|
15
|
Johnson MA, Iversen P, Schwier P, Corn AL, Sandusky G, Graff J, Neubauer BL. Castration triggers growth of previously static androgen-independent lesions in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Prostate 2005; 62:322-38. [PMID: 15389779 DOI: 10.1002/pros.20148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Androgen-deprivation remains the standard of care for metastatic prostate cancer, yet its total impact on the course of disease is incompletely established. METHODS We have examined the long-term effects of castration upon the progression of established cancer in the TRAMP transgenic mouse model of prostate cancer. Mice castrated at 15-weeks of age, as well as intact littermates, were followed until spontaneous death from cancer. RESULTS Statistical analyses of age-at-death versus primary tumor mass revealed that mice segregate into two categories of response to androgen-deprivation. In Category One, the act of castration paradoxically triggers the growth of microscopic androgen-independent lesions, as evidenced by a statistical synchronization of primary tumor growth. Delaying castration until 20-weeks of age delays the synchronized growth of these tumors, as well as the deaths of the host mice. In Category Two, castration eliminates or substantially delays primary tumor growth, but fails to eliminate metastases. so that castration is found to impart no long-term survival advantage. CONCLUSIONS We propose a two-step model for the alteration of androgen signaling in prostate cancer capable of explaining the above paradoxical results, which is based upon the dualistic role of androgens as both survival and differentiation factors. This model makes specific predictions for clinical intervention that are discussed in light of published studies.
Collapse
Affiliation(s)
- Mac A Johnson
- Cancer Research Division, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Teicher BA. Tumor models for preclinical development of targeted agents. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 63:43-66. [PMID: 16265876 DOI: 10.1007/3-7643-7414-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
17
|
Li LN, Wang DR, Sato M, Kojima N, Imai K, Higashi N, Senoo H. Extracellular matrix-regulated p53 expression and nuclear localization in cultured Detroit 562 cells derived from pharyngeal carcinoma. ACTA ACUST UNITED AC 2004; 66:419-28. [PMID: 15018144 DOI: 10.1679/aohc.66.419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumor suppressor p53 functions as a transcriptional factor that regulates the cell cycle and apoptosis. A mutated p53 gene can result in decreased sequence-specific DNA binding and transcriptional activity of the p53 protein. In this study, we examined the regulatory role of the extracellular matrix components in p53 expression and nuclear localization in a Detroit 562 cell line derived from a pharyngeal carcinoma. When cultured on a polystyrene surface, type I collagen gel, or Matrigel containing basement membrane components, Detroit 562 cells showed a distinct response to extracellular matrix components morphologically. As shown by Western blotting, Detroit 562 cells cultured on Matrigel displayed an increased expression of p53 protein as well as an elevated nuclear p53 level, as compared with the cells cultured on the polystyrene surface or type I collagen gel. When cultured on Matrigel, nuclear p53-positive cells were exclusively localized to the outer surface layer of the cell clusters, whereas most of the inner cells showed no p53 expression. In Detroit 562 cell clusters on Matrigel, proliferative activities, as evaluated by proliferationcell nuclear antigen staining and bromo-deoxyuridine incorporation assay, were evenly distributed; virtually no apoptotic cells, as evaluated by the fluorescence TUNEL assay, were detected in the cell clusters, suggesting that the peculiar localization of nuclear p53-positive cells was not directly related to cell proliferation or apoptosis. These results indicate that p53 expression and its localization in Detroit cells were modulated by extracellular matrix signals, particularly by the basement membrane components in Matrigel.
Collapse
Affiliation(s)
- Li-Na Li
- Department of Cell Biology and Histology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Selection of mouse models of cancer is often based simply on availability of a mouse strain and a known compatible tumor. Frequently this results in use of tumor models long on history but short on homology and quality control. Other factors including genetics, sex, immunological status, method and site of tumor implantation, technical competence, biological activity of the tumor, protocol sequence and timing, and selection of endpoints interact to produce outcomes in tumor models. Common reliance on survival and tumor burden data in a single mouse model often skews expectations towards high remission and cure rates; a finding seldom duplicated in clinical trials. Inherent limitations of tumor models coupled with the advent of new therapeutic targets reinforce need for careful attention to design, conduct, and stringent selection of in vivo and ex vivo endpoints. Preclinical efficacy testing for anti-tumor therapies should progress through a series of models of increasing sophistication that includes incorporation of genetically engineered animals, and orthotopic and combination therapy models. Pharmacology and safety testing in tumor-bearing animals may also help to improve predictive value of these models for clinical efficacy. Trends in bioinformatics, genetic refinements, and specialized imaging techniques are helping to maintain mice as the most scientifically and economically powerful model of malignant neoplasms.
Collapse
Affiliation(s)
- JoAnn C L Schuh
- Applied Veterinary Pathobiology, Bainbridge Island, Washington 98110-3663, USA.
| |
Collapse
|
19
|
Frijhoff AFW, Conti CJ, Senderowicz AM. Advances in molecular carcinogenesis: current and future use of mouse models to screen and validate molecularly targeted anticancer drugs. Mol Carcinog 2004; 39:183-94. [PMID: 15057870 DOI: 10.1002/mc.20013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Survival of patients with advanced solid tumors has not significantly improved over the past 30 years. Although molecularly targeted anticancer drugs offer promise, few drugs make it through the end of the Food and Drug Administration approval process. Animal models that more closely resemble human carcinogenesis may bridge the gap between preclinical success and benefits for patients. We discuss pros and cons of several mouse models, including genetically engineered mice that each represent different aspects of human cancer, and the screening of targeted drugs in these models.
Collapse
Affiliation(s)
- Anita F W Frijhoff
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | | | |
Collapse
|
20
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
21
|
Mohrenweiser HW, Wilson DM, Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 2003; 526:93-125. [PMID: 12714187 DOI: 10.1016/s0027-5107(03)00049-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Individual risk and the population incidence of disease result from the interaction of genetic susceptibility and exposure. DNA repair is an example of a cellular process where genetic variation in families with extreme predisposition is documented to be associated with high disease likelihood, including syndromes of premature aging and cancer. Although the identification and characterization of new genes or variants in cancer families continues to be important, the focus of this paper is the current status of efforts to define the impact of polymorphic amino acid substitutions in DNA repair genes on individual and population cancer risk. There is increasing evidence that mild reductions in DNA repair capacity, assumed to be the consequence of common genetic variation, affect cancer predisposition. The extensive variation being found in the coding regions of DNA repair genes and the large number of genes in each of the major repair pathways results in complex genotypes with potential to impact cancer risk in the general population. The implications of this complexity for molecular epidemiology studies, as well as concepts that may make these challenges more manageable, are discussed. The concepts include both experimental and computational approaches that could be employed to develop predictors of disease susceptibility based on DNA repair genotype, focusing initially on studies to assess functional impact on individual proteins and pathways and then on molecular epidemiology studies to assess exposure-dependent health risk. In closing, we raise some of the non-technical challenges to the utilization of the full richness of the genetic variation to reduce disease occurrence and ultimately improve health care.
Collapse
Affiliation(s)
- Harvey W Mohrenweiser
- Biology and Biotechnology Research Program, L-448, Lawrence Livermore National Laboratory, 7000 East Avenue, CA 94551-0808, USA.
| | | | | |
Collapse
|
22
|
Abstract
Apoptosis plays a key role in the development of cancer and the response of tumor cells to therapeutic intervention. Recent work using three-dimensional cell culture models underscores the importance of the interactions between epithelial cells-both normal and malignant-and the extracellular matrix that surrounds them in informing life and death decisions. Research in this area is beginning to define the oncogenic pathways that can interfere with this process and the biochemical pathways that transmit signals from proper cell-matrix interactions to promote cell survival.
Collapse
Affiliation(s)
- Tyler Jacks
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | | |
Collapse
|
23
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|